Seminar on Iwasawa Theory of Elliptic Curves 4. The Iwasawa Algebra

Marcel Mohyla

14. Mai 2008

In this section we will establish the link between $\mathbb{Z}_p[[T]]$ and $\mathbb{Z}_p[[G]]$, where the first one denotes the ordinary ring of power series in T and the second one is the projective limit of certain \mathbb{Z}_p -algebras. This enables us to understand the structure of $\mathbb{Z}_p[[G]]$ in detail. Additionally, the description of the set of irreducible elements will be given explicitly. In the following let p be a prime number and $\Lambda := \mathbb{Z}_p[[T]]$. Remember that Λ defines a local ring whose maximal ideal is generated by p and T. Further we have

$$\Lambda^* = \bigg\{ \sum_{i=0}^{\infty} a_i T^i \in \Lambda \bigg| a_0 \in \mathbb{Z}_p^* \bigg\}.$$

As well, \mathbb{Z}_p is a local ring and $\mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z} \cong \mathbb{F}_p$. This leads to an isomorphism $\Lambda/p\Lambda \cong \mathbb{F}_p[[T]]$.

Now we give the first definitions needed in this scope.

Definition 4.1 Let $g \in \mathbb{Z}_p[T]$ be normalized of degree d, $g = T^d + \sum_{i=0}^{d-1} a_i T^i$, such that $a_i \in p\Lambda$ for $0 \leq i < d$. Then g is said to be a distinguished polynomial of degree d. The whole set of distinguished polynomials of arbitrary degree is denoted by Δ . Further let

$$\Psi := \left\{ f = p^m \cdot u \cdot g \in \Lambda \middle| (m = 1 \text{ and } g = 1) \underline{or} (m = 0 \text{ and} g \text{ is irreducible as element in } \mathbb{Q}_p[T]), u \in \Lambda^*, g \in \Delta \right\}.$$

We will see later that Ψ denotes the set of irreducible elements. Before this, we state a quite useful theorem.

Theorem 4.2 Let $g \in \Lambda \setminus p\Lambda$ and $f \in \Lambda$ arbitrary. Denote by d the smallest integer such that the coefficient a_d of g is a unit where $g = \sum_{i=0}^{\infty} a_i T^i$. There exist uniquely determined $h \in \Lambda$ and $r \in \mathbb{Z}[T]$ such that

$$f = gh + r$$

with degree(r) < d.

PROOF: Let $f := \sum_{i=0}^{\infty} b_i T^i$. We take a look at the projection map

$$\overline{\cdot}: \mathbb{Z}_p[[T]] \twoheadrightarrow \mathbb{F}_p[[T]]: \sum_{i=0}^{\infty} c_i T^i \mapsto \sum_{i=0}^{\infty} \overline{c_i} T^i.$$

By the assumption on g, we have $\overline{a_d} \neq 0$ and $\overline{a_i} = 0$ for all $0 \leq i < d$, hence $\overline{g} = T^d \cdot u$ for $u \in (\mathbb{F}_p[[T]])^*$. Since $\overline{f} := T^d \left(\sum_{i=d}^{\infty} \overline{b_i} T^{i-d} \right) + \sum_{i=0}^{d-1} \overline{b_i} T^i$ and $T^d \left(\sum_{i=d}^{\infty} \overline{b_i} T^{i-d} \right) \in (\overline{g}) = (T^d)$, one has $\overline{f} = \overline{g}\overline{h_1} + \overline{r_1}$ for certain $h_1 \in \Lambda$ and $r_1 := \sum_{i=0}^{d-1} b_i T^i \in \mathbb{Z}_p[T]$. In particular, we have $f \equiv gh_1 + r_1 \mod p\Lambda$ and consequently $f = gh_1 + r_1 + pf_1$ for $f_1 \in \Lambda$. In the same way one gets $f_1 = gh' + r' + pf_2$ and obtains $f = gh_2 + r_2 + p^2f_2$, where $h_2 := h_1 + ph'$ and $r_2 := r_1 + pr'$. This leads to $f = gh_n + r_n + p^n f_n$ in general. Let $h_n := \sum_{i=0}^{\infty} a_i(h_n)T^i$ and $r_n := \sum_{i=0}^{d-1} b_i(r_n)T^i$. Note that the congruences

$$a_i(h_n) \equiv a_i(h_{n+1}), \ i = 0, 1, \dots, \infty, \text{ and}$$
$$b_i(r_n) \equiv b_i(r_{n+1}) \mod p^n \mathbb{Z}_p, i = 1, \dots, d-1.$$

hold for all n > 0. By construction, the limits exist in \mathbb{Z}_p , denote them by a_i , respectively b_i . Letting $h := \sum_{i=0}^{\infty} a_i T^i$ and $r := \sum_{i=0}^{d-1} b_i T^i$, one receives f = gh + r as desired. It remains to show the uniqueness of h and r. To do this, assume that

$$f = gh + r = gh' + r',$$

hence $s := r' - r \equiv 0 \mod g$. If $s \neq 0$, let $s = p^m s_1$, so that $s_1 \notin p\Lambda$. We get $g|s_1$ and since $\overline{g} = T^d \cdot \tilde{s}, \ \tilde{s} \in \mathbb{F}_p[[T]]$, one concludes $T^d|\overline{s_1}$. This is a contradiction to degree(s) < d. Finally, r' = r leads to h' = h directly.

Corollary 4.3 Let $g \in \Lambda \setminus p\Lambda$. Then $\Lambda/(g)$ and \mathbb{Z}_p^d are isomorphic regarded as \mathbb{Z}_p -modules. In particular, $\Lambda/(g)$ is free of rank d.

PROOF: We identify \mathbb{Z}_p^d with $\{f \in \mathbb{Z}_p[T] | degree(f) < d\}$ in the obvious manner. By (4.2) we get a well defined homomorphism of \mathbb{Z}_p -modules defined as follows:

$$\Lambda \to \mathbb{Z}_p^d : f = gh + r \mapsto r.$$

Passing to the quotient proves the corollary. \blacksquare

We need a further description of $g \in \Lambda/p\Lambda$.

Corollary 4.4 Let $g \in \Lambda \setminus p\Lambda$. There exists a uniquely determined polynomial $\tilde{g} \in \Delta$ that satisfies $g = u\tilde{g}$ where $u \in \Lambda^*$.

PROOF: By (4.3) we know that $\Lambda/(g)$ is a free \mathbb{Z}_p -module of rank d. Therefore let \tilde{g} denote the characteristic polynomial of the endomorphism

$$\Lambda/(g) \to \Lambda/(g) : g \mapsto g \cdot T.$$

We have degree(\tilde{g}) = rank($\Lambda/(g)$) = d and $\tilde{g} \cdot \Lambda/(g) = \{0\}$, hence $\Lambda/(g) \subseteq \Lambda/(\tilde{g})$. Applying (4.3) to \tilde{g} shows equality and therefore $(g) = (\tilde{g})$, i.e. $g = u \cdot \tilde{g}$. This shows $\tilde{g} \in \Delta$. Now assume there is another $g' \in \Delta$ satisfying g = u'g', $u' \in \Lambda^*$. Since $\Lambda/(\tilde{g}) = \mathbb{Z}_p[T]/(\tilde{g})$, one has $\mathbb{Z}_p[T]/(\tilde{g}) = \mathbb{Z}_p[T]/(g')$ and hence degree(\tilde{g}) = degree(g_1). In addition, we have $g' \cdot \mathbb{Z}_p[T]/(\tilde{g}) = \{0\}$. That means $g' \equiv 0 \mod \tilde{g}$, i.e. $\tilde{g}|g'$. One concludes $\tilde{g} = g'$.

Theorem 4.5 Let $0 \neq g \in \Lambda$.

- (i) There exist uniquely determined $m \in \mathbb{N}$, $u \in \Lambda^*$ and $\tilde{g} \in \Delta$, such that $g = p^m u \tilde{g}$.
- (ii) Ψ is the set of irreducible elements in Λ .
- PROOF: (i) This is an easy consequence of (4.4). If needed, write $g = p^m g_1$ and apply the corollary to g_1 .
 - (ii) If g is irreducible in Λ , then $g \notin p\Lambda$ or $g = p \cdot u$ with $u \in \Lambda^*$. By (i), we have $g = p^m u \tilde{g}$ for $\tilde{g} \in \Delta$, $u \in \Lambda^*$. Therefore we can restrict to the case m = 0 and \tilde{g} is irreducible in $\mathbb{Q}_p[[T]]$. Assume first that \tilde{g} is reducible in Λ . Following (4.4) there exist $g_1, g_2 \in \Delta$ such that $\tilde{g} = g_1 g_2$, hence \tilde{g} is reducible in $\mathbb{Q}_p[T]$. Otherwise, if \tilde{g} is reducible in $\mathbb{Q}_p[T]$, then it is also reducible in $\mathbb{Z}_p[T]$. This proves the statement.

We see that we can reduce the problem of deciding whether $f \in \Lambda$ is irreducible or not to the corresponding situation in $\mathbb{Z}_p[T]$.

Definition 4.6 Let G denote a topological group.

- (i) $\gamma \in G$ is called a topological generator if the cyclic subgroup $\langle \gamma \rangle$ is a dense subgroup of G, i.e. $\overline{\langle \gamma \rangle} = G$.
- (ii) If G denotes a profinite group, i.e. $G = \varprojlim G_n$ for $n \in \mathbb{N}$, we define the \mathbb{Z}_p -algebra $\mathbb{Z}[[G]]$ as the projective limit:

$$\mathbb{Z}_p[[G]] := \varprojlim \mathbb{Z}_p[G_n].$$

 $\mathbb{Z}_p[[G]]$ is called the completed group ring for G over \mathbb{Z}_p .

In this context, we are interested in the case that G satisfies: $G \cong \mathbb{Z}_p$. Since \mathbb{Z} is dense in \mathbb{Z}_p and is generated by 1, there always exists a topological generator, e.g. γ equals the preimage of 1. Further, γG^{p^n} generates G/G^{p^n} for every $n \in \mathbb{N}$. In fact, every topological generator will do this. For chosen γ , we define $\gamma^n := \gamma G^{p^n}$.

Regarding the second definition, one should mention that the defining homomorphisms of G can be extended linearly to \mathbb{Z}_p -algebra homomorphisms that define $\mathbb{Z}_p[[G]]$.

Corollary 4.7 Let $G \cong \mathbb{Z}_p$ and let γ be a generator of G. We have: Let $w_n := (1+T)^{p^n} - 1$. The map

$$\sigma_n : \Lambda/(w_n) \to \mathbb{Z}_p[G/G^{p^n}] : 1 + T + (w_n) \mapsto \gamma^{(n)}$$

defines an isomorphism.

PROOF: Obviously, we have $w_n \in \Delta$ for each $n \in \mathbb{N}$. With regard to (4.3) the set $\{(1+T)^i + (w) \mid 0 \leq i < p^n\}$ forms a \mathbb{Z}_p -basis for the module $\Lambda/(w_n)$. The basis is generated by $\overline{1+T} \in \Lambda/(w_n)$ and we have $\overline{1+T}^{p^n} = \overline{1}$. So σ_n is well defined for all n and clearly an isomorphism since $\#G/G^{p^n} = p^n$.

To prove the next proposition we recall some useful statements concerning profinite groups.

Theorem 4.8 Let G, H denote profinite groups and let π_i denote the projection mapping of G to the *i*-th component for $G := \lim G_i$. We get:

(i) A group homomorphism $f: G \to H$ is continuous if and only if there exist continuous maps φ_i such that the diagramm

commutes for all $i \in \mathbb{N}$.

(ii) $X \subset G$ is a dense subset if and only if $\pi_i(X) = G_i$ for all $i \in \mathbb{N}$.

PROOF: See

One should note that $\mathbb{Z}_p[G/G^{p^n}] \cong \mathbb{Z}_p^{p^n}$ as \mathbb{Z}_p -modules. Therefore $\mathbb{Z}_p[G/G^{p^n}]$ is compact and $\mathbb{Z}_p[[G]]$, too. The compactness of Λ is also obvious.

Now everything is prepared to state the last result.

Proposition 4.9 Let γ be an topological generator of $G \cong \mathbb{Z}_p$. There is an isomorphism of \mathbb{Z}_p -algebras

$$\eta: \Lambda \to \mathbb{Z}_p[[\Gamma]]$$

where η is uniquely determined by $\eta(T) = \gamma - 1$. In addition, η is continuous.

PROOF: Taking the maps of (4.7), we have surjective, continuous maps

$$\sigma'_n : \Lambda \to \mathbb{Z}_p[G/G^{p^n}] : T \to \gamma_n - 1$$

for all $n \in \mathbb{N}$. Since $\gamma_n \equiv \gamma_{n+1} \mod G^{p^n}$, we get an induced map $\eta : \Lambda \to \mathbb{Z}_p[[G]]$. Applying (4.8)(*i*), we see that γ is continuous. As a conclusion of $X := \eta(\Lambda)$ in (4.8)(*ii*), we get that $\eta(\Lambda)$ is a dense subgroup of $\mathbb{Z}_p[[T]]$. It follows that η is surjective, since both, Λ and $\mathbb{Z}_p[[G]]$, are compact.

Finally, let $g \in ker(\eta)$. That means $g \in (w_n)$ for all n, but $\cap_{n \in \mathbb{N}}(w_n) = \{0\}$. So η is injective and the statement follows.

Literature

Ralph Greenberg, Introduction to Iwasawa Theory for Elliptic Curves, http://www.math.washington.edu/ greenber/Park.ps

Lawrence Washington, Introduction to Cyclotomic Fields, Springer