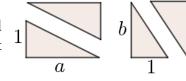
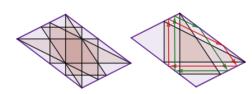
Billiards in a cube and tetrahedral packings


EML project, winter semester 2024


Branch: Geometry Language: English Difficulty: adjustable Trailer: https://www.youtube.com/watch?v=5gXBIww-wxA Supervisor: Alexey Balitskiy Contact: alexey.balitskiy@uni.lu

Two-dimensional teaser

You are given these four triangles in the plane \longrightarrow You are allowed to parallel translate given shapes (slide them around without rotating). The goal is to minimize the area of the convex hull [1], which is the smallest polygon containing the triangles.

The answer (spoiler alert) is a parallelogram. \rightarrow It turns out that some pairs of triangles bound certain parallel families of billiard trajectories (see on the right), and the problem is closely connected to billiard dynamics.

Three-dimensional goal

Investigate a similar problem in 3D, and visualize the billiard dynamics in a cube in a normed space (for example, in Geogebra or Mathematica). Optionally, we could also do a harder optimization problem about minimizing the volume of the convex hull of a few tetrahedra.

Motivation

This problem is cool because it allows to solve special cases of *Viterbo's conjecture*, which is a fancy problem in *symplectic geometry*. The conjecture is reduced to the question of minimal convex hull using a very neat *billiard* approach [2].

References

- [1] https://en.wikipedia.org/wiki/Convex_hull.
- [2] Balitskiy, A. "Equality cases in Viterbo's conjecture and isoperimetric billiard inequalities." International Mathematics Research Notices 2020.7 (2020): 1957-1978. Arxiv version: https://arxiv.org/abs/1512.01657.