RATIONAL TORSION POINTS ON JACOBIANS OF MODULAR CURVES

HWAJONG YOO

ABSTRACT. Let p be a prime greater than 3. Consider the modular curve $X_0(3p)$ over \mathbb{Q} and its Jacobian variety $J_0(3p)$ over \mathbb{Q}. Let $T(3p)$ and $C(3p)$ be the group of rational torsion points on $J_0(3p)$ and the cuspidal group of $J_0(3p)$, respectively. We prove that the 3-primary subgroups of $T(3p)$ and $C(3p)$ coincide unless $p \equiv 1 \pmod{9}$ and $3^{p-1} \not\equiv 1 \pmod{p}$.

CONTENTS

1. Introduction 1
2. Eisenstein ideals of level pq 3
3. Case where ℓ does not divide pq 5
4. Case where $\ell = p$ or $\ell = q$ 6
References 7

1. INTRODUCTION

Let N be a square-free integer. Consider the modular curve $X_0(N)$ and its Jacobian variety $J_0(N) = \text{Pic}^0(X_0(N))$. Let $T(N)$ denote the group of rational torsion points on $J_0(N)$ and let $C(N)$ denote the cuspidal group of $J_0(N)$. By Manin and Drinfeld [Dri73, Man72], we have $C(N) \subseteq T(N)$ and they are both finite abelian groups.

When N is prime, Ogg conjectured that $T(N) = C(N)$ [Ogg75, Conjecture 2]. In his article [Maz77], Mazur proved this conjecture by studying the Eisenstein ideal of level N. Recently, Ohta proved a generalization of the result of Mazur [Oht14]. More precisely, he proved the following.

Theorem 1.1 (Ohta). For a prime $\ell \geq 5$, we have $T(N)[\ell^\infty] = C(N)[\ell^\infty]$. Moreover, if 3 does not divide N, then $T(N)[3^\infty] = C(N)[3^\infty]$.

(For a finite abelian group A, $A[\ell^\infty]$ denotes the ℓ-primary subgroup of A.)
We briefly sketch the proof of this theorem. Let T_r (resp. U_p and w_p) denote the r-th Hecke operator (resp. the p-th Hecke operator and the Atkin-Lehner operator with respect to p) acting on $J_0(N)$ for a prime r not dividing N (resp. a prime divisor p of N). Let $\mathbb{T}(N)$ (resp. $\mathbb{T}(N)'$) be the \mathbb{Z}-subalgebra of $\text{End}(J_0(N))$ generated by T_r's and U_p's (resp. T_r's and w_p's) for primes $r \nmid N$ and $p \mid N$. Let

$$\mathcal{I}_0 := (T_r - r - 1 : \text{for primes } r \nmid N)$$

be the (minimal) Eisenstein ideal of $\mathbb{T}(N)$ (or $\mathbb{T}(N)'$). Then, \mathcal{I}_0 annihilates $\mathbb{T}(N)$ and $\mathcal{C}(N)$ by the Eichler-Shimura relation. Thus, $\mathbb{T}(N)[\ell^{\infty}]$ is a module over $\mathbb{T}(N)_\ell/\mathcal{I}_0$ (or $\mathbb{T}(N)_\ell'/\mathcal{I}_0'$), where $\mathbb{T}(N)_\ell := \mathbb{T}(N) \otimes \mathbb{Z}_\ell$. Note that since $w_p^2 = 1$, for a prime $\ell \geq 3$ we have the following decomposition:

$$\mathbb{T}(N)_\ell/\mathcal{I}_0 = \prod_{M \mid N, M \neq N} \mathbb{T}(N)_\ell'/\mathcal{I}_M,$$

where $\mathcal{I}_M := (w_p - 1, w_q + 1, \mathcal{I}_0 : \text{for primes } p \mid M \text{ and } q \mid N/M)$. Thus, we have

$$\mathbb{T}(N)[\ell^{\infty}] = \bigoplus \mathbb{T}(N)[\ell^{\infty}][\mathcal{I}_M] \text{ and } \mathcal{C}(N)[\ell^{\infty}] = \bigoplus \mathcal{C}(N)[\ell^{\infty}][\mathcal{I}_M].$$

Finally, he proved that $\mathbb{T}(N)[\ell^{\infty}][\mathcal{I}_M] = \mathcal{C}(N)[\ell^{\infty}][\mathcal{I}_M]$ by computing the index of \mathcal{I}_M.

In this paper, we discuss the case where $N = pq$ for two distinct primes p and q. In contrast to the discussion above, we use $\mathbb{T}(pq)$ instead of $\mathbb{T}(pq)'$ and hence the corresponding decomposition of $\mathbb{T}(pq)/\mathcal{I}_0$ as above does not always exist. (However, other computations are relatively easier than the method by Ohta.) When ℓ satisfies some conditions, we get the similar decomposition of the quotient ring $\mathbb{T}(pq)/\mathcal{I}_0$ and we can prove the following.

Theorem 1.2 (Main Theorem). For a prime ℓ not dividing $2pq \gcd(p - 1, q - 1)$, we have $\mathbb{T}(pq)[\ell^{\infty}] = \mathcal{C}(pq)[\ell^{\infty}]$. Moreover, $\mathbb{T}(pq)[p^{\infty}] = \mathcal{C}(pq)[p^{\infty}]$ if one of the following holds:

1. $p \geq 5$ and $\begin{cases} \text{either } q \not\equiv 1 \pmod{p} \text{ or } \\ q \equiv 1 \pmod{p} \text{ and } p^{\frac{q-1}{2}} \not\equiv 1 \pmod{q}. \end{cases}$

2. $p = 3$ and $\begin{cases} \text{either } q \not\equiv 1 \pmod{9} \text{ or } \\ q \equiv 1 \pmod{9} \text{ and } 3^{\frac{p-1}{2}} \not\equiv 1 \pmod{q}. \end{cases}$

Note that most cases are special ones of Theorem 1.1. The new result is as follows:

Theorem 1.3. Let p be a prime greater than 3. Assume that either $p \not\equiv 1 \pmod{9}$ or $3^{\frac{p-1}{2}} \not\equiv 1 \pmod{p}$. Then, we get

$$\mathbb{T}(3p)[3^{\infty}] = \mathcal{C}(3p)[3^{\infty}].$$
1.1. **Notation.** For $x = a/b \in \mathbb{Q}$, we denote by $\text{num}(x)$ the numerator of x, i.e.,
\[
\text{num}(x) := \frac{a}{(a, b)}.
\]

From now on, we denote by $\ell^\alpha := \ell^{\alpha(p, q, \ell)}$ (resp. $\ell^\beta := \ell^{\beta(p, q, \ell)}$) the exact power of ℓ dividing
\[
M_p := \text{num}\left(\frac{(p-1)(q^2-1)}{3}\right) \quad \text{(resp. num}\left(\frac{(p^2-1)(q-1)}{3}\right)\right).
\]

2. **Eisenstein ideals of level pq**

Throughout this section, we fix distinct primes p and q; and ℓ denotes a prime not dividing $2pq(q-1)$. Let $\mathcal{T} := \mathcal{T}(pq)$ and $\mathcal{T}_\ell := \mathcal{T}(pq) \otimes \mathbb{Z}_{\ell}$. We say an ideal of \mathcal{T} *Eisenstein* if it contains
\[
\mathcal{I}_0 := (T_r - r - 1 : \text{for primes } r \nmid pq).
\]

Definition 2.1. We define Eisenstein ideals as follows:
\[
\mathcal{I}_1 := (U_p - 1, U_q - 1, \mathcal{I}_0);
\]
\[
\mathcal{I}_2 := (U_p - 1, U_q - q, \mathcal{I}_0) \quad \text{and} \quad \mathcal{I}_3 := (U_p - p, U_q - 1, \mathcal{I}_0).
\]

Moreover, we set $m_i := (\ell, \mathcal{I}_i)$. They are all possible Eisenstein maximal ideals in \mathcal{T}_ℓ by the result in [Yoo3, §2]. For ease of notation, we set $\mathcal{T}_i := \mathcal{T}_{m_i}$.

Since \mathcal{T}_ℓ is a semi-local ring, we have
\[
\mathcal{T}_\ell = \prod_{\ell \in m \text{ maximal}} \mathcal{T}_m.
\]

Using the above description of Eisenstein maximal ideals, we prove the following:

Theorem 2.2. The quotient $\mathcal{T}_\ell / \mathcal{I}_0$ is isomorphic to $\mathcal{T}_\ell / \mathcal{I}_2 \times \mathcal{T}_\ell / \mathcal{I}_3$.

This theorem is crucial to deduce our main theorem. In general, the author expects that $\mathcal{T}_\ell / \mathcal{I}_0$ should be isomorphic to
\[
\{(x, y, z) \in \mathcal{T}_\ell / \mathcal{I}_1 \times \mathcal{T}_\ell / \mathcal{I}_2 \times \mathcal{T}_\ell / \mathcal{I}_3 : x \equiv y \pmod{p - 1} \text{ and } x \equiv z \pmod{q - 1}\}.
\]

Before proving the theorem above, we need several lemmas.

Lemma 2.3. We have $(U_p - 1)(U_p + 1) \in \mathcal{I}_0 \mathcal{T}_\ell$.

Proof. Since $q \not\equiv 1 \pmod{\ell}$, any maximal ideal containing \mathcal{I}_0 cannot be p-old. Therefore $\mathcal{T}_\ell / \mathcal{I}_0 \simeq \mathcal{T}_\ell^{p\text{-new}} / \mathcal{I}_0$. Since $U_p^2 = 1$ in $\mathcal{T}_\ell^{p\text{-new}}$, the result follows. \qed
Lemma 2.4. Suppose that m_2 is maximal. Then, we have

$$\mathbb{T}_2/I_0 = \mathbb{T}_2/I_2 \simeq \mathbb{T}_\ell/I_2.$$

If m_1 is maximal, then $p \equiv 1 \pmod{\ell}$ and hence $m_1 = m_3$; moreover, we have $\mathbb{T}_1/I_0 = \mathbb{T}_3/I_0 \simeq \mathbb{T}_\ell/I_3$. If $p \not\equiv 1 \pmod{\ell}$, then m_1 is not maximal and $\mathbb{T}_3/I_0 \simeq \mathbb{T}_\ell/I_3$.

Proof. Suppose that m_2 is maximal. Since $U_p - 1 \in m_2$ and ℓ is odd, $U_p + 1 \not\in m_2$ and hence it is a unit in \mathbb{T}_2. By the lemma above, $(U_p - 1)(U_p + 1) \in I_0\mathbb{T}_\ell$ and hence $U_p - 1 \in I_0\mathbb{T}_2$. Similarly, we have $U_q - q \in I_0\mathbb{T}_2$ because $q \not\equiv 1 \pmod{\ell}$ and $(U_q - 1)(U_q - q) \in I_0\mathbb{T}_2$ by the following lemma. Thus, we have $\mathbb{T}_2/I_0 = \mathbb{T}_2/I_2$. Since the index of I_2 in \mathbb{T} is finite (cf. [Yoo1 Lemma 3.1]), we have $m_2^q \subseteq I_2$ for large enough n. Therefore $\mathbb{T}_\ell/(m_2^q, I_2) \simeq \mathbb{T}_\ell/I_2$ and hence $\mathbb{T}_2/I_2 \simeq \mathbb{T}_\ell/I_2$.

If m_1 is maximal, the index of I_1 in \mathbb{T} is divisible by ℓ. By [Yoo3 Theorem 1.4], it is num $(\frac{(p-1)(q-1)}{4})$ up to powers of 2 and hence $p \equiv 1 \pmod{\ell}$.

Assume that $p \equiv 1 \pmod{\ell}$. Let a be the number in [1.1] Since ℓ does not divide $(p+1)(q-1)$, ℓ^a divides $(p-1)$. Note that the index of I_3 in \mathbb{T}_ℓ is equal to ℓ^a (cf. [Yoo3 Theorem 1.4]) and hence $I_3\mathbb{T}_\ell$ contains $p - 1$. Thus, $U_p - 1 = (U_p - p) + (p - 1) \in I_3\mathbb{T}_\ell$. In other words, $I_1\mathbb{T}_\ell \subseteq I_3\mathbb{T}_\ell$. Similarly, we have $I_3\mathbb{T}_\ell \subseteq I_1\mathbb{T}_\ell$. Therefore we have $I_1\mathbb{T}_\ell = I_3\mathbb{T}_\ell$. By the same argument as above, $I_0\mathbb{T}_3$ contains $U_p - 1$ and $(U_q - 1)(U_q - q)$. Since $q \not\equiv 1 \pmod{\ell}$ and $U_q - 1 \in m_3$, we have $U_q - q \not\in m_3$ and hence $\mathbb{T}_3/I_0 = \mathbb{T}_3/I_3$. Thus, we get $\mathbb{T}_3/I_3 \simeq \mathbb{T}_\ell/I_3$ as above.

If $p \not\equiv 1 \pmod{\ell}$, then m_3 is neither p-old nor q-old. If $p \not\equiv -1 \pmod{\ell}$, then m_3 is not maximal. Thus, we have $\mathbb{T}_\ell/I_3 = \mathbb{T}_3/I_0 = 0$. If $p \equiv -1 \pmod{\ell}$, then the result follows by [Yoo2 Proposition 2.3].

Lemma 2.5. Let $I := (U_p - 1, I_0) \subseteq \mathbb{T}_\ell$. Then, we get $(U_q - 1)(U_q - q) \in I$.

Proof. We closely follow the argument in [MaZ77, §II. 5].

Let $f(z) := \sum_{n \geq 1} (T_n \mod I) x^n$ be a cusp form of weight 2 and level pq over \mathbb{T}_ℓ/I, where $x = e^{2\pi iz}$. Let $E := E_{p, pq}$ be an Eisenstein series of weight 2 and level pq in [Yoo1 §2.3]. Note that

$$(f - E)(z) \equiv (U_q - q) \sum_{n \geq 1} a_n x^{qn} \pmod{I},$$

where $a_p = 1$ and $a_r = 1 + r$ for all primes $r \neq pq$ and $a_q = U_q + q$. If $U_q - q \not\in I$, then by Ohta [Oht14 Lemma 2.1.1], there is a cusp form $g(z) = \sum_{n \geq 1} b_n x^n$ of weight 2 and level p such that

$$(f - E)(z) \equiv (U_q - q) \sum_{n \geq 1} a_n x^{qn} \equiv (U_q - q)g(qz) \pmod{I}.$$
Therefore \(p \equiv 1 \pmod{\ell} \) and \(b_r \equiv 1 + r \pmod{l'} \) for primes \(r \neq p \), where \(l' \) is the Eisenstein ideal of level \(p \). Thus, we have \((U_q - q)(a_q - b_q) \equiv (U_q - q)(U_q - 1) \in I. \]

Now, we are ready to prove Theorem 2.2.

Proof of Theorem 2.2 If \(p \equiv 1 \pmod{\ell} \), then \(m_1 = m_3 \). Otherwise \(m_1 \) is not maximal. Therefore, we have

\[
\mathbb{T}_\ell/I_0 \simeq \mathbb{T}_2/I_0 \times \mathbb{T}_3/I_0 = \mathbb{T}_2/I_2 \times \mathbb{T}_3/I_3 \simeq \mathbb{T}_\ell/I_2 \times \mathbb{T}_\ell/I_3.
\]

\[\square \]

3. Case where \(\ell \) does not divide \(pq \)

From now on, let \(\mathcal{C} := \mathcal{C}(pq) \) and \(\mathcal{T} := \mathcal{T}(pq) \) be the cuspidal group of \(J_0(pq) \) and the group of rational torsion points on \(J_0(pq) \), respectively. For a prime \(r \) and a finite abelian group \(A \), we denote by \(A[r^\infty] \) the \(r \)-primary subgroup of \(A \). In this section, we prove the following theorem.

Theorem 3.1. For a prime \(\ell \) not dividing \(2pq(q - 1) \), we have \(\mathcal{T}[\ell^\infty] = \mathcal{C}[\ell^\infty] \).

Before proving this theorem, we introduce some cuspidal divisors.

Let \(P_n \) be the cusp of \(X_0(pq) \) corresponding to \(1/n \in \mathbb{P}^1(\mathbb{Q}) \). Let \(C_p := P_1 - P_p \) and \(C_q := P_1 - P_q \) denote the cuspidal divisors in \(\mathcal{C} \). Let \(M_p = \ell^a \times x \) and \(M_q = \ell^b \times y \) as in (3.1) (Thus, we have \((\ell, xy)=1\).) We define

\[D_p := xC_p \quad \text{and} \quad D_q := yC_q. \]

Then, \(\langle D_p \rangle \) (resp. \(\langle D_q \rangle \)) is a free module of rank 1 over \(\mathbb{T}_\ell/I_2 \simeq \mathbb{Z}/\ell^a\mathbb{Z} \) (resp. \(\mathbb{T}_\ell/I_3 \simeq \mathbb{Z}/\ell^b\mathbb{Z} \)) (cf. [Yoo3, Theorem 1.4]).

Now we prove the Theorem above.

Proof of Theorem 3.1. By the Eichler-Shimura relation, \(\mathcal{T}[\ell^\infty] \) is a module over \(\mathbb{T}_\ell/I_0 \). Therefore \(\mathcal{T}[\ell^\infty] \) decomposes into \(\mathcal{T}[\ell^\infty][I_2] \times \mathcal{T}[\ell^\infty][I_3] \) by Theorem 2.2. Hence it suffices to show that \(\mathcal{T}[\ell^\infty][I_2] = \langle D_p \rangle \) and \(\mathcal{T}[\ell^\infty][I_3] = \langle D_q \rangle \).

If \(a = 0 \), then \(\mathbb{T}_\ell/I_2 = 0 \) and hence \(\mathcal{T}[\ell^\infty][I_2] = \langle D_p \rangle = 0 \). Thus, we may assume that \(a \geq 1 \). Note that

\[
\mathcal{T}[\ell^\infty][I_2] \simeq \prod_{i=1}^t \mathbb{Z}/\ell^{a_i}\mathbb{Z},
\]

where \(1 \leq a_i \leq a \) because \(\mathbb{T}_\ell/I_2 \simeq \mathbb{Z}/\ell^a\mathbb{Z} \) (and \(\mathcal{T} \) is finite). Since \(D_p \in \mathcal{T}[\ell^\infty] \), we have \(\langle D_p \rangle \subseteq \mathcal{T}[\ell^\infty][I_2] \) and hence \(t \geq 1 \); and \(\mathcal{T}[\ell^\infty][\ell, I_2] \simeq (\mathbb{Z}/\ell\mathbb{Z})^{\oplus t} \subseteq J[m_2] \). By the same argument in [Maz77, II, Corollary 14.8] (cf. [Yoo1, Theorem 4.2]), we have \(t = 1 \) and \(\mathcal{T}[\ell^\infty][I_2] = \langle D_p \rangle \). By symmetry, \(\mathcal{T}[\ell^\infty][I_3] = \langle D_q \rangle \) and the result follows. \[\square \]
4. Case where $\ell = p$ or $\ell = q$

Throughout this section, we set $P := p$ if $p \geq 5$; and $P := 9$ if $p = 3$. Suppose that

\begin{equation}
\ell = p \quad \text{and} \quad \left\{ \begin{array}{l}
\text{either } q \not\equiv 1 \pmod{P} \text{ or } \\
q \equiv 1 \pmod{P} \text{ and } p^{q-1} \not\equiv 1 \pmod{q}.
\end{array} \right.
\end{equation}

Theorem 4.1. We have $T[p^\infty] = C[p^\infty]$.

Proof. We divide the problem into three cases.

1. Suppose that $q \not\equiv 1 \pmod{P}$ and $q \equiv 1 \pmod{p}$. This happens when $\ell = p = 3$. In this case, the indices of I_1, I_2 and I_3 are not divisible by 3 (cf. [Yoo3, Theorem 1.4]). Therefore there are no Eisenstein maximal ideals containing 3 and $T_p/I_0 = 0$. Thus, we have $T[3^\infty] = C[3^\infty] = 0$.

2. Suppose that $q \equiv 1 \pmod{P}$ and $p^{q-1} \not\equiv 1 \pmod{q}$. Then, $m_1 = m_2$ is not new by [Yoo2, Theorem 3.1]. Since $U_p \equiv p \equiv 0 \pmod{m_3}$, m_3 is not new. Therefore $T_p/I_0 \simeq T_p^{\text{old}}/I_0$. Consider the following exact sequence:

\[
0 \longrightarrow J_{\text{old}}(Q)[p^\infty] \longrightarrow J(Q)[p^\infty] \longrightarrow J_{\text{new}}(Q)[p^\infty].
\]

If $J_{\text{new}}(Q)[p^\infty] \neq 0$, then there is a new Eisenstein maximal ideal containing p, which is a contradiction. Therefore we have $J_{\text{old}}(Q)[p^\infty] = J(Q)[p^\infty]$. Now, the result follows from [CL97, Theorem 2] because $p \nmid 2 \gcd(p - 1, q - 1)$.

3. Suppose that $q \not\equiv 1 \pmod{p}$. First, assume that $q \not\equiv -1 \pmod{P}$. Then, the indices of I_1, I_2 and I_3 are not divisible by p, there is no Eisenstein maximal ideal. Thus, $T_p/I_0 = 0$ and $T[p^\infty] = C[p^\infty] = 0$.

Next, assume that $q \equiv -1 \pmod{P}$. By the same reason as above, m_1 and m_3 are not maximal (but m_2 is). Note that m_2 is neither p-old nor q-old by Mazur. Therefore we get $T_2/I_0 \simeq T_2^{\text{new}}/I_0$. Since $(U_p - 1)(U_p + 1) = (U_q - 1)(U_q + 1) = 0$ in T^{new}, we get $T_2/I_0 = T_2/I_2 \simeq T_p/I_2$ by [Yoo2, Proposition 2.3]. As in the proof of Theorem 3.1, we get

\[
T[p^\infty] = T[p^\infty][I_2] = C[p^\infty][I_2] = C[p^\infty].
\]

\[\square\]

Remark 4.2. If $p > q$, then the assumption above holds and hence $T[p^\infty] = C[p^\infty]$. Since $C[p^\infty] = 0$, there are no rational torsion points of order p on $J_0(pq)$.

REFERENCES

E-mail address: hwajong@gmail.com

Université du Luxembourg, Faculté des Sciences, de la Technologie et de la Communication, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg