Master in Mathematics

Unwversity of Luxembourg

Student Project

Factorisation of polynomials over Z/p"Z|x]

UNIVERSITE DU
LUXEMBOURG

Author : Salima LAMHAR

Supervisors : Pr.Gabor WIESE - Dr.Panagiotis TSAKNIAS



Contents

1

Introduction

1.1 Setting . . . . . . o o e e
1.2 Unique factorization over Z/pZ[x] . . . . . . . . .. o
1.3 An example of the phenomema over Z/p"Z[x] . . . . . . . .. ...

Definition of the elasticity and non-uniqueness of factorization of some monic
polynomials

Commutative rings with harmless zero-divisors

Uniqueness of some kinds of factorizations over Z/p"Z[x]

4.1 Arbitrary polynomials to non-zerodivisors . . . . . .. .. ...
4.2 Non-zerodivisors to monic polynomials . . . . . . . ... ... 0oL
4.3 Monic polynomials to primary monic polynomials . . . . . . . ... ... ... ...

Non-unique factorization over Z/p"Z|x]

Algorithm on sage and some examples
6.1 The algorithm . . . . . . . .. .
6.2 Some examples . . . . ... L

References

Acknowledgement

ww NN

(S

© © oo

10

11
11
13

18

18



1 Introduction

1.1 Setting

In this subject based on the article [1], we will study the phenomena of factorization of polynomials
into irreducibles over Z/p"Z[xz]. Indeed if the factorisation is unique over Z/pZ (p prime), it’s far
from being the same over Z/p"Z][zx].

We will show that the elasticity of the multiplicative monoid of monic polynomials in Z/p"Z[z]
is infinite since it is a direct sum of monoids corresponding to irreducible polynomials in Z/pZ[x|
and that each of these monoids has infinite elasticity.

By using a few properties concerning uniqueness of some kinds of factorizations of polynomials
over Z/p"Z|z], we can generalize the non-uniqueness of factorization into irreducibles to arbitrary
non-zero polynomials. In fact, we can reduce the question of factoring arbitrary non-zero polyno-
mials into irreducibles to the problem of factoring monic polynomials into monic irreducibles.

Throughout this paper, p is prime and n > 2 (p denotes also its residue class in Z/p"Z or in
Z/p™Zz]). II defines the canonical projection from Z/p"Z[z] to Z/pZ[z].
M is the multiplicative cancellative monoid of non-zerodivisors of Z/p"Z|x].



1.2 Unique factorization over Z/pZ|x]

Let R be a commutative ring and let us define :
T={u € R|wuisan unit } U{py...p, € R| p; is prime and n € N}

Theorem 1.1 (Kaplansky) : An integral domain R is a UFD if and only if every non-zero
prime tdeal in R contains a prime element.

Proof: If R is a field the proof in trivial since the only ideals are (0) and R.

(=) Let P be a non-zero prime ideal, then P is proper and there is non-zero 2 € P which is not
a unit. Since x is not a unit and x € T, there are prime elements pq,...,pr € R such that

x =py...pr (Risa UFD if and only if 7= R\ {0} ). Since P is prime 3¢ such that p;, € P.

(<) Assume that R is not a UFD. Then there is a non zero x € R such that x ¢ T. Consider the
ideal (x). We will show, that () N'T = (. Assume that there is » € R such that r.x € T. Then it
follows that 2 € T' (since if a,b € R are such that a.b € T, then both a,b € T' ) which is a
contradiction.

Since (z) NT = @ and T is a multiplicative subset, there is a prime ideal P in R such that

(z) C Pand PNT = (). Since we assumed that every non-zero prime ideal contains prime
element (and P is nonzero, since x € P),we obtain a contradiction, which completes the proof. O

Theorem 1.2 : FEvery principal ideal domain is a unique factorization domain.

Proof: Recall that, due to Kaplansky Theorem it is enough to show that every non-zero prime
ideal in R contains a prime element.

On the other hand, recall that an element p € R is prime if and only if the ideal (p) generated by
p is non-zero and prime.

Thus if P is a nonzero prime ideal in R, then (since R is a PID) there exists p € R such that

P = (p). This completes the proof. [J

We conclude then, that Z/pZ[z] is a unique factorization domain since it is a PID.

Example 1.3 : In Z/3Z[z] , Q = 2% + 2? + x then Q = z.(z + 2)? is the unique factorization
into irreducibles of Q.

1.3 An example of the phenomema over Z/p"Z|x]
(l.m +pn—1)2 — xm(xm + 2.pn—1)

Consider the equality above. Let us assume that the concept of irreducibility in Z/p"Z[x] is
analogous to the concept of irreducibility in integral domains and that Z/p"Z[z] is atomic (every
element has a factorization into irreducible elements).

By using the unique factorization in Z/pZ[x], we can prove that (™ + p is a product of at
most (n — 1) irreducibles. Indeed, this polynomial represents a power of x in Z/pZ[z], then by
unique factorization each of their factors in Z/p"Z[x] must represent a power of x in Z/pZ[z](apart
from units since (Z/pZ)* = (Z/pZ[z])* and a polynomial in Z/p™Z|x] is a unit if and only if it
maps to a unit in Z/pZ[z] under the canonical projection II). Then, the constant coefficient of
every such factor is divisible by p. Since (z™ + p"~!) is divisible by no higher power of p than
n—1, (z™ + p"~1)? is divisible by no higher power of p than 2(n — 1).

Hence, for arbitrary m € N, there exists in Z/p™Z[x] a product of at most 2(n — 1) irreducibles
that is also representable as a product of more than m irreducibles without any condition on m.

n—l)



2 Definition of the elasticity and non-uniqueness of factor-
ization of some monic polynomials

Definition 2.1 : Suppose that S is a set and (.) is some binary operation S x S — S, then S
with (.) is a monoid if it satisfies the following two axioms:

-Associativity: For all a,b and c in S, the equality (a.b).c = a.(b.c) holds.

-Identity element: there exists an element e in S such that for every element a in S, the
equations e.a = a.e = a hold.

In other words, a monoid is a semigroup with an identity element.

Definition 2.2 : A submonoid of a monoid (5, .) is a subset N of .S that is closed under the
monoid operation and contains the identity element e of S. In other words, IV is a submonoid of
S if N C S and x.y € N whenever z,y € N and e € N.

Definition 2.3 : Let (S,.) be a semigroup together with a partial order <. We say that his order
is compatible with the semigroup operation, if x <y = t.x <t.y and .t < y.t for all z,y,t € S.

Definition 2.4 : Let S be a semigroup. An element a € S is left cancellative (respectively right
cancellative) if a.b = a.c implies b = ¢ for all b and ¢ in S (respectively if ba = ca implies b = ¢).
If every element in S is both left cancellative and right cancellative, then S is called a
cancellative semigroup.

Definition 2.5 : Let (S,.) be a cancellative monoid.
(7) For k > 2, let ¢x(S) be the supremum of all those m € N for which there exists a product of k
irreducibles that can also be expressed as a product of m irreducibles.

(#i) The elasticity of S is sup(wy in other words, the elasticity is the supremum of the
2

=z

values 7' such that there exists an element of M that can be expressed both as a product of &

irreducibles and as a product of m irreducibles.

Lemma 2.6 : Let f be a monic polynomial in Z/p™Z[x] which maps to an irreducible
polynomial in Z/pZ[x]. Let d = deg(f). Let n,k € N with 0 < k <n and m € N with
ged(m,kd) =1 and ¢ € Z with ptc. Then:

f@)™+ e
is an irreducible polynomial in Z/p"Z[x].

Proof: Suppose otherwise. Then 3 g, h,r € Z[x], with g, h monic and g irreducible in Z/p"Z][z],
such that:

F@)™ + ep* = g(x)h(z) + p"r()

and 0 < deg g < dm. By using the unique factorization in Z/pZ|x], g is a power of f modulo p.
Therefore, deg g = ds with 0 < s < m. Let « be a zero of g. Let A be the ring of algebraic
integers in Q[a]. Then by ’Splitting of prime ideals in Galois extensions’ we have that

pA= PP and [Q[a] : Q] = > e;.[A/P; : Z/pZ] = deg g = ds. Let wp, the normalized

T

valuation on Q] corresponding to P; (see section 3,3.1). Since f(a)™ = p"r(a) — cp*, we have
m.wp, (f(a)) = kei. As m is relatively prime to k, m divides e;. By the same reasoning, we have
that m divides e; for i € 1,...,r then m divides deg g = [Q[a] : Q] = > e;.[A/P; : Z/pZ] = ds. As

K3
m is relatively prime to d, m divides s, which is a contradiction since 0 < s <m. [

Theorem 2.7 : Let n > 2. Let f be a monic irreducible polynomial in Z/pZlx). Let My be the
submonoid of the multiplicative monoid M consisting of those monic polynomials g € Z/p"Z[z)

whose image under 11 is a power of f. Then the elasticity of My is infinite . Moreover,
CI)Q(Mf) = Q.



Proof: Let us, by abuse of notation, denote by g a monic polynomial in Z/p"Z[x] which maps
under II to the irreducible polynomial f in Z/pZ[x].

Let ¢ be a prime with ¢ > max(n — 1,deg(g)). By Lemma 2.6, g(x)? + p"~! is irreducible in
Z/p"7Z[z]. Let us consider the equality:

(g(x)? 4+ p1)% = g(x)U(g(x)? +2.p" 1)

This is an example of factorization of a polynomial in My into (on the left) 2 irreducible factors
and by using the Lemma 2.6, (on the right) ¢ + 1 irreducible factors (if p # 2) and 2q (if p = 2).
As ¢ can be made arbitray large, then ¢o(M ;) = oo and the elasticity of M is infinite. O

Since My is fully elastic, we conclude that the factorization of monic polynomials (whose image
under II is a power of an irreducible) into irreducibles over Z/p™Z[x] is not unique. The aim is
now to generalize the result to all monic polynomials and then to non-zerodivisors and then to
arbitrary polynomials.

3 Commutative rings with harmless zero-divisors

Definition 3.1 : We extend p-adic valuation to Z[z] by v*(f) = mingv(ay) where v is the usual
p-adic valuation on Z and f =Y, apz”.

v* defines a surjective mapping v* : Z[z] — Ng U {c0}. Let us denote by (N,,, +, <) the ordered
monoid with elements 0,1, ...,n—1, 0o, resulting from factoring (NoU{oo}, +, <) by the congruence
relation that identifies all values greater or equal than n, including oo, by abuse of notation, we
will use v* for the surjective mapping v* : Z/p"Z[x] — N,, obtained by factoring p-adic valuation
v* : Z[z] = No U {oco} by the same congruence relation. Indeed, v* : Z/p"Z[x] — N,, behaves like
a valuation, except that (N, +) is not a group and cannot be extended to a group, as it is not
cancellative.

Proposition 3.2: v* : Z/p"Z[z] — N,, satisfies:

(i) v*(f) =00 = f = 0.

(i2) v*(f + g) = min(v*(f),v*(g))-

(iii) v*(fg) = v*(f) +v"(9).

Proposition 3.3 : For f € Z/p"Z|x], the following are equivalent:
(7) v*(f) > 0 (all coefficients of f are divisible by p).

(i) f is nilpotent.

(#i1) f is a zero-divisor.

Proof:

(i) = (ii) Let us consider f =", axz®. Since v*(f) > 0 all the coefficients of are divisible by p.
Then, f =Y, p.ajz" such that for each k, ay, = p.a}. Then f = p.(}_, a}z"), and

fm=p".(>, aj,z®)" = 0. Therefore f is nilpotent.

(ii) = (ii7) Let us asume that f is nilpotent. Then 3k € N such that f* =0 and f*~1 # 0. Then
f-f*1=0and f is a zero-divisor (f # 0).

(#91) = (i) Let us consider f € Z/p"Z[z] such that f is a zero-divisor then Jg € Z/p"Z[z] such
that g # 0 and f.g = 0. Then the lift of f.¢g in Z[z] is a multiple of p™ . Then by using properties
of v* in Z[x], we have v*(f.g) = v*(f.g) = v*(f).v*(g) = n. Since g # 0, we have v*(g) < n. So

we conclude that v*(f) > 0 and v*(f) > 0. O

Definition 3.4 : Let R be a commutative ring.

(i) Nil(R) denotes the nilradical of R, i.e. the set {r € R,3n € N,r™ = 0}.

(#i) J(R) denotes the Jacobson radical of R, i.e. the intersection of all maximal ideals of R.
(791) Z(R) denotes the set of zero-divisors of R.



Proposition 3.5 : Nil(R) ={r € R,3n€ N,r" =0} = o P
prime
Proof:
(Q) : Let r € Nil(R), then In € N such that v =0 € P ( P prime). Since P is prime we have
reP,andre n P.

Pprime

(2): Let r€ N P, and let us suppose that r ¢ Nil(R). Let E be the set of ideals which

Pprime
contain no power of r. F is non-empty, because F contains (0). By using Zorn’s lemma, F has a
maximal ideal, let us denote it by P. Then P contains no power of r and P C R. Let us now
show that P is prime. Consider z,y ¢ P such that xy € P.
x¢ P=PC P+ Rux. But P is maximal in E, then P+ R.x ¢ F and contains a power of r.
Hence 3k > 0, ¢ € P and s € R such that r* = ¢ + s.z. By the same reasoning, 31 > 0, ¢’ € P
and t € R such that: ! = ¢/ + ty. By using these equalities, we have:

R = qq' + q(ty) + ¢ (s2) + (st)zy

We remark that r*' ¢ P but qq’' + q(ty) + ¢/(sz) + (st)zy € P which is a contradiction. Then
x € Poryeé€ P and P is prime. This completes the proof and r € Nil(R). O

Proposition 3.6 : Let Q be a mazimal ideal of Z|x], then Q is of the form:

Q= (p. f())
Where f € Z]x] such that f represents an irreducible polynomial in Z/pZ|x).

Proof: Let us consider @ an arbitrary maximal ideal of Z[x], and denote by K the quotient ring
Z[z]/Q which is a field. Consider 0 : Z — K the composition of the two natural maps :

a:Z — Zlx)
and
o Zlx] - K

f is not injective. Suppose 8 is injective, then, since K is a field, 8 extends to an injection
0’ : Q — K and then o/ to a homomorphism g’ : Q[z] - K

Z[x] k

Qlx]

The map 3’ is clearly surjective, since o’ already is. Now, if 8’ is injective, we will have an
isomorphism Q[z] ~ K, but Q[z] is not a field. Therefore, Ker(8') = (g(x)) for a non-zero
polynomial g, which must be then irreducible. By replacing g with a non-zero constant multiple,
we can assume that g is primitive polynomial in Z[z]. We thus have an isomorphism

Q[z]/(g) ~ K. But this will imply that the natural map Z[z] — Q[z] induces a surjection

Z|z] — Q[x]/(g) which will induce an isomorphism Z[z]/(g) ~ Q[z]/(g), let us show that is a
contradiction. If we consider g(x) = a,2"™ + a,_12" "' + .... + a1 + ag (with a, # 0), then we
have in Q[z]/(g):

ATy + Ap—1Tp—1 + ..... +ag =

So we can write,

T = (Cm L)z 4 L+ (22T + (SR)

n Qn An



Then Z" can be written as linear combination of lower powers with coeflicients in Z[i] Using
this and an easy induction, we deduce that any polynomial in Q[z]/(g) can be written as linear
combination of elements in the set B = {1,7,72,...,7" 1}. It is clear that Y. 7' =0
i1€{0..n—1}
implies that " ¢;z* € (g(x)) (B is linearly independent in Q[z]/(g)). By examining
1€{0..n—1}
degrees, we must have ¢; = 0 for all i. Now, take p prime that does not divide a,,. Then %
cannot be spanned by B with coefficients in Z[i] We know now that € is not injective and then
Ker(0) = (n) for some n non-zero. However, since the image of 6 is an integral domain, n must
be a prime p. Therefore, we must have p € @) for some prime p. We know that the maximal
ideals in Z[z] that contain p are in bijection with the maximal ideals in Z[x]/(p) ~ Z/pZ[z]. So
Q/(p) = (fo(z)) for an irreducible polynomial fy € Z/pZ[x]. But then Q = (p, f(x)) for any lift f
of fy, as was to be shown. [J

Proposition 3.7 : Nil(Z/p"Z[x]) = J(Z/p"Z]z]) = (p) = Z(Z/p"Z[x])

Proof: By Proposition3.3 we have (p) = Nil(Z/p"Z[z]) = Z(Z/p"Z|x]). Let us now prove that
J(Z/p"Z]z]) = (p). We know by Proposition 3.6 that the ideals (p, f) with f representing an
irreducible polynomial in Z/pZ[z] are precisely the maximal ideals of Z[z]. Let us denote by A
the canonical projection from Z[z] into Z/p"Z[z]. Consider J a maximal ideal of Z/p"Z[z], then
A71((J)) is a maximal ideal of Z[x]. Then A=1((J)) = (p, f) with f irreducible modulo p. Then
T =AATHT)) = M(p, 1)) = (p, f)- Then J(Z/p"Z[z]) = N(p, f;) = (p) such that f; represents

an irreducible polynomial in Z/pZ[z]. O

Definition 3.8 : Let R be a commutative ring. Let a,b € R, ¢ € R a non-zero non-unit. We say
that:

(7) ¢ is weakly irreducible if: ¢ =ab=c|a or c|b.

(#i) a and b weakly associated if a | b and b | a (or equivalently (a) = (b)).

(#i1) R is atomic (respectively weakly atomic) if every non-zero non-unit is a product of
irreducibles (respectively weakly irreducibles) elements.

Definition 3.9 : Let R be a commutative ring. We say that R is a ring with harmless
zero-divisors if Z(R) C1—U(R) = {1 —u | w an unit of R}.

Lemma 3.10 : R be a ring with harmless zero-divisors and a,b,c,u,v € R. Then:
(1) ifa#0, a =bu and b = av then u,v are units.

(i1) a,b are weakly associated if and only if they are associated.

(#i1) ¢ is weakly irreducible if and only if ¢ is irreducible.

(i) if ¢ is prime, then c is irreducible.

Proof: (i) Let us consider a = bu and b = av with @ # 0. Then a(1 —vu) = 0 then (1 —vu) is a
zero-divisor, then Jw a unit such that 1 — vu = 1 — w then vu = w and u, v are units.

(i) we have a | b and b | @ <= Ju, v such that a = bu and b = av then by (i) u and v are units
then a and b are associated.

(#91) Suppose that ¢ = ab since ¢ is weakly irreducible then ¢ | a or ¢ | b, Ju, v such that a = cu or
b = cv then by (¢) u,b are units or v,a are units.

(iv) Let ¢ = ab then ¢ | ab. Since c is prime ¢ | a or ¢ | b then c is weakly irreducible and then
irreducible. OJ

Corollary 3.11 : If a commutative ring R satisfies Z(R) C J(R) then the statements of the
Lemma 3.10 hold.

Proof: Let us first prove that for any commutative ring R, J(R) C 1 — U(R). Let us consider

x € J(R) such that 1 — z is a non-unit, then 35 a maximal ideal such that 1 —z € S. Since J(R)
is the intersection of all maximal ideals, z € S and then 1 = (1 —z) +x € S. This is a
contradiction. By using this result, we have that Z(R) C J(R) C 1 — U(R) and then every
commutative ring such that Z(R) C J(R) is a ing with harmless zero-divisors. [J



Proposition 3.12 : Z/p"Zx] is a ring with harmless zero-divisors.
Proof: Directly from the Proposition 3.7 and Corollary 3.11. O

Definition 3.13 : We say that a commutative ring R satisfies the ascending chain condition for
principal ideals (ACCP) if there is no infinite strictly ascending chain of principal ideals.

Theorem 3.14 : If R is a commutative ring which satisfies ACCP then R is weakly atomic.

Proof: Let us suppose that there exists € R such that r non-zero non-unit that cannot be
expressed as a product of weakly irreducible elements. Then r is not weakly irreducible and Ja, b
such that at least one of them is non-zero non-unit (since 7 is non-zero non unit) with » = ab.
Suppose that a is non-zero non unit, a | r and 7 { a then () G (a). By iteration on (a) we obtain

(¢) (with ¢ non-unit non-zero) such that (r) G (a) & (¢) and so on... We get then an infinite

ascending chain of principal ideals which is a contradiction. [J
Lemma 3.15 : Fvery commutative ring with harmeless zero-divisors satisfying ACCP is atomic.

Proof: By using the Theorem 3.14 we have that every commutative ring with ACCP is weakly
atomic, every non-zero non-unit is a product of weakly irreducible elements. By Lemma 3.9
every such factor is irreducible then we obtain a product of irreducible elements. [

Corollary 3.16 : Z/p"Z[x] is atomic.

In this section, we proved that in commutative rings the concept of harmless zero-divisors
permits to avoid the problems with defining the concepts of irreducibility and primality which
appear as soon as zero-divisors are engaged. Then we establish a relationship between 'weaker’
concepts (weakly irreductible, weakly associative) and ’stronger’ ones, especially for Z/p"Z|x].
Therefore, we will be interested particulary in the non-zerodivisors, then in monic polynomials
and finally in the monic primary polynomials.

4 Uniqueness of some kinds of factorizations over Z/p"Z|x]

4.1 Arbitrary polynomials to non-zerodivisors

Lemma 4.1 : Let f € Z/p"Z[z]. Then the following are equivalent:

(1) f = pu for some u € U(Z/p™Z]x])

(it) f is prime

(#i1) f is irreducible and a zero-divisor

Proof:

(1) = (i1) p is prime in Z/p"Z[x] (since v*(p) = 1), f is asociated to p, then f is prime as well.
(#4) = (4i7) by Lemma 3.9 f is prime then f is irreducible. Moreover the ideal (f) is prime and
by Propositon 3.6 (p) = Nil(Z/p"Z]x]) C (f) then f | p and p and f are associated. Since p is
a zero-divisor, f is a zero-divisor as well.

(i41) = (i) f is a zero-divisor, then (f) C Z(Z/p"Z|x]) = (p), then Ju € Z/p™Z|x] such that

f = pu. Moreover, f is irreducible then u must be a unit. [J

Proposition 4.2 :

(i) Let f € Z/p™Z[zx] a non-zero polynomial,there exists a non-zerodivisor g and 0 < k < n, such
that f = p*g. Furthermore, k is uniquely determined by k = v*(f), and g is unique modulo p"~".
(i1) In every factorisation of f into irreducibles, we have exactly v*(f) factors associated to p.



Proof:

(i) We have by Proposition 3.3 if f is a zero-divisor, k = v*(f) > 0, if not k = v*(f) = 0.
Moreover, 3g € Z/p"Z[x] such that f = p¥g. Uniqueness of g: let us assume that it exists ¢’
which satisfies the same condition, and g # ¢’ we have in Z[z] : f = p*g =p*¢' = p*(g—¢') =0
then by using the properties of the p-adic valuation we have:

v (g —¢)) = v (") +v*(9 — ¢') =k +v*(g — ¢') = n then v*(g — ') = n — k but we have
v*(g — ¢') < min(v*(g),v*(¢')) =0 then n =k and f =0 (in Z/p"Z[z]). Contradiction.

(i) It follows directly from (¢) since we have v*(f) = k and p prime in Z/p"Z[z] then irreducible
in Z/p"Z. O

4.2 Non-zerodivisors to monic polynomials

Proposition 4.3 : Let R be a commutative ring. The units of R[x] are precisely the polynomials
ag+ a1z + ... + apx™ with ag a unit of R and a; nilpotent for all 1 > 0.

Proof: Let us consider f = ag+ a1z + .... + a,x™ and P prime ideal, then its image under
projection to (R/P)[z] is an unit. Since P is prime (R/P) is an integral domain, and
U((R/P)[z]) = U(R/P), therefore ag is not in any P and hence an unit, and for [ > 0, a; is in
every P and therefore nilpotent. Conversely, if f = ag + h with ag an unit of R and all
coeficients of h nilpotent (in the intersection of all prime ideals of R) then h is in every prime
ideal of R[z] and hence f = ag + h is in no prime ideal of R[x] and then an unit of R[z]. O

n

Corollary 4.4 : The units of Z/p™Z|x] are precisely the polynomials f = ag + a1z + ... + apx
such that (in Z/p"Z) ptag and p | a; for all 1 > 0. Then a polynomial in Z[x] is a unit in
Z/p"Z[z] for some n =1 if and only if is a unit in Z/p™Z[x] for all n.

Proof: By Proposition 3.7 and Proposition 4.3. ag is an unit in Z/p"Z[z] then not a
zero-divisor and v*(ag) = 0 and p t ag. For I > 0 @; is nilpotent then v*(a;) > 0 and p | a; O

Theorem 4.5 : If f is a non-zerodivisor, then f is uniquely representable as f = uh with
u € Z/p"Z[z] an unit and h monic with deg(h) = deg(f) where f is the image of f under the
canonical projection I1.

Proof: (Uniqueness only) Suppose that f = uh = vg with u,v € Z/p"Z[z] units and h, g monic.
Then v~luh = g. As h, g are monic, so is v~ !u. Knowing that the only monic unit in Z/p"Z[z]
is 1, we obtain that w =v and g = h. [J

Proposition 4.6 : Let f € Z/p"Z[z], not a zero-divisor. For every factorisation of f f = cy...ck
into irreducibles, there exists uniquely determined monic irreducible dy, ....,dy, € Z/p™Z]x] and
units vy, ..., vx € Z/p"Zx] with ¢; = v;d;.

Proof: Since f is a non-zerodivisor, ¢; is a non-zerodivisor Vi € {1....k}. Then by the Theorem
4.5, we have unique unit and monic polynomial v; and d; such that ¢; = v;d;, then
f=crock =vidy..opdy = (v1...0).dy...dg ( with v1...0; a unit) O

Remark 4.7 : By the Theorem 4.5 and Corollary 4.4 we conclude that (u,h) is uniquely
determined by h = d;....d, and u = c1....ck.

Every non-zero divisor has then only finetely many factorisations into irreducibles (up to
associates).

4.3 Monic polynomials to primary monic polynomials

Definition 4.8 : Let R be a commutative ring, and I an ideal of R. We define the radical of I,
the ideal such that an element z is in the racidal if some power of x is in I. We denote it by
Rac(I)



Definiton 4.9 : Let I be a proper ideal of Z/p"Z[x], I is said to be primary if whenever xy € T
then z € I or for some a natural number ¢ > 0 y* € I.

Definition 4.10 : We call a non-zerodivisor of Z/p"Z[z]| primary if its image under projection
to Z/pZ]x] is associated to a power of an irreducible polynomial.

Proposition 4.11: An ideal of Z/p"Z[z] that does not consist only of zero-divisors is primary if
and only if its radical is a mazximal ideal.

Proof: = Let us take I a primary ideal of Z/p™Z[x]. Let us consider f; fo € Rac(I) then 3t € N
such that (fifo)! = fifs € I since I is primary ff € I or fi¥ € I then f; € Rac(I) or

f2 € Rac(I) then Rac(I) is prime.

< Let us consider an ideal I such that Rac(I) is maximal. We have I C Rac(I), since Rac(I) is
maximal, Rac(I) prime then I is prime (in particular primary) and (p) = Z(Z/p"Z[z]) € I, then
I is primary and does not consist only of zero-divisors. [J

Lemma 4.12 : Let f € Z/p"Z[z], not a zero-divisor. Then (f) is a primary ideal of Z/p"Z|x] if
and only if the image of f under the canonical projection 11 is associated to a power of an
irreducible polynomial in Z/pZ]x).

Proof: In the PID Z/pZ|x], the non-trivial primary ideals are precisely the principal ideals
generated by powers of irreducible elements. We note that the projection IT induces a bijection
between primary ideals of Z/pZ|x] and primary ideals of Z/p™Z[z] containing (p), then if the
image f of f under II is associated to a power of an irreducible polynomial in Z/pZ[x], the image
f belongs to a primary ideal I, then (f) is also primary and then (f) which contains (p) is
primary in Z/p"Z[x]. Conversely, we know by Proposition 4.11 that the radical of (f) is
maximal (in particular prime), by using the fact that every prime ideal of Z/p"Z[x] contains (p).
We have (p) C Rac((f)) hence Rac((f)) = Rac((f) + (p)). But (f) + (p) = I (TI{(f)))
therefore, for a non-zerodivisor f, (f) is primary if and only if Rac(f) is maximal which is
equivalent to (f) + (p) being primary which is equivalent to II(f) being a primary element of
Z/pZ|x]. O

Theorem 4.13 : (Hensel’s Lemma) Every monic f € Z/p™Z[x] is a product of primary
polynomials. Furthermore, the monic primary factors of a monic polynomial in Z/p"Z[x] are
uniquely determined.

Theorem 4.14 : Let f € Z/p™Z|x] monic, then there exist monic polynomials

1y ey fr € Z/p"Z[x] such that f = fi....f, and the residue class of f; in Z/pZx] is a power of a
monic irreducible polynomial g; € Z/pZ[x] with g;....g, distinct. The polynomials

fifr € Z/p"Z]x] are primary and uniquely determined (up to ordering).

(Proof omitted)

5 Non-unique factorization over Z/p"Z|x]

Proposition 5.1 : Every non-zero polynomial f € Z/p™Z|x] is representable as :

f=p"ufi...f

with 0 < k < n, u a unit of Z/p"Zlx], r > 0, and f1, ..., fr € Z/p"Z[x] monic polynomials such
that the residue class of f; in Z/pZx] is a power of a monic irreducible polynomial g; € Z/pZ|x]
and g1, ..., gr are distinct. Moreover, k € N is unique, u is unique modulo p"~*Z/p"Z[x] and
also f; are unique (up to ordering) modulo p"~*Z/p"7|x].

Proof: Follows directly from: 4.2, 4.6, 4.14. [J
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Theorem 5.2 : Let M’ be the submonoid of M consisting of all monic polynomials of Z/p"Z[x]
and U its group of units. Then:

M=~U@M
Furthermore: M’ ~ Zf My where f ranges through all monic irreducible polynomials of Z/pZ[z].

Proof: Follows directly from previous statements of uniqueness of factorization into unit and
monic primary polynomials. [

Corollary 5.3 : The elasticity of M’ is infinite and ®5(M’) = co. Therefore the elasticity of M
is infinite as well.

Proof: We proved in the Theorem 2.7 that the elasticity of each M is infinite, then M’ as an
infinite direct sum of monoids My has an infinite elasticity and satisfies ®5(M’) = co. Moreover
M is full elastic also. O

6 Algorithm on sage and some examples

6.1 The algorithm

We aim at computing the factorizations of a monic polynomial P in Z/p"Z[X].

As we expect, the inputs should be the polynomial P, a prime p and a positive integer n. The
algorithm starts by computing the factorization of P modulo p, which is unique since Z/pZ[x] is
a UFD.

Then we need to define a function (called " factor") to compute the factorizations of upper
degrees. The algortihm proceeds as follows:

After computing the factorization of P into irreducible factors in the field Z/pZ|x], we use the
function factor(.,.) n-1 consecutive times.

This function gets a list and returns an other list. The function considers each element of the
input list (namely a factorization), builds m = deg(P) variables (called tg,t1...,tm—1 € Z/pZ)
and constructs a list L with all the coefficients a; > 0 of each factor of the considered
factorization (except for the higher degree). For instance, if we work on factorizations in Z/p"Z
with 0 < 7 < n, we change all the coefficients a; of L into a; + t; * p” and reconstruct the factors
with these new coefficients, according to the corresponding degrees. Then we expand the
product of the new factors, we subtract P and get a polynomial function [ of which each
coeflicient is divisible by p”. This constitute a system of modular equations that we solve by
using ” solve — mod”.

We can divide [ by p", then each of its coefficients has to equal 0 modulo p, this allows easier
calculations.

Afterwards we reconstruct all the new factorizations by replacing all the ¢; by their
corresponding solution given by solve — mod, and get the factorizations of P in Z/p"+t1Z.

11



The algorithm is this:

R.ax==ZT[x]; #lnputs
p=2

n=16

FPay G200 ]

Pox™3e T4 n 2ex

#F=x"2

if P.is_irreducible()==true: #dork on reducible polynomials
print P, 'is Lrreducible’

al5a:
print 'P =',P
E=P.factor_nod{p) #Factorization mod p
print 'Factorization of P mod',p,':", K;
0=} #List which will contain all the factorizations of P for a certaln pz
0. append (K}
daf factor(0,z): #Daf & function that compute the factorizations mod p™(2+1), from the previous ones in 0
N=[]
for ¥ in range{len{0)}:
F=ZZ[x]{0ly].expandl})
Vect=[var{'ths' % i} for i in range(F.dearee())l #List of dealP) wariables ti (all factors are monic)
r=a
g=1
for 1 in range(len{0ly])): #Consider esch facotization
k=O[yi[i1[E]
L=[8. .k.degres{}-1] #List which will contain all new coeffs
for v in range{Olyl[L001)): #Consider each factor
S=8
H=Wect[r:r+len{L]}]
far § in range{len(L}):
LIJI=ZZ(k[]]}+H[]]*p"Z
S=Sel[§]1*x"]
rerslen{l)
fim)=Sex™(k.degrea()} #each coeff al becomes: al+ti*p*z
g=g* f #re-construction of each facorization
L={g.expand(}.collect (=) -P(x}) . .expand(}.collect(x);
1=l/p 2 21t allows 1o Solve mod p instead of mod p{2+1)
L=[1(@)==8] #List conmtadining all the now coeffs
for L in rangell,F.degree()): #to get the coeffs from a polynomisl function (mot recognized as polynomial)
Lix)=1{x}-1{8)
Lx)=l{x}.factor()
while L{@)==8:
ix)=(l{x)/x) .collect (=)
L.append(1(8)==8)
b=solve_mod(L,p)#Resolution
far s in range(len(b)): #construction of the factorizatlons with the new coeffs from the resolution
Gix)=1
u=0@
for 1 in range(len{0{y]}):
k=O[y][1][8];
L=[@. .k.degrea(}-1]
for v in range(Olyl[L1[1]):
5=0
H=b[s] [u:uslen(l) ]
for j inr en{L)):
LIjI=ZZ{k[]])+Z2Z(H[] ]} *p 2
S=BaL[]]*x"]
flx)=B+n™(k degrae())
u=u+len(l)
Ga{G*f)
N.append(G(x})
0=
0=0+Set (N) . 1ist() #10 make sure that each factorization occurs only once

for L in range{len(0]):
Q[4)=ZZ[*](0[1] . expand(]) . Tactor()
return 0

E=factor(0,1)
print ‘There are’, len(E}, 'factorization of P mod®, p~2
print E

for 1 in range{2,n): #To repeat the process for each power of p until p®n
E=factor(E,1)
print ‘There are’, len(E), ‘factorizations of P mod', p*(i+1)
print E #0utput
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6.2 Some examples

Some examples will here illustrate the previous reasoning. Remark that the algorithm returns
only the new factorizations, in moving from Z/p"Z to Z/p" 1 Z.

e P=x34+2224+2,p=2,n=10
P=x"3+ 2%x"2 + Xx
Factorization of P mod 2 : x * (x + 1)°2
There are 2 factorization of P mod 4
[x * {x + 1)°2, x* (X + 3])°2]
There are 2 factorizations of P mod 8
[x * {x + 1)72, x * {x + 5)°2]
There are 3 factorizations of P mod 16
[x* {x+ 1372, ™ -+ 5] ® (x4 13), x-*Ax + 9)72]
There are 3 factorizations of P mod 32
[x * (% + 1)72, x* (X +9) * (% + 25), x * ({x + 17)72]
There are 5 factorizations of P mod 64
[x* (% + 33)"2, x* (X + 1)°2, x* {x+9) * (x+57), x* {x+ 25) %
(x + 41), x * (x +« 17) * (x + 49)]
There are 5 factorizations of P mod 128
[ * (x + 1072, x % (X + 6512, ¥ * {x+ 17) * (% + 113}, x * (x + 49) *
(x + B1), x * (x + 33) * (x + 97)]
There are 9 factorizations of P mod 256
[x * (x +« 1)72, x % {x + 120)°2, x * [x + Bl) * {x + 177), x * (x + 113)
* (x + 145), % * (x + 65) * (% + 193), x * (x + 97) * (x + 161), x * (x
+ 33) * (x + 225), x * (%X + 49) * (x + 209), x * (%X + 17) * (x + 241)]
There are 9 factorizations of P mod 512
[ ® (2 4+ 1372, x™ (X + 2570372, X % (x + 65) * (x + 443} x ¥ (¥ + 129)
* (x + 385), x ¥ (x+ 33) ¥ (x + 4B1), x * (x + 193) * (x + 321), x * (x
+ 161) * (x + 353), x * (x + 225) * (x + 289), x * {x + 97) * (x + 417)]
There are 17 factorizations of P mod 1024
[x * (x + 513)7°2, x ¥ (x + 449) * (x + 577}, x * (x + 4B1) * (x + 545),
X ¥ [x+97) % (x + 929), x* (x + 161) * (x + B65), x * (x + 385) * (x
+ B41), x * (x + 129) * {x + B97), x * (x + 193) * {x + 833), x * (x +
225) ¥ (x + BO1), x *¥ [x + 65) * [x + 961y, x ¥ [(x + 1)°2, x * (x + 33)
* (x +993), x* (X + 321) * (x + 705), x * {x + 353) * {x + 673), X *
(x + 289) ® {x « J37), x * (x + 257) % (x + 769), x * [x + 417) * (% +
60911
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e P=g34+222 4+, p=7,n=5
P=x"3 + 2%x"2 + X
Factorization of Pmod 7 : x * (x + 1)"2
There are 4 factorization of P mod 49
[x * (x + 22) * (x + 29), X ¥ (x + 15) * (x + 36), x * (x + B) * (x +
43), % * (x + 1)72]
There are 4 factorizations of P mod 343
[x * (x + 148) * (x + 197), x * (x + 50) * (x + 295), x * (x + 99) * (x
+ 246), x * (x + 1)°2)
There are 25 factorizations of P mod 2481
[x * [x + 50) * (x + 2353), x * (x + 834) * (x + 1569), x * (x + 197) *
(x + 2206), x * (x + 687) * (x + 1716), x * (x + 785) * (x + 1618), x *
(x + 89) * (x + 2304), x * (x + 589) * (x + 1B14), x * (x + 736) * (x +
1667), x * (x + 1372, x * (x + 883) * (x + 1520), x * (x + 3d44) * (x +
2059), x * (x + 295) * (x + 2108), x ¥ (x + 442) * (x + 1961), x * (x +
393) * (x + 2010), x * (x + 1128) * (x + 1275), % * (x + 638) * (x +
1765), x * (x + 1030) * (x + 1373), x * (x + 1079) * (x + 1324}, x * (x
+ 246) * (x + 2157), x * (x + 981) * (x + 1422), x * (x + D4Q) * (x +
1863), x * (x + 1177) * (x + 1226}, x * (x + 491) * (x + 1912), x * (x +
148) * (x + 2255), x * (x + 932) * (x + 1471)]
There are 25 factorizations of P mod 16807
[x * (x « BB61) * (x + 9948), x * (x + 1)72, x * (x + 5146) * (x +
11663), x * (x + 2059) * (x + 14750}, x * (x + 1373) * (x + 15436), x *
(x + 4460) * (x + 12349), x * (x + 5489) * (x + 11320}, x * (x + 7204) *
(x + 9605), x * [(x + 651B) * (x +« 10291), x * (x + 3431) * (x + 13378),
X ¥ (x + B175) * (x + 10634), x * (x + 3088) * (x + 13721), x * (x +
4117) * (x + 12692), x * (x + 2402) * (x + 14407), x * (x + 7800) * (x +
8919), x * (x + 1030) * (x + 15779), x * (x + 4803) * (x + 12006), x *
(x + B233) * (x + B576), x * (x +« 1716) * (x + 15093}, x * (x + 2745) *
(x + 14064), x * (x + 5832) * (x + 10977), x * (x + 3774) * (x + 13035),
X ® (% +687) * (% + 16122), x * (% + 7547) * (x + 9262), x * [(x + 344)
* (% + 16465)]

o P=2g" —150* +22% — 822 — 162, p =2, n =4
P = x°7 - 15%x™4 + 2*x"3 - B%x"2 - 16%x
Factorization of Pmod 2 : (x + 1) * x™4 * (x"2 + x + 1)
There are 2 factorization of P mod 4
[(x + 2) * (3 &+ 3) *# x*F * (X2 + FFx + ), x * [x + 3) *# [x + 2)°3 *
(x"2 + 3*x + 3]]
There are 4 factorizations of P mod B
[{x + 2) * [x + 3) * x"3* [(X"2 + 3*x + 3), (x+3) ¥ (x+4) * (x + 6)
¥ x"2 % ("2 + 3+ 3), X ¥ (x+ 2) % (x+ 3) % (x+ 4)°2% (x°2 + F¥x
+ 3), (x+3) * (x+6) * (x+4)°3* (x°2+ I*x + 3)]
There are 10 factorizations of P mod 16
[€x + 6Y * [+ 11) * fx + 12 + {x 4+ BY"2 % (g2 + I + 11), (x + B) *
(x + 11) * (x + 4)"3 * (x™2 + 3*x + 11}, (x + 11) * (x + 14) * (x +
12)73 * (x"2 + 3*x + 11}, (x + 4) * (x + 11) * (x + 14) * (x + §8)"2 *
(x72 + F*¥x + 11}, (@ + 4) * (x + 11) * (x + 14) * x™2 ¥ (x"2 + 3I*x +
11), (x + 4) * (%X + 6) * (x + 11) * (x + 12)7°2 * (X2 + 3*x + 11), (x +
11) * (x + 12) * (x + 14) * (x + 4)"2 * (x"2 + 3*x + 11), (x + €) * (x +
11) * (x + 12) * x®2 % (x™2 + 3*x + 11}, % * (x + 4) * {x + 6) * {x + 8)
* fx + 11) * (%72 + T + 11), x * (x + B) * (x + 11) * ({x + 12) * (x +
14) * (%72 + 3*x + 11)])
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e P=2?4+22x+1,p=5n=4
Pm x*2 + 2%x 4+ 1
Factorization of P mod 5 : (x + 1)°2
There are 3 factorization of P mod 25
[(x+6) * (x+ 21), (x+ 11) * {x + 16), (x + 1)72)
There are 3 factorizations of P mod 125
[(x + 26) * (x + 101), (x + 51) * (x + 76), (x + 1)72])
There are 13 factorizations of P mod 625
[(x +« 301) * (x + 326), (x + 101) * (x + 526), (x + 26) * (x + 601), (x
+ 1581) * (x + 478), (x + 76) * (x + 551), (x + 1)72, (% + 201) * (X +
426), (x + 251) * {x +« 376), (x + 128) * (x + 501), (x + 51) * (x +
576), (% + 276) * (x + 351), (x + 226) * (x + 401), (x + 176) * (x +
451) ]
There are 13 factorizations of P mod 3125
[(x + 1001) * {(x + 2126), (x + 1126) * (x + 2001), (x + 376) * (x +
2751), (x + 1)72, (x + 501) * (x + 2626), (x + 251) * (x + 2876), (x +
126) * (x + 3001), (x + 751) * (x + 2376), (x + 1376) * (x + 1751), (x +
1581) * {x + 1626}, (x + 626) * (x + 2501), (x + 1251) * (x + 1876), (x
+ B76) * (x + 2251)]
There are 63 factorizations of P mod 15625
[(x « 7126) * (x + 8501), (x + 7001) * (x + 8626), (x + 4376) * (x +
11251), (x + 1751) * (x + 13876), (x + 1626) * (x + 14001), (x + 4501) *
(x + 11126), (x + 1876) * (x + 13751), (x + 4251) * (x + 11376), (x +
2126) * (x + 13501), (x + 4601) * (x + 11626), (x + 1376) * (x + 14251),
(x + 4751) * (x + 10876), (x + 6626) * (x + 9001), (x + 4876) * (x +
10751), (x + 1251) #* (x + 14376}, (x + 1126) * (x + 14501), (x +« 126) *
(x + 15501), (x + 1001) * (x + 14626), (x + 6376) * (x + 9251), (x +
3751) * (x + 11876), (x + 1)72, (x + 3626) * (x + 12001), (x + 65@1) *
(x + 9126), (x + 3B76) * (x + 11751), (x + 6251) * (x + 9376), (x +
7501) * (x +« 8126), (x + 2001) * (x + 13626), (x + 7376) * (x + B251),
(x + 2751) * (x + 12876), (x + 4626) * (x + 11001), (x + 5501) * (x +
10126), (x + 2876) * (x + 12751), (x + 7251) * (x + B8376), (x + 3126} *
(x + 12501), (x + 3001) * (x + 12626), (x + 376) * (x + 15251), (x +
5751) * (x + 9876), (x + 5626) ™ (x + 108@1), (% + 501) * (x + 15126),
(x + 5876) * (x + 9751), (x + 251) * (x + 15376), (x + 6126) * (x +
95011, (x + 7626) * (x + BOO1Y. (x + 5376} * (x + 102511, (x + 7%1) * (x

(We cannot display the whole output)
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e P=2x?4+22+1,p=13,n=4

P=x*24+ 2%x + 1

Factorization of P mod 13 :

There are 7 factorization
[(x + 53) * (x + 118), (x

(x + 1)2
of P mod 169
+ 27) % (x + 144), (x + 1)72, (x + 66) * (x +

185), (x + 14) * (x + 157), (x + 79) * (x + 92), (x + 40) * (x + 131)]
There are 7 factorizations of P mod 2197

[(x + B46) * (x + 1353),

(x + 1015) * (x + 1184), (x + 1)72, (x + 178) *

(x + 2029), (x + 677) * (x + 1522), (x + 308) * (x + 1691), (x +« 339) *

(x + 1860)]

There are B5 factorizations of P mod 28561

[(x + 4902) * (x + 23661),

(x + 9127) * (x + 19436), (x + 170) * (x +

28393), (x + 677) * (x + 27886), (x + 4385) * (x + 24168), (x + 14197) *

(x + 14366), (x + 8113) *

(x + 20450}, (x + 3B8B) * (x + 24675), (x +

10141) * (x + 18422), (x + 3916) * (x + 22647), (x + 2198) * (x +
26365), (x + 13690) * (x + 14873), (x + 10648) * (x + 17915), (x + 6423}

* (x + 22140), (x + 1)72,

{x + 13183} * (x + 153688}, (x + 1691) * (x +

26872), (x + 10817) * (x + 17746), (x + 6€6592) * (x + 21971}, (x + 13521)

¥ (x + 15042), (x + BB520)
1353) * (x + 27210), (x +
22985), (x + 6085) * (x +
(x + 187608), (x + B958) *
4733) * (x + 23830), (x +
(x + 9465) * (x + 19098),
27548), (x + 9972) * (x +
(x + 23154}, (x + 1184) *
9634) * (x + 18929), (x +
21802), (x + 2536) * (x +
¥ (x + 17070), (x + 7268)
355@) * (= + 25013), (x +
20788), (x + 1522) * (x +
(x + 24506), (x + 8282) *
4564) * (x + 23999), (x +
18084), (x + 4226) * (x +

* (x + 19943), (x + 10310) * (x + 18253), (x +
14028) * (x + 14535), (x + 5578) * (x +
22478), (x + 1860) * (x + 26703), (x + 9803) *
(x + 19605}, (x + 9296) * (x + 19267), (x +
508) * (x + 28055), (x + 339) * (x + 28224),
(x + 5240} * (x + 23323), (x + 1015) * (x +
18591), (x + B4B6) * (x + 27717), (x + 5409) *
(x + 27379}, (x + 5071) * (x + 23492), (x +
12845) * (x + 15718), (x + B6761) * (x +
26027), (x + 18986) * (x + 17577), (x + 11493)
* (x + 21295), (x + 13352) * (x + 15211), (x +
13859) * (x + 14704), (x + 7775) * (x +
27041), (x + 5747) * (x + 22816), (x + 4057) *
(x + 20281), (x +« 8789) * (x + 19774), (x +
6254) * (x + 22309), (x + 18479) * (x +
24337), (x + 2029) * (x + 26534), (x + B451) *

(x + 20112), (x + 12169) * (x + 16394), (x + 7944) * (x + 20619), (x +
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o P=gb 425 —2* 4+ 22 +112%2 - 122, p=3,n =38
P=x" + x5 - x™4 ¢+ 2%x73 & 11*¥x72 - 12%x
Factorization of Pmod 3 : x™2 * (x™4 + %73 + 2¥x"2 + 2¥x + 2)
There are 2 factorization of P mod 9
[(x + 6)"2 * [(x™4 + 7*¥x"3 + 5¥x"2 + 5%¥x + B), x * (% + 3) * (x™4d + T¥x"3
+ 5¥x™2 + 5*%x + 5)]
There are 3 factorizations of P mod 27
[(x + 12) * (x + 1B) * (x™4 + 25¥x"3 + 5%#x"2 + 14*x + 23), (x + 9) * (x
+ 21) ¥ (x™4 + 2543 + 5%x72 + 14%% + 23), x * (x + 3) * (x"4 + 25¥x73
+ 5¥x72 + 14%x + 23)])
There are 3 factorizations of P mod 81
[(x + 30) * (x + 54) * (x™4 + 7OFx™3 + 5¥x"2 + 6B%x + 50), x * (x + 3) *
(x™4 + 79*x"3 + 5*x"2 + 68B*x + 50), (x + 27) * (x + 57) * (x™4 + 79%x"3
+ 5¥x72 + 6B%*x + 50)1]
There are 3 factorizations of P mod 243
[x * (x + 165) * (x4 + 79%x"3 + B6*x"2 + 149%x + 212), (x + 3) * (x +
162) * (x™4 + TOFx™3 + BO*X"2 + 149%x + 212), (x + El) * (x + B4) * (x™4
+ 79¥x73 + BE*x"2 + 149%x + 212)]
There are 3 factorizations of P mod 729
[(x + 408) * (x + 486} * (x"4 + 565%x"3 + B6*x"2 + 392%x + 212), x * (x
+ 165) * (x™4 + 565%x"3 + BO*x"2 + 392%x + 212), (x + 243) * (x + 651) *
(x™4 + BAS*x™3 + BBE*x™2 + 392%x + 212)]
There are 3 factorizations of P mod 2187
[(x + 894) * (x + 145B8) * (x™4 + 2023*x"3 + 815+¥x~2 + 1121*x + 941), (x
+ 729) * (x + 1623) * (x4 + 2023*x"3 + B15*x"2 + 1121%*x + 941), x * (x
+ 165) * (x™4 + 2023%x"3 + 815%#x"2 + 1121%x + 941)]
There are 3 factorizations of P mod 6561
[(x + 2187) * (x + 2352) * (x4 + 2023%¥x"3 + 3002%¥x"2 + 1121*x + 3128),
X ¥ [(x + 4539) * (x™4 + 2023*x"3 + 3002*¥x"2 + 1121*x + 3128), (x + 165)
¥ (% + 4374) * (x™4 + 2023*%x"3 + 3002%x72 + 1121*x + 3128)]

o P=ub 2% — ot 4+ 223 + 1122 — 122, p=2,n =38

P=x"+ %75 - 2™ + 2¥x"3 + 11*%¥x"2 - 12*%x

Factorization of P mod 2 : (x + 1) * x™2 * (x™3 + x + 1)

There are 2 factorization of P mod 4

[x + 1) * (% + 2)72 % (x"3 + 3*¥% + 3), (%X + 1) * %72 * (X3 + 3*X + 3)]
There are 1 factorizations of P mod B

[x * (x + 4) * (x +« 5) * (x"3 + 3*x + 7))

There are 2 factorizations of P mod 16

[ * (X + 12) * (x + 13) * (x™3 + 8¥x"2 + 11*x + 15), (x + 4) * (x + B)
* (% + 13) * (x"3 + 8%x"2 + 11*x + 15)]

There are 4 factorizations of P mod 32

[ * (x + 13) * (x + 28) * (x"3 + 24%x™2 + 27%x + 15), (x + 12) * (x +
13) * (x + 16) * (xX™3 + 24*x"2 + 27%x + 15}, (x + B) * (x + 13) * (x +
20) * (x™3 + 24%¥x"2 + 27%x + 158), (x + 4) * (x + 13) * (x + 24) * (x"3 +
24*x"2 + 27*%x + 15)]

There are 4 factorizations of P mod B4

[(x + 13) * (x + 28) * (x + 32) * (x™3 + 56+x™2 + 59%x + 15), » * (x +
13) * (% + 60) * (X™3 + 56*x"2 + 59%x + 15), (x + 12) * (x + 13) * (x +
48) * (x"3 + S56*x"2 + 59%x + 15), (x + 13) * (x + 16) * (x + 44) * (x"3
+ 56%x"2 + 59+x + 15)]

There are 4 factorizations of P mod 128

[{x + 13) * {x + 28) * (x + 96) * (x"3 + 120%x"2 + 123*x + 15), (x + 13)
* (x + 60) * (x + 64) * (X3 + 120*x72 + 123*x + 15), (x + 13) * (x +
32) ¥ (x + 92) * [x™3 + 120%x"2 + 123%x + 15), x * (x + 13) * (x + 124)
¥ (x"3 + 120%x72 + 123*x + 15)]

There are 4 factorizations of P mod 256

[(x + 60) * (x + 141) * (x + 192) * (x"3 + 120*x™2 + 251*x + 15), (x +
64) * (x + 141) * (x + 188) * (x™3 + 120*x"2 + 251*xX + 15), (x + 124) *
(x + 128) * (x + 141) * (x™3 + 120%x"2 + 251%x + 15), x * (x + 141) * (x
+ 252) * (%73 + 120%x"2 + 251*x + 15} ]
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