Lagrangian submanifolds of $\mathbb{C}P^n$.

Franki Dillen

April 24, 2009

Franki Dillen Lagrangian submanifolds of CPⁿ.

イロト イヨト イヨト イヨト

E

Then f is said to be *totally real* if the complex structure J of M^m carries each tangent space of M^n into its corresponding normal space, i.e. $J(f_*T_pM) \subset T_p^{\perp}M$.

If in addition n = m, then M^n is said to be Lagrangian , i.e. $J(f_*T_pM) = T_p^{\perp}M$.

If no confusion is possible, we will assume M^n embedded and we identify M^n and $f(M^n)$.

• (10) • (10)

Then f is said to be totally real if the complex structure J of M^m carries each tangent space of M^n into its corresponding normal space, i.e. $J(f_*T_pM) \subset T_p^{\perp}M$.

If in addition n = m, then M^n is said to be Lagrangian , i.e. $J(f_*T_pM) = T_p^\perp M$.

If no confusion is possible, we will assume M^n embedded and we identify M^n and $f(M^n)$.

• (10) • (10)

Then f is said to be totally real if the complex structure J of M^m carries each tangent space of M^n into its corresponding normal space, i.e. $J(f_*T_pM) \subset T_p^{\perp}M$.

If in addition n = m, then M^n is said to be Lagrangian , i.e. $J(f_*T_pM) = T_p^{\perp}M$.

If no confusion is possible, we will assume M^n embedded and we identify M^n and $f(M^n)$.

<回> < E> < E>

Then f is said to be totally real if the complex structure J of M^m carries each tangent space of M^n into its corresponding normal space, i.e. $J(f_*T_pM) \subset T_p^{\perp}M$.

If in addition n = m, then M^n is said to be Lagrangian , i.e. $J(f_*T_pM) = T_p^{\perp}M$.

If no confusion is possible, we will assume M^n embedded and we identify M^n and $f(M^n)$.

From now on:
$$n = m$$
, $\widetilde{M}^n = \mathbb{C}P^n(4)$

$M^n \subset \mathbb{C}P^n(4)$ Lagrangian Submanifold

Contents:

- Lift to $S^{2n+1}(1)$, fundamental theorem.
- Examples of Lagrangian submanifolds
- Curvature inequalities
- Pseudo-parallel Lagrangian submanifolds

Joint work with John Bolton, Bang-Yen Chen, Johan Fastenakels, Joeri Van der Veken, Pol Verstraelen, Luc Vrancken

From now on:
$$n = m$$
, $\widetilde{M}^n = \mathbb{C}P^n(4)$

 $M^n \subset \mathbb{C}P^n(4)$ Lagrangian Submanifold

Contents:

- Lift to $S^{2n+1}(1)$, fundamental theorem.
- Examples of Lagrangian submanifolds
- Curvature inequalities
- Pseudo-parallel Lagrangian submanifolds

Joint work with John Bolton, Bang-Yen Chen, Johan Fastenakels, Joeri Van der Veken, Pol Verstraelen, Luc Vrancken

From now on:
$$n = m$$
, $\widetilde{M}^n = \mathbb{C}P^n(4)$

 $M^n \subset \mathbb{C}P^n(4)$ Lagrangian Submanifold

Contents:

- Lift to $S^{2n+1}(1)$, fundamental theorem.
- Examples of Lagrangian submanifolds
- Curvature inequalities
- Pseudo-parallel Lagrangian submanifolds

Joint work with John Bolton, Bang-Yen Chen, Johan Fastenakels, Joeri Van der Veken, Pol Verstraelen, Luc Vrancken

Formulas of Gauss and Weingarten:

$$\begin{split} \widetilde{\nabla}_X Y &= \nabla_X Y + h(X,Y), \\ \widetilde{\nabla}_X N &= -A_N X + \nabla_X^{\perp} N, \end{split}$$

Relations: $J(A_{JX}Y) = h(X, Y)$ and $\nabla_X^{\perp}JY = J\nabla_X Y$ The equation of Gauss:

$$R(X,Y) = X \wedge Y + [A_{JX}, A_{JY}].$$

The equation of Codazzi:

 $(\overline{\nabla}h)(X,Y,Z) := \nabla_X^{\perp}h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$

is totally symmetric

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Formulas of Gauss and Weingarten:

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

Relations: $J(A_{JX}Y) = h(X, Y)$ and $\nabla_X^{\perp}JY = J\nabla_X Y$ The equation of Gauss:

$$R(X,Y) = X \wedge Y + [A_{JX}, A_{JY}].$$

The equation of Codazzi:

 $(\overline{\nabla}h)(X,Y,Z) := \nabla^{\perp}_{X}h(Y,Z) - h(\nabla_{X}Y,Z) - h(Y,\nabla_{X}Z)$

is totally symmetric

- (日) (日) (日)

Formulas of Gauss and Weingarten:

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

Relations: $J(A_{JX}Y) = h(X, Y)$ and $\nabla_X^{\perp}JY = J\nabla_X Y$ The equation of Gauss:

$$R(X,Y) = X \wedge Y + [A_{JX}, A_{JY}].$$

The equation of Codazzi:

$$(\overline{\nabla}h)(X,Y,Z) := \nabla^{\perp}_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$

is totally symmetric

<回> < E> < E>

Formulas of Gauss and Weingarten:

$$\widetilde{\nabla}_X Y = \nabla_X Y + h(X, Y), \widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N,$$

Relations: $J(A_{JX}Y) = h(X, Y)$ and $\nabla_X^{\perp}JY = J\nabla_X Y$ The equation of Gauss:

$$R(X,Y) = X \wedge Y + [A_{JX}, A_{JY}].$$

The equation of Codazzi:

$$(\overline{\nabla}h)(X,Y,Z) := \nabla^{\perp}_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z)$$

is totally symmetric

→ < 글 > < 글 >

Cubic form, uniqueness theorem.

The cubic form C is totally symmetric, where C is defined by

$$C(X, Y, Z) = g(h(X, Y), JZ) = g(A_{JX}Y, Z),$$

Theorem

Let $x^1, x^2 : M^n \to \mathbb{C}P^n$ be two Lagrangian isometric immersions of a connected manifold M^n . If

$$C^1(X,Y,Z) = C^2(X,Y,Z)$$

for all vector fields X, Y, Z tangent to M, then there exists an isometry F of $\mathbb{C}P^n$ such that $x^1 = F(x^2)$.

(ロ) (四) (三) (三)

Cubic form, uniqueness theorem.

The cubic form C is totally symmetric, where C is defined by

$$C(X, Y, Z) = g(h(X, Y), JZ) = g(A_{JX}Y, Z),$$

Theorem

Let $x^1, x^2: M^n \to \mathbb{C}P^n$ be two Lagrangian isometric immersions of a connected manifold M^n . If

$$C^1(X,Y,Z) = C^2(X,Y,Z)$$

for all vector fields X, Y, Z tangent to M, then there exists an isometry F of $\mathbb{C}P^n$ such that $x^1 = F(x^2)$.

(D) (A) (A)

 $f: M^n \to S^{2m+1}$ is called *C-totally real* if for $p \in M$, i f(p) is normal to M

If n = m, then a C-totally real immersion $f: M^n \to S^{2n+1}$ is called Legendrian

Consider the Hopf fibration $\pi : S^{2m+1}(1) \to \mathbb{C}P^m(4)$. If $f: M^n \to S^{2m+1}$ is C-totally real (resp. Legendrian), then $\pi(f): M^n \to \mathbb{C}P^m(4)$ is totally real (resp. Lagrangian), and conversely (at least locally).

 $f: M^n \to S^{2m+1}$ is called *C-totally real* if for $p \in M$, i f(p) is normal to M

If n = m, then a C-totally real immersion $f: M^n \to S^{2n+1}$ is called Legendrian

Consider the Hopf fibration $\pi : S^{2m+1}(1) \to \mathbb{C}P^m(4)$. If $f: M^n \to S^{2m+1}$ is C-totally real (resp. Legendrian), then $\pi(f): M^n \to \mathbb{C}P^m(4)$ is totally real (resp. Lagrangian), and conversely (at least locally).

 $f: M^n \to S^{2m+1}$ is called *C-totally real* if for $p \in M$, i f(p) is normal to M

If n = m, then a C-totally real immersion $f: M^n \to S^{2n+1}$ is called Legendrian

Consider the Hopf fibration $\pi : S^{2m+1}(1) \to \mathbb{C}P^m(4)$. If $f: M^n \to S^{2m+1}$ is C-totally real (resp. Legendrian), then $\pi(f): M^n \to \mathbb{C}P^m(4)$ is totally real (resp. Lagrangian), and conversely (at least locally).

 $f: M^n \to S^{2m+1}$ is called *C-totally real* if for $p \in M$, i f(p) is normal to M

If n = m, then a C-totally real immersion $f: M^n \to S^{2n+1}$ is called Legendrian

Consider the Hopf fibration $\pi: S^{2m+1}(1) \to \mathbb{C}P^m(4)$. If $f: M^n \to S^{2m+1}$ is C-totally real (resp. Legendrian), then $\pi(f): M^n \to \mathbb{C}P^m(4)$ is totally real (resp. Lagrangian), and conversely (at least locally).

More precisely: let $f: M^n \to S^{2m+1}(1)$ be a C-totally real isometric immersion. Then $g = \pi(f): M^n \to \mathbb{C}P^m(4)$ is again an isometric immersion, which is totally real. Under this correspondence, the second fundamental forms h^f and h^g of f and g satisfy $\pi_*h^f = h^g$. Moreover, h^f is horizontal w.r.t. π .

Conversely, let $g: M^n \to \mathbb{C}P^m(4)$ be a totally real isometric immersion. Then there exists an isometric covering map $\tau: \widehat{M}^n \to M^n$, and a C-totally real isometric immersion $f: \widehat{M}^n \to S^{2m+1}$ such that $g(\tau) = \pi(f)$.

(日本)(日本)(日本)

More precisely: let $f: M^n \to S^{2m+1}(1)$ be a C-totally real isometric immersion. Then $g = \pi(f): M^n \to \mathbb{C}P^m(4)$ is again an isometric immersion, which is totally real. Under this correspondence, the second fundamental forms h^f and h^g of f and g satisfy $\pi_*h^f = h^g$. Moreover, h^f is horizontal w.r.t. π .

Conversely, let $g: M^n \to \mathbb{C}P^m(4)$ be a totally real isometric immersion. Then there exists an isometric covering map $\tau: \widehat{M}^n \to M^n$, and a C-totally real isometric immersion $f: \widehat{M}^n \to S^{2m+1}$ such that $g(\tau) = \pi(f)$.

Let (M^n, g) be an n-dimensional simply connected Riemannian manifold. Let α be a symmetric bilinear TM-valued form on M satisfying

- $g(\alpha(X, Y), Z)$ is totally symmetric,
- $(\nabla \alpha)(X, Y, Z)$ is totally symmetric,
- $R(X,Y)Z = X \wedge Y(Z) + \alpha(\alpha(Y,Z),X) \alpha(\alpha(X,Z),Y),$

then there exists a Legendrian immersion $x : M \to S^{2n+1}(1)$ such that the second fundamental form h satisfies $h(X, Y) = \varphi \alpha(X, Y)$, where φ is the standard Sasakian structure on $S^{2n+1}(1)$.

A (B) > (B) > (B)

Let (M^n, g) be an n-dimensional simply connected Riemannian manifold. Let α be a symmetric bilinear TM-valued form on M satisfying

- $g(\alpha(X, Y), Z)$ is totally symmetric,
- $(\nabla \alpha)(X, Y, Z)$ is totally symmetric,
- $R(X,Y)Z = X \wedge Y(Z) + \alpha(\alpha(Y,Z),X) \alpha(\alpha(X,Z),Y),$

then there exists a Lagrangian immersion $x : M \to \mathbb{C}P^n(4)$ such that the second fundamental form h satisfies $h(X, Y) = J\alpha(X, Y)$, where J is the complex structure on $\mathbb{C}P^n(4)$.

A (B) > (B) > (B)

An exotic Lagrangian immersion of S^3 into $\mathbb{C}P^3$

Consider the unit sphere

$$S^3 = \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \mid y_1^2 + y_2^2 + y_3^2 + y_4^2 = 1\}$$

in \mathbb{R}^4 . Let X_1 , X_2 and X_3 be the vector fields defined by

$$\begin{aligned} X_1(y_1, y_2, y_3, y_4) &= (y_2, -y_1, y_4, -y_3), \\ X_2(y_1, y_2, y_3, y_4) &= (y_3, -y_4, -y_1, y_2), \\ X_3(y_1, y_2, y_3, y_4) &= (y_4, y_3, -y_2, -y_1). \end{aligned}$$

Define a metric g on S^3 such that X_1, X_2 and X_3 are orthogonal and such that

$$g(X_1, X_1) = g(X_2, X_2) = 3, g(X_3, X_3) = 9.$$

Define a symmetric bilinear form lpha by

$$\begin{aligned} &\alpha(X_1, X_1) = 2X_1, & \alpha(X_3, X_1) = 0, \\ &\alpha(X_1, X_2) = -2X_2, & \alpha(X_3, X_2) = 0, \\ &\alpha(X_2, X_2) = -2X_1, & \alpha(X_3, X_3) = 0. \end{aligned}$$

An exotic Lagrangian immersion of S^3 into $\mathbb{C}P^3$

Consider the unit sphere

$$S^3 = \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \mid y_1^2 + y_2^2 + y_3^2 + y_4^2 = 1\}$$

in \mathbb{R}^4 . Let X_1 , X_2 and X_3 be the vector fields defined by

$$\begin{aligned} X_1(y_1, y_2, y_3, y_4) &= (y_2, -y_1, y_4, -y_3), \\ X_2(y_1, y_2, y_3, y_4) &= (y_3, -y_4, -y_1, y_2), \\ X_3(y_1, y_2, y_3, y_4) &= (y_4, y_3, -y_2, -y_1). \end{aligned}$$

Define a metric g on S^3 such that X_1 , X_2 and X_3 are orthogonal and such that

$$g(X_1, X_1) = g(X_2, X_2) = 3, g(X_3, X_3) = 9.$$

Define a symmetric bilinear form lpha by

$$\begin{aligned} &\alpha(X_1, X_1) = 2X_1, & \alpha(X_3, X_1) = 0, \\ &\alpha(X_1, X_2) = -2X_2, & \alpha(X_3, X_2) = 0, \\ &\alpha(X_2, X_2) = -2X_1, & \alpha(X_3, X_3) = 0. \end{aligned}$$

An exotic Lagrangian immersion of S^3 into $\mathbb{C}P^3$

Consider the unit sphere

$$S^3 = \{(y_1, y_2, y_3, y_4) \in \mathbb{R}^4 \mid y_1^2 + y_2^2 + y_3^2 + y_4^2 = 1\}$$

in \mathbb{R}^4 . Let X_1 , X_2 and X_3 be the vector fields defined by

$$\begin{split} X_1(y_1, y_2, y_3, y_4) &= (y_2, -y_1, y_4, -y_3), \\ X_2(y_1, y_2, y_3, y_4) &= (y_3, -y_4, -y_1, y_2), \\ X_3(y_1, y_2, y_3, y_4) &= (y_4, y_3, -y_2, -y_1). \end{split}$$

Define a metric g on S^3 such that X_1 , X_2 and X_3 are orthogonal and such that

$$g(X_1, X_1) = g(X_2, X_2) = 3, g(X_3, X_3) = 9.$$

Define a symmetric bilinear form α by

$$\begin{aligned} &\alpha(X_1, X_1) = 2X_1, & \alpha(X_3, X_1) = 0, \\ &\alpha(X_1, X_2) = -2X_2, & \alpha(X_3, X_2) = 0, \\ &\alpha(X_2, X_2) = -2X_1, & \alpha(X_3, X_3) = 0. \end{aligned}$$

Then (S^3, g) and α satisfy all conditions of the fundamental theorem, such that there exists a Lagrangian immersion

$$f:(S^3,g)\to \mathbb{C}P^3(4).$$

Then f is minimal and (S^3, g) has constant scalar curvature $\frac{1}{3}$.

Then (S^3, g) and α satisfy all conditions of the fundamental theorem, such that there exists a Lagrangian immersion

$$f:(S^3,g)\to \mathbb{C}P^3(4).$$

Then f is minimal and (S^3, g) has constant scalar curvature $\frac{1}{3}$.

Lagrangian immersions of $M^n(1)$ into $\mathbb{C}P^n(4)$.

Observation: $\mathbb{R}P^n(1) \subset \mathbb{C}P^n(4)$ is totally geodesic Lagrangian submanifolds.

Problem

Besides totally geodesic Lagrangian submanifolds, do there exist many Lagrangian isometric immersions of a real-space-form of constant sectional curvature 1 into $\mathbb{C}P^n(4)$?

Problem

How to explicitly construct Lagrangian isometric immersions of a real-space-form of constant sectional curvature 1 into $\mathbb{C}P^{n}(4)$

Definition

Let $(M_1, g_1), \ldots, (M_m, g_m)$ be *m* Riemannian manifolds, f_i a positive function on $M_1 \times \cdots \times M_m$ and $\pi_i \colon M_1 \times \ldots \times M_m \to M_i$ the *i*-th canonical projection for $i = 1, \ldots, m$. Then the *twisted* product

$$_{f_1}M_1 \times \cdots \times_{f_m} M_m$$

of $(M_1, g_1), \ldots, (M_m, g_m)$ is the differentiable manifold $M_1 \times \ldots \times M_k$ equipped with the twisted product metric g defined by

$$g(X,Y) = f_1 \cdot g_1(\pi_{1*}X, \pi_{1*}Y) + \cdots + f_m \cdot g_m(\pi_{m*}X, \pi_{m*}Y)$$

for all vector fields X and Y of $M_1 \times \cdots \times M_m$.

Twisted product decomposition

Consider

$$_{f_1}I_1 \times \cdots \times_{f_k} I_k \times_1 S^{n-k}(1),$$

where l_1, \ldots, l_k are open intervals. Assume the twisted product has constant sectional curvature 1, then we call it a *twisted product decomposition* of a space of curvature $M^n(1)$. Notation: $M^n(1) = TP_{f_1\cdots f_k}^n(1)$. Let x_j be the standard coordinate on l_j for $j = 1, \ldots, k$. We define the *twistor form* $\Phi(TP)$ by

$$\Phi(TP) = f_1 dx_1 + \cdots + f_k dx_k.$$

 $\Phi(TP)$ is said to be *twisted closed* if

$$\sum_{i,j=1}^k \frac{\partial f_i}{\partial x_j} dx_j \wedge dx_i = 0.$$

• • = • • = •

Twisted product decomposition

Consider

$$_{f_1}I_1 \times \cdots \times_{f_k} I_k \times_1 S^{n-k}(1),$$

where I_1, \ldots, I_k are open intervals. Assume the twisted product has constant sectional curvature 1, then we call it a *twisted product decomposition* of a space of curvature $M^n(1)$. Notation: $M^n(1) = TP_{f_1\cdots f_k}^n(1)$. Let x_j be the standard coordinate on I_j for $j = 1, \ldots, k$. We define the *twistor form* $\Phi(TP)$ by

$$\Phi(TP) = f_1 dx_1 + \cdots + f_k dx_k.$$

 $\Phi(TP)$ is said to be *twisted closed* if

$$\sum_{i,j=1}^k \frac{\partial f_i}{\partial x_j} dx_j \wedge dx_i = 0.$$

• • = • • = •

Let $TP_{f_1\cdots f_k}^n(1)$, $1 \le k \le n$, be a twisted product decomposition of a simply-connected real-space-form $M^n(1)$. If the twistor form $\Phi(TP)$ of $TP_{f_1\cdots f_k}^n(1)$ is twisted closed, then, up to rigid motions of $\mathbb{C}P^n(4)$, there is a unique Lagrangian isometric immersion:

$$L_{f_1\cdots f_k}$$
: $TP_{f_1\cdots f_k}^n(1) \to \mathbb{C}P^n(4),$

whose second fundamental form satisfies

$$h(\frac{\partial}{\partial x_j}, \frac{\partial}{\partial x_j}) = J\frac{\partial}{\partial x_j}, \quad j = 1, \dots, k,$$

and all other components vanish.

(D) (A) (A)

Let M be a Lagrangian submanifold of $\mathbb{C}P^n(4)$. Then M is of constant sectional curvature 1 if and only if, for each point $p \in M$, the second fundamental form at p satisfies

$$h(e_1, e_1) = \lambda_1 J e_1, \ldots, h(e_n, e_n) = \lambda_n J e_n,$$

$$h(e_i, e_j) = 0, \quad 1 \leq i \neq j \leq n$$

for some $\lambda_1, \ldots, \lambda_n$ with respect to some orthonormal basis e_1, \ldots, e_n of T_pM .

A (B) > A (B) > A (B) >

Classification

Theorem

Let L: $M^n(1) \to \mathbb{C}P^n(4)$ be a Lagrangian isometric immersion of a real-space-form $M^n(1)$ into $\mathbb{C}P^n(4)$. If there is an integer $k \in \{1, \ldots, n\}$ such that the second fundamental form of L satisfies

$$h(e_1, e_1) = \lambda_1 J e_1, \dots, h(e_k, e_k) = \lambda_k J e_k,$$
 and
 $h(e_i, e_j) = 0,$ otherwise,

for some nowhere vanishing functions $\lambda_1, \ldots, \lambda_k$, with respect to an orthonormal frame field e_1, \ldots, e_n , then $M^n(1) = TP^n_{\lambda_1^{-2} \cdots \lambda_k^{-2}}(1)$ such that the twistor form is twisted closed. Moreover, the Lagrangian immersion L is congruent to the Lagrangian isometric immersion $L_{f_1 \cdots f_k}$.

Explicit expressions for special cases. Further applications: Hamiltonian stationary Lagrangian submanifols.

Classification

Theorem

Let L: $M^n(1) \to \mathbb{C}P^n(4)$ be a Lagrangian isometric immersion of a real-space-form $M^n(1)$ into $\mathbb{C}P^n(4)$. If there is an integer $k \in \{1, \ldots, n\}$ such that the second fundamental form of L satisfies

$$h(e_1, e_1) = \lambda_1 J e_1, \dots, h(e_k, e_k) = \lambda_k J e_k$$
, and
 $h(e_i, e_j) = 0$, otherwise,

for some nowhere vanishing functions $\lambda_1, \ldots, \lambda_k$, with respect to an orthonormal frame field e_1, \ldots, e_n , then $M^n(1) = TP^n_{\lambda_1^{-2} \cdots \lambda_k^{-2}}(1)$ such that the twistor form is twisted closed. Moreover, the Lagrangian immersion L is congruent to the Lagrangian isometric immersion $L_{f_1 \cdots f_k}$.

Explicit expressions for special cases.

Further applications: Hamiltonian stationary Lagrangian submanifols.

Classification

Theorem

Let L: $M^n(1) \to \mathbb{C}P^n(4)$ be a Lagrangian isometric immersion of a real-space-form $M^n(1)$ into $\mathbb{C}P^n(4)$. If there is an integer $k \in \{1, \ldots, n\}$ such that the second fundamental form of L satisfies

$$h(e_1, e_1) = \lambda_1 J e_1, \dots, h(e_k, e_k) = \lambda_k J e_k,$$
 and
 $h(e_i, e_j) = 0,$ otherwise,

for some nowhere vanishing functions $\lambda_1, \ldots, \lambda_k$, with respect to an orthonormal frame field e_1, \ldots, e_n , then $M^n(1) = TP^n_{\lambda_1^{-2} \cdots \lambda_k^{-2}}(1)$ such that the twistor form is twisted closed. Moreover, the Lagrangian immersion L is congruent to the Lagrangian isometric immersion $L_{f_1 \cdots f_k}$.

Explicit expressions for special cases. Further applications: Hamiltonian stationary Lagrangian submanifols. For any Riemannian manifold M^n , we can define:

$$\delta_M(p) = \tau(p) - \inf K(p),$$

where inf K is the function assigning to each $p \in M^n$ the infimum of $K(\pi)$, where π runs over all planes in T_pM and τ is defined by $\tau = \sum_{i < j} K(e_i \wedge e_j)$.

If M^n is Lagrangian submanifold of $\mathbb{C}P^n$, then

$$\delta_M \leq \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{2}(n+1)(n-2),$$

where *H* is the mean curvature vector. This is called *Chen's inequality*.

• (10) • (10)

For any Riemannian manifold M^n , we can define:

$$\delta_M(p) = \tau(p) - \inf K(p),$$

where inf K is the function assigning to each $p \in M^n$ the infimum of $K(\pi)$, where π runs over all planes in T_pM and τ is defined by $\tau = \sum_{i < j} K(e_i \wedge e_j)$.

If M^n is Lagrangian submanifold of $\mathbb{C}P^n$, then

$$\delta_M \leq \frac{n^2(n-2)}{2(n-1)} \|H\|^2 + \frac{1}{2}(n+1)(n-2),$$

where H is the mean curvature vector. This is called *Chen's* inequality.

(B) (E) (E)

Let $x : M^n \to \mathbb{C}P^n$ and $n \ge 3$, be a Lagrangian isometric immersion. If M^n realizes equality in Chen's inequality, then M is minimal.

Theorem

Let $x : M^n \to \mathbb{C}P^n$ $(n \ge 3)$ be a Lagrangian immersion with constant scalar curvature. If M^n realizes equality in Chen's inequality then either M^n is a totally geodesic immersion or n = 3and x is congruent to the immersion $(S^3, g) \to \mathbb{C}P^3$ above.

General classification results by Bolton, Scharlach, Vrancken, Woodward,...

< □> < □> < □> < □>

Let $x : M^n \to \mathbb{C}P^n$ and $n \ge 3$, be a Lagrangian isometric immersion. If M^n realizes equality in Chen's inequality, then M is minimal.

Theorem

Let $x : M^n \to \mathbb{C}P^n$ $(n \ge 3)$ be a Lagrangian immersion with constant scalar curvature. If M^n realizes equality in Chen's inequality then either M^n is a totally geodesic immersion or n = 3and x is congruent to the immersion $(S^3, g) \to \mathbb{C}P^3$ above.

General classification results by Bolton, Scharlach, Vrancken, Woodward,...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Let $x : M^n \to \mathbb{C}P^n$ and $n \ge 3$, be a Lagrangian isometric immersion. If M^n realizes equality in Chen's inequality, then M is minimal.

Theorem

Let $x : M^n \to \mathbb{C}P^n$ $(n \ge 3)$ be a Lagrangian immersion with constant scalar curvature. If M^n realizes equality in Chen's inequality then either M^n is a totally geodesic immersion or n = 3and x is congruent to the immersion $(S^3, g) \to \mathbb{C}P^3$ above.

General classification results by Bolton, Scharlach, Vrancken, Woodward,...

Let (M^n, g) be a Lagrangian submanifold of $\mathbb{C}P^n(4)$. Then we have

$$\delta(p) \leq \frac{n^2(2n-3)}{2(2n+3)} \|H\|^2 + \frac{1}{2}(n-2)(n+1)$$

This inequality is the best possible.

Theorem

Let M^n be a Lagrangian submanifold of a $\mathbb{C}P^n(4)$ attaining equality in the improved Chen inequality at every point. If $n \ge 4$, then M is minimal.

Classification results for n = 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (M^n, g) be a Lagrangian submanifold of $\mathbb{C}P^n(4)$. Then we have

$$\delta(p) \leq rac{n^2(2n-3)}{2(2n+3)} \|H\|^2 + rac{1}{2}(n-2)(n+1)$$

This inequality is the best possible.

Theorem

Let M^n be a Lagrangian submanifold of a $\mathbb{C}P^n(4)$ attaining equality in the improved Chen inequality at every point. If $n \ge 4$, then M is minimal.

Classification results for n = 3.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let (M^n, g) be a Lagrangian submanifold of $\mathbb{C}P^n(4)$. Then we have

$$\delta(p) \leq \frac{n^2(2n-3)}{2(2n+3)} \|H\|^2 + \frac{1}{2}(n-2)(n+1)$$

This inequality is the best possible.

Theorem

Let M^n be a Lagrangian submanifold of a $\mathbb{C}P^n(4)$ attaining equality in the improved Chen inequality at every point. If $n \ge 4$, then M is minimal.

Classification results for n = 3.

A (B) > A (B) > A (B) >

Let (M^n, g) be a Lagrangian submanifold of $\mathbb{C}P^n(4)$. Then we have

$$\delta(p) \leq \frac{n^2(2n-3)}{2(2n+3)} \|H\|^2 + \frac{1}{2}(n-2)(n+1)$$

This inequality is the best possible.

Theorem

Let M^n be a Lagrangian submanifold of a $\mathbb{C}P^n(4)$ attaining equality in the improved Chen inequality at every point. If $n \ge 4$, then M is minimal.

Classification results for n = 3.

< □> < □> < □>

Pseudo-parallel Lagrangian submanifolds

A submanifold M^n of a Riemannian manifold (\widetilde{M}^m, g) is called semi-parallel if its second fundamental form h satisfies

$$\overline{R}\cdot h=0,$$

where \overline{R} acts on h as a derivation:

$$(\overline{R} \cdot h)(X, Y, Z, W) = R^{\perp}(X, Y)h(Z, W) - h(R(X, Y)Z, W) - h(Z, R(X, Y)W)$$

*M*ⁿ is called pseudo-parallel if its second fundamental form *h* satisfies

$$\overline{R} \cdot h + \phi \, Q(g,h) = 0$$

for some function ϕ on M, where Q(g,h) is defined by

 $Q(g,h)(X,Y,U,V) = -((X \land Y) \cdot h)(U,V)$ = $h((X \land Y)U,V) + h(U,(X \land Y)V)$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ ・

Pseudo-parallel Lagrangian submanifolds

A submanifold M^n of a Riemannian manifold (\widetilde{M}^m, g) is called semi-parallel if its second fundamental form h satisfies

$$\overline{R}\cdot h=0,$$

where \overline{R} acts on h as a derivation:

$$(\overline{R} \cdot h)(X, Y, Z, W) = R^{\perp}(X, Y)h(Z, W) - h(R(X, Y)Z, W) - h(Z, R(X, Y)W)$$

 M^n is called pseudo-parallel if its second fundamental form h satisfies

$$\overline{R} \cdot h + \phi \, Q(g,h) = 0$$

for some function ϕ on M, where Q(g, h) is defined by

$$Q(g,h)(X,Y,U,V) = -((X \land Y) \cdot h)(U,V)$$

= $h((X \land Y)U,V) + h(U,(X \land Y)V)$

E + + E +

Theorem

A Lagrangian pseudo-parallel submanifold M^n of a complex space form $\widetilde{M}^n(4c)$ of dimension $n \ge 3$ is semi-parallel.

Classification? Better notion for pseudo-parallel Lagrangian submanifolds:

 $\mathsf{R}\cdot\mathsf{C}+\phi\,\mathsf{Q}(\mathsf{g},\mathsf{C})=\mathsf{0}$

Classification?

▲圖→ ▲ 国→ ▲ 国→

Theorem

A Lagrangian pseudo-parallel submanifold M^n of a complex space form $\widetilde{M}^n(4c)$ of dimension $n \ge 3$ is semi-parallel.

Classification? Better notion for pseudo-parallel Lagrangian submanifolds:

 $R \cdot C + \phi Q(g, C) = 0$

Classification?

Franki Dillen Lagrangian submanifolds of CPⁿ.

・ロン ・四と ・ヨン ・ヨン

Theorem

A Lagrangian pseudo-parallel submanifold M^n of a complex space form $\widetilde{M}^n(4c)$ of dimension $n \ge 3$ is semi-parallel.

Classification?

Better notion for pseudo-parallel Lagrangian submanifolds:

 $R \cdot C + \phi Q(g, C) = 0$

Classification?

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Theorem

A Lagrangian pseudo-parallel submanifold M^n of a complex space form $\widetilde{M}^n(4c)$ of dimension $n \ge 3$ is semi-parallel.

Classification? Better notion for pseudo-parallel Lagrangian submanifolds:

$$R \cdot C + \phi Q(g, C) = 0$$

Classification?

Theorem

A Lagrangian pseudo-parallel submanifold M^n of a complex space form $\widetilde{M}^n(4c)$ of dimension $n \ge 3$ is semi-parallel.

Classification? Better notion for pseudo-parallel Lagrangian submanifolds:

$$R \cdot C + \phi Q(g, C) = 0$$

Classification?

(B) (E) (E)

- B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Lagrangian isometric immersions of a real-space-form Mⁿ(c) into a complex-space-form M̃ⁿ(4c), Math. Proc. Cambridge Philo. Soc., **124**, 107–125 (1998).
- B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken An exotic totally real minimal immersion of S³ in CP³ and its characterization Proc. Royal Soc. Edinburgh Sect. A, Math. 126 (1996) 153-165.
- B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Totally real submanifolds of CPⁿ satisfying a basic equality, Arch. Math. (Basel) 63 (1994), 553–564

・ロト ・日本・ ・ヨト・ ・ヨト・

- F. Dillen, J. Van der Veken, L. Vrancken, *Pseudo-parallel Lagrangian submanifolds are semi-parallel*. Differential geometry and its applications (2009)
- J. Bolton, F. Dillen, J. Fastenakels, L. Vrancken, A best possible inequality for curvature-like tensor fields, Mathematical Inequalities and Applications (2009)
- B. Y. Chen, F. Dillen, *Warped product decompositions of real space forms and Hamiltonian-stationary Lagrangian submanifolds*, Nonlinear analysis, 69, 3462-3494 (2008)

・ 同 ト ・ ヨ ト ・ ヨ ト