Seminar on Iwasawa Theory of Elliptic Curves 4. The Iwasawa Algebra

Marcel Mohyla

14. Mai 2008

In this section we will establish the link between $\mathbb{Z}_{p}[[T]]$ and $\mathbb{Z}_{p}[[G]]$, where the first one denotes the ordinary ring of power series in T and the second one is the projective limit of certain \mathbb{Z}_{p}-algebras. This enables us to understand the structure of $\mathbb{Z}_{p}[[G]]$ in detail. Additionally, the description of the set of irreducible elements will be given explicitly. In the following let p be a prime number and $\Lambda:=\mathbb{Z}_{p}[[T]]$. Remember that Λ defines a local ring whose maximal ideal is generated by p and T. Further we have

$$
\Lambda^{*}=\left\{\sum_{i=0}^{\infty} a_{i} T^{i} \in \Lambda \mid a_{0} \in \mathbb{Z}_{p}^{*}\right\}
$$

As well, \mathbb{Z}_{p} is a local ring and $\mathbb{Z}_{p} / p \mathbb{Z}_{p} \cong \mathbb{Z} / p \mathbb{Z} \cong \mathbb{F}_{p}$. This leads to an isomorphism $\Lambda / p \Lambda \cong \mathbb{F}_{p}[[T]]$.
Now we give the first definitions needed in this scope.
Definition 4.1 Let $g \in \mathbb{Z}_{p}[T]$ be normalized of degree d, $g=T^{d}+\sum_{i=0}^{d-1} a_{i} T^{i}$, such that $a_{i} \in p \Lambda$ for $0 \leq i<d$. Then g is said to be a distinguished polynomial of degree d. The whole set of distinguished polynomials of arbitrary degree is denoted by Δ. Further let

$$
\begin{aligned}
\Psi:= & \left\{f=p^{m} \cdot u \cdot g \in \Lambda \mid(m=1 \text { and } g=1) \underline{\text { or }}(m=0 \text { and }\right. \\
& \left.\left.g \text { is irreducible as element in } \mathbb{Q}_{p}[T]\right), u \in \Lambda^{*}, g \in \Delta\right\} .
\end{aligned}
$$

We will see later that Ψ denotes the set of irreducible elements. Before this, we state a quite useful theorem.

Theorem 4.2 Let $g \in \Lambda \backslash p \Lambda$ and $f \in \Lambda$ arbitrary. Denote by d the smallest integer such that the coefficient a_{d} of g is a unit where $g=\sum_{i=0}^{\infty} a_{i} T^{i}$. There exist uniquely determined $h \in \Lambda$ and $r \in \mathbb{Z}[T]$ such that

$$
f=g h+r
$$

with degree $(r)<d$.

Proof: Let $f:=\sum_{i=0}^{\infty} b_{i} T^{i}$. We take a look at the projection map

$$
\stackrel{:}{\ulcorner } \mathbb{Z}_{p}[[T]] \rightarrow \mathbb{F}_{p}[[T]]: \sum_{i=0}^{\infty} c_{i} T^{i} \mapsto \sum_{i=0}^{\infty} \overline{c_{i}} T^{i}
$$

By the assumption on g, we have $\overline{a_{d}} \neq 0$ and $\overline{a_{i}}=0$ for all $0 \leq i<d$, hence $\bar{g}=T^{d} \cdot u$ for $u \in\left(\mathbb{F}_{p}[[T]]\right)^{*}$. Since $\bar{f}:=T^{d}\left(\sum_{i=d}^{\infty} \overline{b_{i}} T^{i-d}\right)+\sum_{i=0}^{d-1} \overline{b_{i}} T^{i}$ and $T^{d}\left(\sum_{i=d}^{\infty} \overline{b_{i}} T^{i-d}\right) \in$ $(\bar{g})=\left(T^{d}\right)$, one has $\bar{f}=\bar{g} \overline{h_{1}}+\bar{r}_{1}$ for certain $h_{1} \in \Lambda$ and $r_{1}:=\sum_{i=0}^{d-1} b_{i} T^{i} \in \mathbb{Z}_{p}[T]$. In particular, we have $f \equiv g h_{1}+r_{1} \bmod p \Lambda$ and consequently $f=g h_{1}+r_{1}+p f_{1}$ for $f_{1} \in \Lambda$. In the same way one gets $f_{1}=g h^{\prime}+r^{\prime}+p f_{2}$ and obtains $f=g h_{2}+r_{2}+p^{2} f_{2}$, where $h_{2}:=h_{1}+p h^{\prime}$ and $r_{2}:=r_{1}+p r^{\prime}$. This leads to $f=g h_{n}+r_{n}+p^{n} f_{n}$ in general. Let $h_{n}:=\sum_{i=0}^{\infty} a_{i}\left(h_{n}\right) T^{i}$ and $r_{n}:=\sum_{i=0}^{d-1} b_{i}\left(r_{n}\right) T^{i}$. Note that the congruences

$$
\begin{gathered}
a_{i}\left(h_{n}\right) \equiv a_{i}\left(h_{n+1}\right), i=0,1, \ldots, \infty, \text { and } \\
b_{i}\left(r_{n}\right) \equiv b_{i}\left(r_{n+1}\right) \bmod p^{n} \mathbb{Z}_{p}, i=1, \ldots d-1
\end{gathered}
$$

hold for all $n>0$. By construction, the limits exist in \mathbb{Z}_{p}, denote them by a_{i}, respectively b_{i}. Letting $h:=\sum_{i=0}^{\infty} a_{i} T^{i}$ and $r:=\sum_{i=0}^{d-1} b_{i} T^{i}$, one receives $f=g h+r$ as desired.
It remains to show the uniqueness of h and r. To do this, assume that

$$
f=g h+r=g h^{\prime}+r^{\prime}
$$

hence $s:=r^{\prime}-r \equiv 0 \bmod g$. If $s \neq 0$, let $s=p^{m} s_{1}$, so that $s_{1} \notin p \Lambda$. We get $g \mid s_{1}$ and since $\bar{g}=T^{d} \cdot \tilde{s}, \tilde{s} \in \mathbb{F}_{p}[[T]]$, one concludes $T^{d} \mid \overline{s_{1}}$. This is a contradiction to degree $(s)<d$. Finally, $r^{\prime}=r$ leads to $h^{\prime}=h$ directly.

Corollary 4.3 Let $g \in \Lambda \backslash p \Lambda$. Then $\Lambda /(g)$ and \mathbb{Z}_{p}^{d} are isomorphic regarded as \mathbb{Z}_{p}-modules. In particular, $\Lambda /(g)$ is free of rank d.

Proof: We identify \mathbb{Z}_{p}^{d} with $\left\{f \in \mathbb{Z}_{p}[T] \mid \operatorname{degree}(f)<d\right\}$ in the obvious manner. By (4.2) we get a well defined homomorphism of \mathbb{Z}_{p}-modules defined as follows:

$$
\Lambda \rightarrow \mathbb{Z}_{p}^{d}: f=g h+r \mapsto r
$$

Passing to the quotient proves the corollary.
We need a further description of $g \in \Lambda / p \Lambda$.
Corollary 4.4 Let $g \in \Lambda \backslash p \Lambda$. There exists a uniquely determined polynomial $\tilde{g} \in \Delta$ that satisfies $g=u \tilde{g}$ where $u \in \Lambda^{*}$.

Proof: By (4.3) we know that $\Lambda /(g)$ is a free \mathbb{Z}_{p}-module of rank d. Therefore let \tilde{g} denote the characteristic polynomial of the endomorphism

$$
\Lambda /(g) \rightarrow \Lambda /(g): g \mapsto g \cdot T
$$

We have degree $(\tilde{g})=\operatorname{rank}(\Lambda /(g))=d$ and $\tilde{g} \cdot \Lambda /(g)=\{0\}$, hence $\Lambda /(g) \subseteq \Lambda /(\tilde{g})$. Applying (4.3) to \tilde{g} shows equality and therefore $(g)=(\tilde{g})$, i.e. $g=u \cdot \tilde{g}$. This shows $\tilde{g} \in \Delta$. Now assume there is another $g^{\prime} \in \Delta$ satisfying $g=u^{\prime} g^{\prime}, u^{\prime} \in \Lambda^{*}$. Since $\Lambda /(\tilde{g})=$ $\mathbb{Z}_{p}[T] /(\tilde{g})$, one has $\mathbb{Z}_{p}[T] /(\tilde{g})=\mathbb{Z}_{p}[T] /\left(g^{\prime}\right)$ and hence degree $(\tilde{g})=\operatorname{degree}\left(g_{1}\right)$. In addition, we have $g^{\prime} \cdot \mathbb{Z}_{p}[T] /(\tilde{g})=\{0\}$. That means $g^{\prime} \equiv 0 \bmod \tilde{g}$, i.e. $\tilde{g} \mid g^{\prime}$. One concludes $\tilde{g}=g^{\prime}$.

Theorem 4.5 Let $0 \neq g \in \Lambda$.
(i) There exist uniquely determined $m \in \mathbb{N}, u \in \Lambda^{*}$ and $\tilde{g} \in \Delta$, such that $g=p^{m} u \tilde{g}$.
(ii) Ψ is the set of irreducible elements in Λ.

Proof: (i) This is an easy consequence of (4.4). If needed, write $g=p^{m} g_{1}$ and apply the corollary to g_{1}.
(ii) If g is irreducible in Λ, then $g \notin p \Lambda$ or $g=p \cdot u$ with $u \in \Lambda^{*}$. By (i), we have $g=p^{m} u \tilde{g}$ for $\tilde{g} \in \Delta, u \in \Lambda^{*}$. Therefore we can restrict to the case $m=0$ and \tilde{g} is irreducible in $\mathbb{Q}_{p}[[T]]$. Assume first that \tilde{g} is reducible in Λ. Following (4.4) there exist $g_{1}, g_{2} \in \Delta$ such that $\tilde{g}=g_{1} g_{2}$, hence \tilde{g} is reducible in $\mathbb{Q}_{p}[T]$. Otherwise, if \tilde{g} is reducible in $\mathbb{Q}_{p}[T]$, then it is also reducible in $\mathbb{Z}_{p}[T]$. This proves the statement.

We see that we can reduce the problem of deciding whether $f \in \Lambda$ is irreducible or not to the corresponding situation in $\mathbb{Z}_{p}[T]$.

Definition 4.6 Let G denote a topological group.
(i) $\gamma \in G$ is called a topological generator if the cyclic subgroup $\langle\gamma\rangle$ is a dense subgroup of G, i.e. $\langle\gamma\rangle=G$.
(ii) If G denotes a profinite group, i.e. $G=\varliminf_{\swarrow} G_{n}$ for $n \in \mathbb{N}$, we define the \mathbb{Z}_{p}-algebra $\mathbb{Z}[[G]]$ as the projective limit:

$$
\mathbb{Z}_{p}[[G]]:=\lim _{\leftrightarrows} \mathbb{Z}_{p}\left[G_{n}\right] .
$$

$\mathbb{Z}_{p}[[G]]$ is called the completed group ring for G over \mathbb{Z}_{p}.
In this context, we are interested in the case that G satisfies: $G \cong \mathbb{Z}_{p}$. Since \mathbb{Z} is dense in \mathbb{Z}_{p} and is generated by 1 , there always exists a topological generator, e.g. γ equals the preimage of 1 . Further, $\gamma G^{p^{n}}$ generates $G / G^{p^{n}}$ for every $n \in \mathbb{N}$. In fact, every topological generator will do this. For chosen γ, we define $\gamma^{n}:=\gamma G^{p^{n}}$.
Regarding the second definition, one should mention that the defining homomorphisms of G can be extended linearly to \mathbb{Z}_{p}-algebra homomorphisms that define $\mathbb{Z}_{p}[[G]]$.

Corollary 4.7 Let $G \cong \mathbb{Z}_{p}$ and let γ be a generator of G. We have:
Let $w_{n}:=(1+T)^{p^{n}}-1$. The map

$$
\sigma_{n}: \Lambda /\left(w_{n}\right) \rightarrow \mathbb{Z}_{p}\left[G / G^{p^{n}}\right]: 1+T+\left(w_{n}\right) \mapsto \gamma^{(n)}
$$

defines an isomorphism.

Proof: Obviously, we have $w_{n} \in \Delta$ for each $n \in \mathbb{N}$. With regard to (4.3) the set $\left\{(1+T)^{i}+(w) \mid 0 \leq i<p^{n}\right\}$ forms a \mathbb{Z}_{p}-basis for the module $\Lambda /\left(w_{n}\right)$. The basis is generated by $\overline{1+T} \in \Lambda /\left(w_{n}\right)$ and we have $\overline{1+T}{ }^{p^{n}}=\overline{1}$. So σ_{n} is well defined for all n and clearly an isomorphism since $\# G / G^{p^{n}}=p^{n}$.

To prove the next proposition we recall some useful statements concerning profinite groups.

Theorem 4.8 Let G, H denote profinite groups and let π_{i} denote the projection mapping of G to the $i-t h$ component for $G:=\lim G_{i}$. We get:
(i) A group homomorphism $f: G \rightarrow H$ is continuous if and only if there exist continuous maps φ_{i} such that the diagramm

commutes for all $i \in \mathbb{N}$.
(ii) $X \subset G$ is a dense subset if and only if $\pi_{i}(X)=G_{i}$ for all $i \in \mathbb{N}$.

Proof: See

One should note that $\mathbb{Z}_{p}\left[G / G^{p^{n}}\right] \cong \mathbb{Z}_{p}^{p^{n}}$ as \mathbb{Z}_{p}-modules. Therefore $\mathbb{Z}_{p}\left[G / G^{p^{n}}\right]$ is compact and $\mathbb{Z}_{p}[[G]]$, too. The compactness of Λ is also obvious.

Now everything is prepared to state the last result.
Proposition 4.9 Let γ be an topological generator of $G \cong \mathbb{Z}_{p}$. There is an isomorphism of \mathbb{Z}_{p}-algebras

$$
\eta: \Lambda \rightarrow \mathbb{Z}_{p}[[\Gamma]]
$$

where η is uniquely determined by $\eta(T)=\gamma-1$. In addition, η is continuous.

Proof: Taking the maps of (4.7), we have surjective, continuous maps

$$
\sigma_{n}^{\prime}: \Lambda \rightarrow \mathbb{Z}_{p}\left[G / G^{p^{n}}\right]: T \rightarrow \gamma_{n}-1
$$

for all $n \in \mathbb{N}$. Since $\gamma_{n} \equiv \gamma_{n+1} \bmod G^{p^{n}}$, we get an induced map $\eta: \Lambda \rightarrow \mathbb{Z}_{p}[[G]]$. Applying (4.8)(i), we see that γ is continuous. As a conclusion of $X:=\eta(\Lambda)$ in (4.8)(ii), we get that $\eta(\Lambda)$ is a dense subgroup of $\mathbb{Z}_{p}[[T]]$. It follows that η is surjective, since both, Λ and $\mathbb{Z}_{p}[[G]]$, are compact.
Finally, let $g \in \operatorname{ker}(\eta)$. That means $g \in\left(w_{n}\right)$ for all n, but $\cap_{n \in \mathbb{N}}\left(w_{n}\right)=\{0\}$. So η is injective and the statement follows.

Literature

Ralph Greenberg, Introduction to Iwasawa Theory for Elliptic Curves, http://www.math.washington.edu/ greenber/Park.ps

Lawrence Washington, Introduction to Cyclotomic Fields, Springer

