Exercises in Commutative Algebra

Winter Term 2011/2012

Université du Luxembourg	Sheet 9
Prof. Dr. Gabor Wiese	14/11/2011

1. Tensor product as an R-module.

Let R be a commutative ring and let M, N be R-modules. Recall that since R is commutative we can see M and N as both right and left modules. We only use left notation in this exercise.

Show that the tensor product $M \otimes_R N$ is an *R*-module if we define the *R*-scalar multiplication as $r(m \otimes n) := rm \otimes n$, which is equal to $m \otimes rn$.

2. Tensor product of algebras.

Let R be a commutative ring. Recall the definition of an R-algebra A: A is a ring together with a (fixed) ring homomorphism $\varphi : R \to A$. This makes A into an R-module by defining the R-scalar multiplication as $r.a := \varphi(r)a$ for $r \in R$ and $a \in A$.

Let now A, B be R-algebras and form the tensor product $A \otimes_R B$.

Show that $A \otimes_R B$ is an *R*-algebra by defining multiplication on the generators as follows:

$$(a \otimes b) \cdot (a' \otimes b') := (aa') \otimes (bb'),$$

for $a, a' \in A$ and $b, b' \in B$, and extending it linearly:

$$\left(\sum_{i=1}^n r_i(a_i \otimes b_i)\right)\left(\sum_{j=1}^m r'_j(a'_j \otimes b'_j)\right) := \sum_{i=1}^n \sum_{j=1}^m r_i r'_j(a_i a'_j \otimes b_i b'_j),$$

for $r_i, r'_j \in R$, $a_i, a'_j \in A$ and $b_i, b'_j \in B$.

3. Let R be a ring and $S \subseteq R$ a multiplicatively closed subset with $1 \in S$. Let $\mu : R \to S^{-1}R$, given by $r \mapsto \frac{r}{1}$.

Show the following statements.

(a) The map

 $\{\mathfrak{b} \lhd S^{-1}R \text{ ideal}\} \longrightarrow \{\mathfrak{a} \lhd R \text{ ideal}\}, \quad \mathfrak{b} \mapsto \mu^{-1}(\mathfrak{b}) \lhd R$

is an injection, which preserves inclusions and intersections. Moreover, if $\mathfrak{b} \triangleleft S^{-1}R$ is a prime ideal, then so is $\mu^{-1}(\mathfrak{b}) \triangleleft R$.

- (b) Let $\mathfrak{a} \triangleleft R$ be an ideal. Then the following statements are equivalent:
 - (i) $\mathfrak{a} = \mu^{-1}(\mathfrak{b})$ for some $\mathfrak{b} \triangleleft S^{-1}R$ (i.e. \mathfrak{a} is in the image of the map in (a)).
 - (ii) $\mathfrak{a} = \mu^{-1}(\mathfrak{a}S^{-1}R)$ (here $\mathfrak{a}S^{-1}R$ is short for the ideal of $S^{-1}R$ generated by $\mu(\mathfrak{a})$, i.e. by all elements of the form $\frac{a}{1}$ for $a \in \mathfrak{a}$).
 - (iii) Every $s \in S$ is a non-zero divisor modulo \mathfrak{a} , meaning that if $r \in R$ and $rs \in \mathfrak{a}$, then $r \in \mathfrak{a}$.
- (c) The map in (a) defines a bijection between the prime ideals of S⁻¹R and the prime ideals p of R such that S ∩ p = Ø.
 Hint: Use (b) (iii).

4. In this exercise you prove Nakayama's Lemma:

Let R be a ring, $\mathfrak{a} \triangleleft R$ an ideal and M a finitely generated R-module.

- (a) Assume that aM = M. Show that there is a ∈ a such that (1 − a)M = 0.
 Hint: Choose a set of generators {m₁,...,m_n} of M as an R-module. As in Proposition 4.6 of the lecture, write each m_i as an a-linear combination of m₁,...,m_n. This leads to a matrix A = (a_{i,j}) with entries in a. Similarly to Proposition 4.6, you can obtain the desired 1 − a as the determinant of the identity matrix minus A.
- (b) Assume again aM = M and assume additionally that a ⊲ R is contained in the Jacobson radical J(R) of R.
 Show that M = 0.
- 5. This exercise proves a very useful corollary to Nakayama's Lemma, which is sometimes itself called Nakayama's Lemma.

Let R be a local ring with unique maximal ideal m and let M be a finitely generated R-module. Let $m_1, \ldots, m_n \in M$ be elements such that their images $\overline{m}_i := m_i + \mathfrak{m}M$ are generators of the quotient module $M/\mathfrak{m}M$.

Show that m_1, \ldots, m_n generate M as an R-module.