Exercises in Commutative Algebra

Winter Term 2011/2012

Université du Luxembourg Prof. Dr. Gabor Wiese **Sheet 6** 24/10/2011

- 1. Let K be a field and $n \in \mathbb{N}$. Show the following statements:
 - (a) Let $\mathcal{X} \subseteq \mathcal{Y} \subseteq \mathbb{A}^n(K)$ be subsets. Then $\mathcal{I}_{\mathfrak{X}} \supseteq \mathcal{I}_{\mathfrak{Y}}$.
 - (b) $\mathcal{I}_{\emptyset} = K[\underline{X}].$
 - (c) If K has infinitely many elements, then $\mathcal{I}_{\mathbb{A}^n(K)} = (0)$.
 - (d) Let $S \subseteq K[\underline{X}]$ be a subset. Then $\mathcal{I}_{\mathcal{V}_S(K)} \supseteq S$.
 - (e) Let $\mathcal{X} \subseteq \mathbb{A}^n(K)$ be a subset. Then $\mathcal{V}_{\mathcal{I}_{\mathcal{X}}}(K) \supseteq \mathcal{X}$.
 - (f) Let $S \subseteq K[\underline{X}]$ be a subset. Then $\mathcal{V}_{\mathcal{I}_{\mathcal{V}_S(K)}}(K) = \mathcal{V}_S(K)$.
 - (g) Let $\mathcal{X} \subseteq \mathbb{A}^n(K)$ be a subset. Then $\mathcal{I}_{\mathcal{V}(\mathcal{I}_{\mathcal{X}})}(K) = \mathcal{I}_{\mathcal{X}}$.
- 2. Let $(\mathcal{X}, \mathcal{O}_{\mathcal{X}})$ be a topological space and $\mathcal{Y} \subseteq \mathcal{X}$ be a subset. Define $\mathcal{O}_{\mathcal{Y}} := \{U \cap \mathcal{Y} \mid U \in \mathcal{O}_{\mathcal{X}}\}$. Show that $\mathcal{O}_{\mathcal{Y}}$ is a topology on \mathcal{Y} . It is called the *relative topology* or the *subset topology*.
- 3. Let K be a field. Show that the closed subsets of $\mathbb{A}^1(K)$ are \emptyset , $\mathbb{A}^1(K)$ and finite sets of points.
- 4. Let K be a field, $n \in \mathbb{N}$ and $\mathcal{X} \subseteq \mathbb{A}^n(K)$ a subset.

With $f \in K[X_1, \ldots, X_n]$ associate (as in the lecture) the map

$$\varphi: \mathcal{X} \to \mathbb{A}^1(K), \quad \underline{x} \mapsto f(\underline{x}).$$

Show that φ is a continuous map, when we consider \mathcal{X} with the relative topology from $\mathbb{A}^n(K)$. Of course, $\mathbb{A}^n(K)$ and $\mathbb{A}^1(K)$ are equipped with the Zariski topology.

[By definition a map between topological spaces is continuous if the preimage of any open set is an open set.

Hint: Use the previous exercise.]

- 5. Let R be a ring.
 - (a) Homomorphism theorem for modules. Let M and N be R-modules and $\varphi : M \to N$ an R-homomorphism. Prove that the map

$$M/\ker(\varphi) \to \operatorname{im}(N), \quad m + \ker(\varphi) \mapsto \varphi(m)$$

is a well defined *R*-isomorphism.

If you have done Exercise 4 on Sheet 3, you can skip this exercise, as the proof is exactly the same.

(b) *Isomorphism theorems*. Let M be an R-module and let N_1 and N_2 be R-submodules of M. Conclude from (a) that there are the R-isomorphisms

 $(M/N_1)/(N_2/N_1) \cong M/N_2$ (assuming here also $N_1 \subseteq N_2$)

and

$$(N_1 + N_2)/N_1 \cong N_2/(N_1 \cap N_2).$$