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Introduction

Let f : Mn → M̃m be an isometric immersion of a Riemannian

n-manifold Mn into a Kaehler m-manifold M̃m of complex

dimension m.

Then f is said to be totally real if the complex structure J of M̃m

carries each tangent space of Mn into its corresponding normal

space, i.e. J(f∗TpM) ⊂ T⊥
p M.

If in addition n = m, then Mn is said to be Lagrangian , i.e.

J(f∗TpM) = T⊥
p M.

If no confusion is possible, we will assume Mn embedded and we

identify Mn and f (Mn).
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Introduction

From now on: n = m, M̃n = CPn(4)

Mn ⊂ CPn(4) Lagrangian Submanifold

Contents:

Lift to S2n+1(1), fundamental theorem.

Examples of Lagrangian submanifolds

Curvature inequalities

Pseudo-parallel Lagrangian submanifolds

Joint work with John Bolton, Bang-Yen Chen, Johan Fastenakels,

Joeri Van der Veken, Pol Verstraelen, Luc Vrancken
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Basic equations for Lagrangian Submanifolds

Formulas of Gauss and Weingarten:

∇̃XY = ∇XY + h(X ,Y ),

∇̃XN = −ANX +∇⊥
XN,

Relations: J(AJXY ) = h(X ,Y ) and ∇⊥
X JY = J∇XY

The equation of Gauss:

R(X ,Y ) = X ∧ Y + [AJX ,AJY ].

The equation of Codazzi:

(∇h)(X ,Y ,Z ) := ∇⊥
Xh(Y ,Z )− h(∇XY ,Z )− h(Y ,∇XZ )

is totally symmetric
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Cubic form, uniqueness theorem.

The cubic form C is totally symmetric, where C is de�ned by

C (X ,Y ,Z ) = g(h(X ,Y ), JZ ) = g(AJXY ,Z ),

Theorem

Let x1, x2 : Mn → CPn be two Lagrangian isometric immersions of

a connected manifold Mn. If

C 1(X ,Y ,Z ) = C 2(X ,Y ,Z )

for all vector �elds X ,Y ,Z tangent to M, then there exists an

isometry F of CPn such that x1 = F (x2).
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C-totally real and Legendrian submanifolds of S2m+1(1)

Consider S2m+1(1) ⊂ Cm+1 with standard Sasakian metric.

f : Mn → S2m+1 is called C-totally real if for p ∈ M, i f (p) is
normal to M

If n = m, then a C-totally real immersion f : Mn → S2n+1 is called

Legendrian

Consider the Hopf �bration π : S2m+1(1) → CPm(4). If
f : Mn → S2m+1 is C-totally real (resp. Legendrian), then

π(f ) : Mn → CPm(4) is totally real (resp. Lagrangian), and

conversely (at least locally).
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Lifting up and down

More precisely: let f : Mn → S2m+1(1) be a C-totally real isometric

immersion. Then g = π(f ) : Mn → CPm(4) is again an isometric

immersion, which is totally real. Under this correspondence, the

second fundamental forms hf and hg of f and g satisfy π∗h
f = hg .

Moreover, hf is horizontal w.r.t. π.

Conversely, let g : Mn → CPm(4) be a totally real isometric

immersion. Then there exists an isometric covering map

τ : M̂n → Mn, and a C-totally real isometric immersion

f : M̂n → S2m+1 such that g(τ) = π(f ).
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Fundamental theorem for Legendrian submanifolds of S2n+1

Theorem

Let (Mn, g) be an n-dimensional simply connected Riemannian

manifold. Let α be a symmetric bilinear TM-valued form on M

satisfying

g(α(X ,Y ),Z ) is totally symmetric,

(∇α)(X ,Y ,Z ) is totally symmetric,

R(X ,Y )Z = X ∧ Y (Z ) + α(α(Y ,Z ),X )− α(α(X ,Z ),Y ),

then there exists a Legendrian immersion x : M → S2n+1(1) such
that the second fundamental form h satis�es h(X ,Y ) = ϕα(X ,Y ),
where ϕ is the standard Sasakian structure on S2n+1(1).
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Fundamental theorem for Lagrangian submanifolds of CPn

Theorem

Let (Mn, g) be an n-dimensional simply connected Riemannian

manifold. Let α be a symmetric bilinear TM-valued form on M

satisfying

g(α(X ,Y ),Z ) is totally symmetric,

(∇α)(X ,Y ,Z ) is totally symmetric,

R(X ,Y )Z = X ∧ Y (Z ) + α(α(Y ,Z ),X )− α(α(X ,Z ),Y ),

then there exists a Lagrangian immersion x : M → CPn(4) such
that the second fundamental form h satis�es h(X ,Y ) = Jα(X ,Y ),
where J is the complex structure on CPn(4).
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An exotic Lagrangian immersion of S3 into CP3

Consider the unit sphere

S3 = {(y1, y2, y3, y4) ∈ R4 | y21 + y22 + y23 + y24 = 1}

in R4. Let X1, X2 and X3 be the vector �elds de�ned by

X1(y1, y2, y3, y4) = (y2,−y1, y4,−y3),
X2(y1, y2, y3, y4) = (y3,−y4,−y1, y2),
X3(y1, y2, y3, y4) = (y4, y3,−y2,−y1).

De�ne a metric g on S3 such that X1, X2 and X3 are orthogonal

and such that

g(X1,X1) = g(X2,X2) = 3, g(X3,X3) = 9.

De�ne a symmetric bilinear form α by

α(X1,X1) = 2X1, α(X3,X1) = 0,

α(X1,X2) = −2X2, α(X3,X2) = 0,

α(X2,X2) = −2X1, α(X3,X3) = 0.
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An exotic Lagrangian immersion of S3 into CP3

Then (S3, g) and α satisfy all conditions of the fundamental

theorem, such that there exists a Lagrangian immersion

f : (S3, g) → CP3(4).

Then f is minimal and (S3, g) has constant scalar curvature 1

3
.
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Lagrangian immersions of Mn(1) into CPn(4).

Observation: RPn(1) ⊂ CPn(4) is totally geodesic Lagrangian

submanifolds.

Problem

Besides totally geodesic Lagrangian submanifolds, do there exist

many Lagrangian isometric immersions of a real-space-form of

constant sectional curvature 1 into CPn(4)?

Problem

How to explicitly construct Lagrangian isometric immersions of a

real-space-form of constant sectional curvature 1 into CPn(4)

Franki Dillen Lagrangian submanifolds of CPn .



Twisted products

De�nition

Let (M1, g1), . . . , (Mm, gm) be m Riemannian manifolds, fi a

positive function on M1 × · · · ×Mm and πi : M1 × . . .×Mm → Mi

the i-th canonical projection for i = 1, . . . ,m. Then the twisted

product

f1M1 × · · · ×fm Mm

of (M1, g1), . . . , (Mm, gm) is the di�erentiable manifold

M1 × . . .×Mk equipped with the twisted product metric g de�ned

by

g(X ,Y ) = f1 · g1(π1∗X , π1∗Y ) + · · ·+ fm · gm(πm∗X , πm∗Y )

for all vector �elds X and Y of M1 × · · · ×Mm.
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Twisted product decomposition

Consider

f1 I1 × · · · ×fk Ik ×1 S
n−k(1),

where I1, . . . , Ik are open intervals.

Assume the twisted product has constant sectional curvature 1,

then we call it a twisted product decomposition of a space of

curvature Mn(1). Notation: Mn(1) = TPn
f1···fk (1).

Let xj be the standard coordinate on Ij for j = 1, . . . , k . We de�ne

the twistor form Φ(TP) by

Φ(TP) = f1dx1 + · · ·+ fkdxk .

Φ(TP) is said to be twisted closed if

k∑
i ,j=1

∂fi
∂xj

dxj ∧ dxi = 0.
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Existence part

Theorem

Let TPn
f1···fk (1), 1 ≤ k ≤ n, be a twisted product decomposition of

a simply-connected real-space-form Mn(1). If the twistor form

Φ(TP) of TPn
f1···fk (1) is twisted closed, then, up to rigid motions of

CPn(4), there is a unique Lagrangian isometric immersion:

Lf1···fk : TPn
f1···fk (1) → CPn(4),

whose second fundamental form satis�es

h(
∂

∂xj
,

∂

∂xj
) = J

∂

∂xj
, j = 1, . . . , k ,

and all other components vanish.
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Classi�cation

Theorem

Let M be a Lagrangian submanifold of CPn(4). Then M is of

constant sectional curvature 1 if and only if, for each point p ∈ M,

the second fundamental form at p satis�es

h(e1, e1) = λ1Je1, . . . , h(en, en) = λnJen,

h(ei , ej) = 0, 1 ≤ i 6= j ≤ n

for some λ1, . . . , λn with respect to some orthonormal basis

e1, . . . , en of TpM.
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Classi�cation

Theorem

Let L : Mn(1) → CPn(4) be a Lagrangian isometric immersion of a

real-space-form Mn(1) into CPn(4). If there is an integer

k ∈ {1, . . . , n} such that the second fundamental form of L satis�es

h(e1, e1) = λ1Je1, . . . , h(ek , ek) = λkJek , and

h(ei , ej) = 0, otherwise,

for some nowhere vanishing functions λ1, . . . , λk , with respect to

an orthonormal frame �eld e1, . . . , en, then
Mn(1) = TPn

λ−2
1
···λ−2

k

(1) such that the twistor form is twisted

closed. Moreover, the Lagrangian immersion L is congruent to the

Lagrangian isometric immersion Lf1···fk .

Explicit expressions for special cases.

Further applications: Hamiltonian stationary Lagrangian

submanifols.
Franki Dillen Lagrangian submanifolds of CPn .
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Chen's δ-invariants

For any Riemannian manifold Mn, we can de�ne:

δM(p) = τ(p)− inf K (p),

where inf K is the function assigning to each p ∈ Mn the in�mum

of K (π), where π runs over all planes in TpM and τ is de�ned by

τ =
∑

i<j K (ei ∧ ej).

If Mn is Lagrangian submanifold of CPn, then

δM ≤ n2(n−2)
2(n−1) ‖H‖

2 + 1

2
(n + 1)(n − 2),

where H is the mean curvature vector. This is called Chen's

inequality.
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The equality case

Theorem

Let x : Mn → CPn and n ≥ 3, be a Lagrangian isometric

immersion. If Mn realizes equality in Chen's inequality, then M is

minimal.

Theorem

Let x : Mn → CPn (n ≥ 3) be a Lagrangian immersion with

constant scalar curvature. If Mn realizes equality in Chen's

inequality then either Mn is a totally geodesic immersion or n = 3

and x is congruent to the immersion (S3, g) → CP3 above.

General classi�cation results by Bolton, Scharlach, Vrancken,

Woodward,...
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Oprea's improvement

Theorem

Let (Mn, g) be a Lagrangian submanifold of CPn(4). Then we have

δ(p) ≤ n2(2n − 3)

2(2n + 3)
‖H‖2 +

1

2
(n − 2)(n + 1)

This inequality is the best possible.

Theorem

Let Mn be a Lagrangian submanifold of a CPn(4) attaining
equality in the improved Chen inequality at every point. If n ≥ 4,

then M is minimal.

Classi�cation results for n = 3.
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Pseudo-parallel Lagrangian submanifolds

A submanifold Mn of a Riemannian manifold (M̃m, g) is called
semi-parallel if its second fundamental form h satis�es

R · h = 0,

where R acts on h as a derivation:

(R · h)(X ,Y ,Z ,W ) = R⊥(X ,Y )h(Z ,W )

− h(R(X ,Y )Z ,W )− h(Z ,R(X ,Y )W )

Mn is called pseudo-parallel if its second fundamental form h

satis�es

R · h + φQ(g , h) = 0

for some function φ on M, where Q(g , h) is de�ned by

Q(g , h)(X ,Y ,U,V ) = −((X ∧ Y ) · h)(U,V )

= h((X ∧ Y )U,V ) + h(U, (X ∧ Y )V )
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Pseudo parallel Lagrangian submanifolds

Chacon and Lobos (DGA 2008) prove that a Lagrangian surface

M2 of a complex space form M̃2(4c) is pseudo-parallel if and only

if it is (locally) �at or minimal. They conjecture that for n ≥ 3

pseudo-parallel implies semi-parallel.

Theorem

A Lagrangian pseudo-parallel submanifold Mn of a complex space

form M̃n(4c) of dimension n ≥ 3 is semi-parallel.

Classi�cation?

Better notion for pseudo-parallel Lagrangian submanifolds:

R · C + φQ(g ,C ) = 0

Classi�cation?
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