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In this section we will establish the link between Z,[[T']] and Z,[[G]], where the first one
denotes the ordinary ring of power series in T' and the second one is the projective limit
of certain Z,—algebras. This enables us to understand the structure of Z,[[G]] in detail.
Additionally, the description of the set of irreducible elements will be given explicitly.
In the following let p be a prime number and A := Z,[[T]]. Remember that A defines a
local ring whose maximal ideal is generated by p and T'. Further we have

A*:{iam’eA

=0

ag € Z;}

As well, Z, is a local ring and Z,/pZ, = Z/pZ = F,. This leads to an isomorphism
A/pA = TFp[[T]].
Now we give the first definitions needed in this scope.

Definition 4.1 Let g € Z,[T| be normalized of degree d, g = T‘M—Z?;()l a;T?, such that

a; € pA for 0 < i < d. Then g is said to be a distinguished polynomial of degree d. The
whole set of distinguished polynomials of arbitrary degree is denoted by A. Further let

\I/:_{f_pm-u-geA (mzl andg:l)g(m:0 and

g is irreducible as element in Q,[T]),u € A*,g € A}.

We will see later that ¥ denotes the set of irreducible elements. Before this, we state a
quite useful theorem.

Theorem 4.2 Let g € A~ pA and f € A arbitrary. Denote by d the smallest integer
such that the coefficient aq of g is a unit where g = > 2, a;T". There exist uniquely
determined h € A and r € Z[T| such that

f=gh+r

with degree(r) < d.



PROOF: Let f:=3>">7, b;T". We take a look at the projection map
S T[T = BTN DT Y &T".
i=0 i=0

By the assumption on ¢, we have ag # 0 and @ = 0 for all 0 < i < d, hence g = T¢ - u
for u € (F,[[T]])*. Since f := T (352, 5:;T"%) + S0 b;T" and T4 (332,67 %) €
(g) = (T9), one has f = ghy + 77 for certain hy € A and r := Z?:_ol b;T' € Z,[T]. In
particular, we have f = gh; +r1 mod pA and consequently f = ghy+r1+pfi for f1 € A.
In the same way one gets fi = gh’ + 1’ + pfs and obtains f = ghs + ro + p?f2, where
hs := hy + ph’ and ry := ry + pr’. This leads to f = gh, + 7, + p™ fn in general. Let
hp =372, a;(hy)T? and 7, := Z?:_ol b;(r,)T". Note that the congruences

ai(hyn) = aij(hpt1), 1 =0,1,...,00, and
bi(rn) = bi(rps1) mod p"Zy,i=1,...d—1,
hold for all n > 0. By construction, the limits exist in Z,, denote them by a;, respectively
bi. Letting h := "% a; 7" and r := Z?:_ol b;T?, one receives f = gh + r as desired.
It remains to show the uniqueness of h and r. To do this, assume that
f=gh+r=gh'+r

hence s :=r'—r =0mod g. If s # 0, let s = p"™sq, so that s; & pA. We get g|s; and since
g =T 3, 5 € F,[[T]], one concludes T%s7. This is a contradiction to degree(s) < d.
Finally, ' = r leads to h/ = h directly. m

Corollary 4.3 Let g € A~ pA. Then A/(g) and Zg are isomorphic regarded as
Zp—modules. In particular, A/(g) is free of rank d.

ProoFr: We identify Zg with {f € Zp[TH degree(f) < d} in the obvious manner. By
(4.2) we get a well defined homomorphism of Z,—modules defined as follows:
A—>Zg:f:gh+r'—>r.

Passing to the quotient proves the corollary. n

We need a further description of g € A/pA.

Corollary 4.4 Let g € A\ pA. There exists a uniquely determined polynomial g € A
that satisfies g = ug where u € A*.

ProOF: By (4.3) we know that A/(g) is a free Z,—module of rank d. Therefore let §
denote the characteristic polynomial of the endomorphism

Ag)—A/(g) :9—g-T
We have degree(g) = rank(A/(g)) = d and g- A/(g) = {0}, hence A/(g) C A/(g). App-
lying (4.3) to g shows equality and therefore (g) = (g), i.e. ¢ = w - g. This shows g € A.
Now assume there is another ¢’ € A satisfying ¢ = u/¢’, v/ € A*. Since A/(g) =
Zp[T)/(g), one has Z,[T]/(g) = Zp[T]/(¢') and hence degree(g) = degree(g:). In addi-
tion, we have ¢’ - Zy[T]/(g) = {0}. That means ¢’ = 0 mod g, i.e. gl¢g’. One concludes

i=9. n



Theorem 4.5 Let 0 £ g € A.
(i) There exist uniquely determined m € N, u € A* and g € A, such that g = p™ug.

(ii) U is the set of irreducible elements in A.

ProoF: (i) This is an easy consequence of (4.4). If needed, write g = p™g; and apply
the corollary to g;.

(ii) If g is irreducible in A, then g € pA or ¢ = p-u with u € A*. By (i), we have
g =pTug for g € A, u € A*. Therefore we can restrict to the case m = 0 and g is
irreducible in Q,[[T"]]. Assume first that § is reducible in A. Following (4.4) there
exist g1, g2 € A such that § = g1g2, hence g is reducible in Q,[T]. Otherwise, if g
is reducible in Q,[T7, then it is also reducible in Z,[T]. This proves the statement.
|

We see that we can reduce the problem of deciding whether f € A is irreducible or not
to the corresponding situation in Z,[T.

Definition 4.6 Let G denote a topological group.

(i) v € G is called a topological generator if the cyclic subgroup < v > is a dense
subgroup of G, i.e. <v>=G.

(ii) If G denotes a profinite group, i.e. G = lim G,, for n € N, we define the Z,—algebra
Z[|G]] as the projective limit:

Z,(1G)) i= 10 Z, (G|
Zp|[G]] is called the completed group ring for G over Zj,.

In this context, we are interested in the case that G satisfies: G = Z,. Since Z is dense
in Z, and is generated by 1, there always exists a topological generator, e.g. v equals the
preimage of 1. Further, yGP" generates G/GP" for every n € N. In fact, every topological
generator will do this. For chosen v, we define " := yGP".

Regarding the second definition, one should mention that the defining homomorphisms
of G can be extended linearly to Z,—algebra homomorphisms that define Z,[[G]].

Corollary 4.7 Let G = Z, and let v be a generator of G.We have:
Let wy, := (1 +T)P" — 1. The map

defines an isomorphism.

PROOF: Obviously, we have w, € A for each n € N. With regard to (4.3) the set
{A+T) + (w)| 0 <i < p"} forms a Z,—basis for the module A/(wy). The basis is

generated by 1+ 71 € A/(wy) and we have 1+ T
and clearly an isomorphism since #G/GP" = p". n

= 1. So o, is well defined for all n



To prove the next proposition we recall some useful statements concerning profinite
groups.

Theorem 4.8 Let G, H denote profinite groups and let m; denote the projection mapping
of G to the i—th component for G := h&lGZ We get:

(i) A group homomorphism f : G — H is continuous if and only if there exist conti-
nuous maps p; such that the diagramm

G H
mL T
Gi- -~ -~ H,

commutes for all i € N.

(ii)) X C G is a dense subset if and only if m;(X) = G; for all i € N.

PROOF: See ..... =

One should note that Z,[G/GP"] = 78" as Z,—modules. Therefore Z,[G/GP"] is com-
pact and Z,[[G]], too. The compactness of A is also obvious.

Now everything is prepared to state the last result.

Proposition 4.9 Let vy be an topological generator of G = Z,,. There is an isomorphism
of Z,—algebras
n: A — Zp[[l]

where 1 is uniquely determined by n(T) = v — 1. In addition, n is continuous.

PRrROOF: Taking the maps of (4.7), we have surjective, continuous maps
ol A= ZG/GP"]: T — 4, — 1

for all n € N. Since v, = Yn+1 mod GP", we get an induced map 1 : A — Z,[[G]].
Applying (4.8)(i), we see that 7 is continuous. As a conclusion of X := n(A) in (4.8)(i7),
we get that 7(A) is a dense subgroup of Z,[[T]. It follows that 7 is surjective, since both,
A and Zy[[G]], are compact.

Finally, let g € ker(n). That means g € (w,) for all n, but Npen(wy) = {0}. So n is
injective and the statement follows. m
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