Seminar on Iwasawa Theory of Elliptic Curves

Gabor Wiese
Sommersemester 2008

Abstract

Iwasawa theory studies arithmetic objects in certain p-adic towers of number fields. In this seminar we will focus on the classical case of \mathbb{Z}_p-extensions. We will discuss and prove the structure theory of finitely generated modules over the Iwasawa algebra. This will then allow us to derive Iwasawa’s theorem on the behaviour of the p-part of the class number in a \mathbb{Z}_p-extension of a number field.

Then we will move on to elliptic curves, treating the contents of Greenberg’s *Introduction to Iwasawa Theory for Elliptic Curves*. The principal result that we will obtain will be a theorem of Mazur’s stating that the rank of an elliptic curve in a \mathbb{Z}_p-extension of a number field F is bounded if the Mordell-Weil group and the p-part of the Tate-Shafarevich-group at F are finite.

If time allows, we will make first steps on towards p-adic L-functions and Iwasawa’s main conjecture.

- Date: Wednesday, 10-12 a.m.
- Place: ES 09.
- First session: 9 April 2008
- The language of the seminar is English.
- The webpage of the seminar is: http://maths.pratum.net/teaching/Iwasawa.html

Lectures

1. **Introduction, Gabor Wiese**

2. **\mathbb{Z}_p-extensions, Adam Mohamed**

Define the notion of a \mathbb{Z}_p-extension. Define the cyclotomic \mathbb{Z}_p-extension for any number field. Define the anti-cyclotomic \mathbb{Z}_p-extension for imaginary quadratic fields ([2], p. 5). Treat the \mathbb{Z}_p-extension arising from an elliptic curve with complex multiplication (see e.g. [4], Remark III.7.10). Now treat [5], Section 13.1.
3 The completed group algebra and class groups in \(\mathbb{Z}_p\)-extensions, Eduardo Ocampo

Write \(\Gamma\) for the additive group of \(\mathbb{Z}_p\), but with multiplicative notation. Let \(\Gamma_n = \Gamma / \Gamma^{p^n}\), which is isomorphic to \(\mathbb{Z}/p^n\mathbb{Z}\), but with multiplicative notation. Then \(\Gamma\) is the projective limit of the \(\Gamma_n\). Define \(\Lambda\) as the projective limit of the group rings \(\mathbb{Z}_p[\Gamma_n]\) (as in [2], p. 37, line 3 up to “are the subject of Exercise 3.12”). It is a compact topological ring. Treat Exercise 3.12 of [2].

Recall facts on modules for profinite groups, including Pontryagin duality (see e.g. [3], 1.1.5–1.1.8) and introduce the terminology at the bottom of p. 21 of [2].

Let \(K_{\infty}/K\) be a \(\mathbb{Z}_p\)-extension. For each \(n\) let \(L_n\) be the maximal unramified abelian \(p\)-extension of \(K_n\). Let \(X_n := \text{Gal}(L_n/K_n)\). By class field theory this is the \(p\)-Sylow subgroup of the class group of \(K_n\). Define \(X\) as the projective limit of the \(X_n\). Show that \(X\) is isomorphic to \(\text{Gal}(L/K_{\infty})\), where \(L\) is the union of the \(L_n\). Show that \(X\) is a topological \(\Lambda\)-module. Some details for this talk can be found on p. 276–277 of [5].

4 The Iwasawa algebra, Marcel Mohyla

The aim of this talk is to establish the isomorphism

\[
\mathbb{Z}_p[[\Gamma]] \cong \mathbb{Z}_p[[T]]
\]

(see [2], Theorem 3.10). More precisely, treat the first paragraph on p. 31 of [2] (not Theorem 3.1). Then prove Weierstraß’ preparation theorem, i.e. [2], Theorem 3.5, Corollary 3.6, Corollary 3.7, Theorem 3.8.

5 Modules of the Iwasawa algebra, Ralf Butenuth

Treat [5], Section 13.2, and prove [2], Theorem 3.9. You may also find it helpful to look at the relevant parts of [2], Section 3.

6 Iwasawa’s theorem, Marios Magioladitis

Prove Iwasawa’s theorem ([5], Theorem 13.13), which describes the behaviour of the \(p\)-part of the class number in a \(\mathbb{Z}_p\)-extension. Please note that we have already provided many of the ingredients in earlier talks. These should not be proved again.

7 Some Galois cohomology, Eduardo Ocampo

Prove [2], Theorem 3.11, and establish that it is a special case of the Corank Lemma ([2], p. 22).

8 Elliptic curves and Galois cohomology I and II, Gabor Wiese (I) and Björn Buth (II)

Recall important properties of elliptic curves defined over number fields (see e.g. [4]) which are needed for this talk, in particular the Mordell-Weil theorem should be stated and the different reductions (e.g. good reduction) should be discussed. Prove [2], Theorem 2.4, Theorem 2.6 (using [2].
Theorem 3.11, established in the previous talk rather than duality theory and Euler characteristics), Theorem 2.8 and Theorem 2.9.

9 Mazur’s control theorem, Oscar Ledesma

Prove [2], Theorem 4.1.

10 Corollaries of Mazur’s control theorem, Lassina Dembélé

Treat [2], Corollaries 4.9, 4.10, 4.11 and 4.12.

11 Further talks

If time allows, we will continue in the direction of p-adic L-functions and Iwasawa’s main conjecture. An overview over the construction of the p-adic L-function attached to elliptic curves with complex multiplication ([1]) could be envisaged.

References

