
Elliptic curve cryptography and
the Weil pairing

Dias da Cruz Steve

A thesis presented for the degree of

Bachelor in Mathematics

Faculty of Sciences, Technology and Communication

University of Luxembourg

May 18, 2015

Abstract

In this short thesis, which is a part of my Bachelor degree in Math-
ematics at the university of Luxembourg, I will shortly describe some
basic ideas about elliptic curves and their properties. Essentially, I will
be interested in the group law and the computation of the addition
inside an elliptic curve, which will later be used in different ways.

After that follows the definition of torsion points and divisors,
which will be necessary for the most important part of this thesis: the
Weil pairing and its application in cryptography. I am going to present
two different possible definitions of the Weil pairing. The first one is
easier to proof, but slower to compute when trying to implement. The
second one is much faster for computations, but needs a little bit more
work to be proven, which is why I simply show that both Weil Pairing
definitions are equivalent. Afterwards, I present the Miller algorithm,
which will be necessary for the implementation and calculation of the
Weil Pairing.

In the last section, I am going to present some applications of
the Weil Pairing and elliptic curves. There are some possible attack
methods to break cryptographic applications, which are using elliptic
curves, but on the other side, one can guarantee a high security level
by applying the right methods and pairings to a system. There are a
lot of possibilities and schemes, I chose to present two of them.

Last but not least, there will be a python implementation of el-
liptic curves, finite prime fields, the Weil pairing and a cryptographic
scheme. Of course, there are still possible improvements to be done,
why I invite the reader to analyze my implementations before using
them for some real life applications.

I want to thank Professor Gabor Wiese for his help, confidence
and for giving me the possibility to prepare a thesis about a vested
interest.

1

Contents

1 Elliptic Curves 3
1.1 General definitions and properties 3
1.2 The group law . 3

2 Weil Pairing 6
2.1 Torsion Points . 6
2.2 Divisors . 8
2.3 Weil Pairing definition . 10
2.4 Faster Weil Pairing computation 13
2.5 Equivalence of the two Weil Pairing computations 16

3 Elliptic curve cryptography 21
3.1 Discrete logarithm problem 21
3.2 Attack using the Weil Pairing 22
3.3 A cryptosystem based on the Weil Pairing 24
3.4 Security of the scheme . 27
3.5 How to use the Boneh-Franklin python implementation 28

A Python implementations 32
A.1 Modular arithmetic - modular.py 32
A.2 Polynomials - polynomial.py 35
A.3 Finite fields - finiteField.py . 41
A.4 Elliptic curves over prime fields - ellipticCurveMod.py 44
A.5 Elliptic curves over all finite fields - ellipticCurve.py 51
A.6 Boneh-Franklin Scheme initialization and encryption - boneh-

chiff.py . 58
A.7 Boneh-Franklin Scheme decryption - boneh-dechiff.py 66

2

1 Elliptic Curves

1.1 General definitions and properties

The general form of an elliptic curve is called the generalized Weierstrass
equation and is given by the following equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

where a1, . . . , a6 are constants.

However, in this thesis, I will constantly work with the reduced form of
an elliptic curve, which will be denoted by E and which is the graph of an
equation of the form:

y2 = x3 + Ax+B, (2)

where A and B are constants. This simplified form is called the Weierstrass
equation for an elliptic curve. The unknowns x and y, as well as the con-
stants A and B are usually elements of the fields Q, R and C or of the finite
fields of the form Fp and Fq, where p is a prime number and q = pk, where
k ≥ 1.

The set of all point of an elliptic curve defined over a field L ⊇ K, is
denoted by E(L). By definition, this set always includes the point at infinity
represented by ∞ and of coordinates (∞,∞). We say, that a line is passing
through the point∞ if the line is vertical. Two vertical lines always intersect
at the point ∞. Thus, the set of all points of an elliptic curve is given by

E(L) = {∞} ∪ {(x, y) ∈ L× L | y2 = x3 + Ax+B}. (3)

In general, there is another condition, which has to be fulfilled. For elliptic
curves, we do not allow singular points, i.e. multiple roots. The easiest way
to verify if a given curve is an elliptic curve, is to check whether the following
conditions is fulfilled or not:

∆ = 4A3 + 27B2 6= 0. (4)

In the following of this thesis, I will neglect the discussions of the cases of
fields of characteristic 2 or 3, because they will not be important for later
cryptographic applications.

1.2 The group law

Let’s suppose that we have two points

P1 = (x1, y1), P2 = (x2, y2), (5)

3

of an elliptic curve E. We want to be able to produce a new, third point
P3 of the elliptic curve by using the points P1 and P2.

Figure 1: Adding two points on an elliptic curve of the form y2 = x2−3x+3

The construction of the third point P3 is given by the following steps:

1. Draw the line L passing through P1 and P2;

2. L intersects E at a third point P
′
3 (this is always possible);

3. Reflect P
′
3 across the x-axis to obtain P3.

This construction will be denoted as the addition of two points of the
elliptic curve and be represented by

P1 + P2 = P3. (6)

As the addition of two points is not given by the simple addition of the
coordinates, we will need a formula to simply the computation. We need to
distinguish between five different cases to get the coordinates of P3 = (x3, y3):

Theorem 1.1
Let E be an elliptic curve defined by y2 = x3 +Ax+B. Let P1 = (x1, y1) and
P2 = (x2, y2) be points of E. Then P3 = P1 +P2 is described by the following
cases:

Case 1: P1 6= P2 and x1 6= x2

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, where m = y2−y1
x2−x1

4

Case 2: P1 6= P2 and x1 = x2

P1 + P2 =∞

Case 3: P1 = P2 and y1 6= 0

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, where m =
3x21+A

2y1

Case 4: P1 = P2 and y1 = 0

P1 + P2 =∞

Case 5: P2 =∞

P1 +∞ = P1

By the above construction, P1 + P2 will have coordinates in L. The
addition in E(L) is closed.

Theorem 1.2
The addition of points on an elliptic curve E, which was described in the
previous theorem, satisfies the following properties:

1. (commutativity) P1 + P2 = P2 + P1, ∀ P1,P2 on E.

2. (existence of identity) P +∞ = P , ∀ P on E.

3. (existence of inverse) ∀P ∈ E ∃P ′ ∈ E | P + P ′ =∞
P ′ will be denoted as −P .

4. (associativity) (P1 + P2) + P3 = P1 + (P2 + P3), ∀P1, P2, P3 ∈ E.

The points on the elliptic curve E form an additive abelian group, where
∞ is the identity element.

Proof.

1. The line passing through P1 and P2 is the same as the line passing
through P2 and P1.

2. Holds by definition.

5

3. Let P ′ be the reflection of P across the x-axis. Then P ′ + P =∞

4. Associativity can easily be checked by computing the different possible
cases using the different formulas.

At this point, I want to point out that the coordinates of −P , where
P = (x, y), are −P = (x,−y). This is only true for the Weierstrass equation
and not for the generalized Weierstrass equation.

Theorem 1.3
The double-and-add algorithm is essentially to compute in a fast way a
multiple of a point. Let k be a positive integer and let P be a point on an
elliptic curve. The following algorithm computes kP in a faster way:

1. Start with a = k, B =∞, C = P

2. If a is even, let a = a
2

and let B = B, C = 2C.

3. If a is odd, let a = a− 1 and let B = B + C, C = C

4. If a 6= 0, go to step 2.

5. Output B

The output B is kP .

2 Weil Pairing

2.1 Torsion Points

Let E be an elliptic curve defined over a field K. Let K be the algebraic
closure of K and let n be a positive integer. The n-torsion points are the
points fulfilling the following condition:

E[n] = {P ∈ E(K) | nP =∞} (7)

Example 2.1
If the characteristic of K is not 2, then a point P satisfies the condition
2P = ∞ iff the tangent line at P is vertical. This means that y = 0 and we
get the following solution:

E[2] = {∞, (e1, 0), (e2, 0), (e3, 0)}, (8)

where e1, e2, e3 satisfy the representation of E under the form

y2 = (x− e1)(x− e2)(x− e3). (9)

6

Example 2.2
If we want to determine E[3] for a field K of characteristic not 2 and not 3,
then a point P satisfies the condition 3P =∞ iff 2P = −P . This means that
the x-coordinate of 2P equals the x-coordinate of P. This leads to 9 possible
points.

Theorem 2.1
Let E be an elliptic curve defined over a field K and let n be a positive integer.
If the characteristic of K does not divide n, or is 0, then

E[n] ' Z/nZ⊕ Z/nZ.

If the characteristic of K is p > 0 and p | n , write n = prn′ with p - n′.
Then

E[n] ' Z/n′Z⊕ Z/n′Z or Z/nZ⊕ Z/n′Z.

An elliptic curve E in characteristic p is called ordinary if E[p] ' Z/pZ.
It is called supersingular if E[p] ' 0.

Lemma 2.1
Let q be odd and q ≡ 2 (mod 3). Let B ∈ F×q . Then the elliptic curve given
by y2 = x3 +B is supersingular.

Proof.
Let Φ : F×q → F×q be the homomorphism defined by Φ(x) = x3. Since

q ≡ 2 (mod 3), this implies that 3 does not divide q − 1. Thus, there are no
elements of order 3 in F×q . Thus, ker(Φ) = 1 + (q), thus trivial. Since the
cardinality of the source is the same as the cardinality of the target set, the
homomorphism has to be surjective, thus an isomorphism. Consequently, for
each y, there is exactly one x, such that the point P = (x, y) ∈ E. This
is equivalent to saying, that y2 − B is the unique cube root of x, which is
precisely what the isomorphism implies. There are q possible values for y,
thus we obtain q points. Including the point ∞, we finally get that

|E(Fq)| = q + 1.

Therefore, E is supersingular.

Let n be a positive integer not divisible by the characteristic of K. We
can then choose a basis {β1, β2} for E[n] ' Z/nZ ⊕ Z/nZ. This means,
that for every element P ∈ E[n] there are integers m1 and m2 such that
P = m1β1 +m2β2.

7

2.2 Divisors

Let E be an elliptic curve defined over a field K. We define [P] to be the
symbol to represent a point P ∈ E(K). A divisor D on E is a finite linear
combination of such points of E with integer coefficients defined the following
way:

D =
∑
j

aj[Pj], aj ∈ Z. (10)

The group of divisors of E is denoted as Div(E). The sum and the degree
of a divisor is defined by:

deg(
∑
j

aj[Pj]) =
∑
j

aj ∈ Z (11)

sum(
∑
j

aj[Pj]) =
∑
j

ajPj ∈ E(K) (12)

The sum actually sums up the different P ’s by using the group law of the
elliptic curve and thus is a point P of E(K). The degree sums up the integer
coefficients of the points of the divisor, thus is an integer. The set of all
divisors whose degree is equal to 0 form an important subgroup of Div(E),
denoted Div0(E). A function on E is a rational function f(x, y) ∈ K(x, y),
which is defined for at least one point in E(K). Thus, there exists a point
P = (a, b) ∈ K(x, y) such that f(a, b) is defined. A function has a zero at a
point P , if f(P) = 0 and it has a pole at a point P ′, if f(P ′) =∞.

If f is a function on E that is not identically 0, then we define the divisor
of f by

div(f) =
∑

P∈E(K)

ordP (f)[P] ∈ Div(E), (13)

which is a finite sum and where

ordP (f)[P]

defines the order of f at P (i.e. the order of the zero or pole at P).

Theorem 2.2
Let E be an elliptic curve. Let D be a divisor on E with deg(D) = 0. Then
there is a function f on E with

div(f) = D ⇐⇒ sum(D) =∞ (14)

8

Lemma 2.2
Let f and h be two functions on E and suppose that div(f) and div(h) have
no points in common. Then,

f(div(h)) = h(div(f))

This lemma is known under the name of Weil reciprocity

Example 2.3
Consider the elliptic curve E over F11 given by

y2 = x3 + 4x.

Let
D = [(0, 0)] + [(2, 4)] + [(4, 5)] + [(6, 3)]− 4[∞]

Then deg(D) = 1 + 1 + 1 + 1 − 4 = 0 and it is clear that sum(D) = ∞.
Therefore, D is the divisor of a function. We now want to find that function.
The line through (0, 0) and (2, 4) is y − 2x = 0. It is tangent to E at (2, 4),
thus its order is 2. So,

div(y − 2x) = [(0, 0)] + 2[(2, 4)]− 3[∞].

The vertical line through (2, 4) is x − 2 = 0, but (2,−4) ∈ E and (2,−4) ∈
x− 2 = 0, thus

div(x− 2) = [(2, 4)] + [(2,−4)]− 2[∞].

The trick to find easily the order of [∞] is, that sum(div) = 0. Therefore, we
can express certain coefficients of D by the divisor:

D = [(2, 4)] + div
(y − 2x

x− 2

)
+ [(4, 5)] + [(6, 3)]− 3[∞]

Because

div
(f(x)

g(x)

)
= div(f(x))− div(g(x))

Similarly, one can find the following replacement:

[(4, 5)] + [(6, 3)] = [(2, 4)] + [∞] + div
(y + x+ 2

x− 2

)
Thus, we can express the divisor the following way:

D = [(2,−4)] + div
(y − 2x

x− 2

)
+ [(2, 4)] + div

(y + x+ 2

x− 2

)
− 2[∞]

9

Since we have already computed div(x−2) one can replace the last coefficients
and get:

D = div(x− 2) + div
(y − 2x

x− 2

)
+ div

(y + x+ 2

x− 2

)
Which finally leads to

D = div
((y − 2x)(y + x+ 2)

x− 2

)
= div(x2 − y)

2.3 Weil Pairing definition

The Weil Pairing on the n-torsion of an elliptic curve is very important in
the field of cryptography. It can be used to attack the discrete logarithm
problem for elliptic curves, but it can also be used to develop cryptosystems.

Let E be an elliptic curve over a field K and let n be a positive integer
not divisible by the characteristic of K. As seen before, we then get the
isomorphism E[n] ' Z/nZ⊕ Z/nZ. The group of nth roots of unity in K
is defined as follow:

µn = {x ∈ K | xn = 1} (15)

Since the characteristic of K does not divide n, the equation xn = 1 has
no multiple roots, hence has n roots in K (the algebraic closure of a field
contains a root for every non-constant polynomial). Therefore, µn is a cyclic
group of order n (µn is a finite abelian group. exp(µn) = n = |µn|, because
char(K) - n. Thus, µn is cyclic.) Any generator ζ of µn is called a primitive
nth root of unity. This is equivalent to saying that ζk = 1 if and only if n
divides k. (i.e. the set µn is the set of all x such that the order of x is n or
a divisor of n).

Let T ∈ E[n] ⊆ E(K). By Theorem 2.2, there exists a function f such
that

div(f) = n[T]− n[∞]. (16)

Proof.
We just need to proof that D = n[T]−n[∞] is a divisor on E fulfilling all

conditions. As n− n = 0, the condition deg(D) = 0 is fulfilled. Thus, there
exists a function f on E. nT = ∞, because T ∈ E[n]. Thus, sum(D) =
∞− n∞ =∞ Consequently, div(f) = D = n[T]− n[∞].

Let us now choose T ′ ∈ E[n2]. Thus, n2T ′ = ∞ = nT ⇒ nT ′ = T By
Theorem 2.2, there exists a function g such that,

div(g) =
∑

R∈E[n]

([T ′ +R]− [R]). (17)

10

Proof.
We need to to verify that sum(div(g)) =∞. We know that there are n2

points R in E[n] (because E[n] is isomorphic to Z/nZ⊕ Z/nZ). The points
R in

∑
[T ′ +R] and

∑
[R] cancel, so the sum is n2T ′ = nT =∞.

Let f ◦ n be such that f(n(P)) = f(nP). Define the points P = T ′ + R
with R ∈ E[n]. Those points P verify nP = T (because nP = nT ′+nR, but
nT ′ = T and nR =∞ =identity element). Using (16) implies

div(f ◦ n) = n
(∑

R

[T ′ +R]
)
− n

(∑
R

[R]
)

= n div(g) = div(gn). (18)

Therefore, f ◦ n is a constant multiple of gn. By multiplying f by a suitable
constant, we may assume that

f ◦ n = gn. (19)

Let S ∈ E[n] and let P ∈ E(K). Then

g(P + S)n = f(n(P + S)) = f(nP + nS) = f(nP) = g(P)n. (20)

Therefore,
g(P + S)n

g(P)n
= 1 ⇐⇒

(g(P + S)

g(P)

)n
= 1 (21)

Thus,
g(P + S)

g(P)
∈ µn. (22)

Finally, the Weil pairing is defined and calculated by

en(S, T) =
g(P + S)

g(P)
. (23)

This definition is independent of the choice of P and g (because g is deter-
mined up to a constant multiple of its divisor).

Theorem 2.3
Let E be an elliptic curve defined over a field K an let n be a positive integer.
Assume that the characteristic of K does not divide n. The Weil pairing

en : E[n]× E[n]→ µn,

then satisfies the following properties:

11

1. en is bilinear in each variable. This means that

en(S1 + S2, T) = en(S1, T)en(S2, T)

and
en(S, T1 + T2) = en(S, T1)en(S, T2)

for all S, S1, S2, T, T1, T2 ∈ E[n].

2. en is nondegenerate in each variable. This means that if en(S, T) = 1
for all T ∈ E[n] then S =∞ and also if en(S, T) = 1 for all S ∈ E[n]
then T =∞.

3. en(T, T) = 1 for all T ∈ E[n].

4. en(T, S) = en(S, T)−1 for all S, T ∈ E[n].

5. en(σ(S), σ(T)) = σ(en(S, T)) for all automorphisms σ of K such that
σ is the identity map on the on the coefficients of E (if E is in Weier-
strass form, this means that σ(A) = A and σ(B) = B).

6. en(α(S), α(T)) = en(S, T)deg(α) for all separable endomorphisms α of
E. If the coefficients of E lie in a finite filed Fq, then the statement
also holds when α is the Frobenius endomorphism θq. (Actually, the
statement holds for all endomorphisms α, separable or not.)

Lemma 2.3
Let suppose that {T1, T2} is a basis of E[n]. Then en(T1, T2) is a primitive
nth root of unity.

Proof.
Suppose that en(T1, T2) = ξ with ξd = 1 (by the definition of the Weil

Pairing, we get an element x such that xd = 1). By the previous theorem,
the following properties are verified. en(T1, dT2) = en(T1, T2)

d = ξd = 1. Also
en(T2, dT2) = en(T2, T2)

d = 1 (by (1) and (3)) Let S ∈ E[n]. Then there are
integers a and b such that S = aT1 + bT2 (because T1 and T2 form a basis).
Therefore,

en(S, dT2) = en(aT1 + bT2, dT2) = en(aT1, dT2)en(bT2, dT2),

which implies that

en(S, dT2) = en(T1, dT2)
aen(T2, dT2)

b = 1.

Since this hold for all S, (2) implies that dT2 = ∞. Since dT2 = ∞ if and
only if n | d, it follows that ξ is a primitive nth root of unity.

12

2.4 Faster Weil Pairing computation

The computation method for the Weil Pairing described in the previous sec-
tion is good for smaller examples. However, in order to avoid massive com-
putation, one needs to introduce an alternative, faster computation method.

Theorem 2.4
Let S, T ∈ E[n]. Let DS and DT be divisors of degree 0 such that

sum(DS) = S and sum(DT) = T (24)

and such that DS and DT have no points in common. Let fS and fT be
functions such that

div(fS) = nDS and div(fT) = nDT . (25)

Then the Weil pairing is given by

en(S, T) =
fT (DS)

fS(DT)
(26)

Remark 2.1
f(
∑
ai[Pi]) = Πif(Pi)

ai

Remark 2.2
A natural choice of divisors is

DS = [S]− [∞], DT = [T +R]− [R] (27)

for some randomly chosen point R. Then we have

en(S, T) =
fS(R)fT (S)

fS(T +R)fT (∞)
(28)

Example 2.4
Let E be the elliptic curve over F7 defined by

y2 = x3 + 2.

Then
E(F7)[3] ' Z/3Z⊕ Z/3Z

We want to compute
e3((0, 3), (5, 1)),

13

where (0,3) and (5,1) are two points of E. So, we need to choose and calculate
our divisors by the previous remark:

D(0,3) = [(0, 3)]−[∞], D(5,1) = [((5, 1)+(6, 1))]−[(6, 1)] = [(3, 6)]−[(6, 1)]

Recall: (5,1)+(6,1) is calculated by using the formula of section 1.2.

m =
y2 − y1
x2 − x1

=
1− 1

6− 5
= 0

⇒ x3 = m2 − x1 − x2 = 0− 6− 5 = −11 = 3

⇒ y3 = m(x1 − x3)− y1 = 0− 1 = −1 = 6

For finding the two functions, one can proceed the same way as in example
2.3. y − 3 is the line passing through (0, 3) and ∞. 4x − y + 1 is the line
passing through (3, 6). 5x− y − 2 is the line passing through (6, 1). Thus,

div(y − 3) = 3D(0,3), div
(4x− y + 1

5x− y − 1

)
= 3D(5,1),

because

div
(4x− y + 1

5x− y − 1

)
= div(4x−y+1)−div(5x−y−1) = 3[(3, 6)]−3[(6, 1)] = 3D(5,1)

[(3, 6)] is the only point of E on 4x− y+ 1, thus its order is 3. [(6, 1)] is the
only point of E on 5x− y − 1, thus its order is 3. Therefore, we take

f(0,3) = y − 3, f(5,1) =
4x− y + 1

5x− y − 1
.

We have

f(0,3)(D(5,1)) =
f(0,3)(3, 6)

f(0,3)(6, 1)
=

6− 3

1− 3
≡ 2 (mod 7)

Similarly,
f(5,1)(D(0,3)) = 4.

Therefore,

e3((0, 3), (5, 1)) =
4

2
≡ 2 (mod 7).

The number 2 is a cube root of unity, since 23 ≡ 1 (mod 7). The easiest way
to compute f(5,1)(∞) is to use projective coordinates:

f(5,1)(x : y : z) =
4x− y + z

5x− y − z
.

Then
f(5,1)(∞) = f(5,1)(0 : 1 : 0) = 1.

14

Theorem 2.5
In order to implement the Weil Pairing, one needs to find functions fulfilling
the definition of the pairing and which will be evaluated at the given points.
Let E(K) be an elliptic curve, let P,Q ∈ E(K) such that P 6= Q. Then we
can compute the Weil Pairing by

en(P,Q) = (−1)n
fn,P (Q)

fn,Q(P)
,

which can be obtained by Millers algorithm. The support of the divisors
still need to be different, i.e. P,Q are linearly independent. Usually, the
calculation would require to find the functions and to calculate their divisor
at given points. The method given by the algorithm is much simpler and
efficient to implement.

Algorithm 1 Millers algorithm using double-and-add

Require: Elliptic curve E(K), points P,Q ∈ E(K) \ {∞}, positive integer
n in its binary representation n =

∑m
j=0 bj2

j

Ensure: value t ∈ Zn
t← 1
V ← P
i← m− 1
while i > −1 do
t← t2 · gV,V (Q)
V ← 2V
if bi = 1 then
t← t · gV,P (Q)
V ← V + P

end if
i← i− 1

end while
return t

15

2.5 Equivalence of the two Weil Pairing computations

I presented two different definitions and computations for the Weil Pairing.
However, one still needs to prove that these two definitions are equivalent in
order to prove that the second Weil Pairing is actually correct. This section is
entirely devoted to prove this statement. Through this section, en will denote
the pairing I defined in section 2.3 by the equation (23). As a reminder, this
means that

en(S, T) =
g(P + S)

g(P)

Let V,W ∈ E[n2]. As in the definition of section 2.3, let’s introduce

div(fnV) = n[nV]− n[∞], gnnV = fnV ◦ n.

As a reminder, in section 2.3 we took f ◦ n = gn, T ′ ∈ E[n2] such that
nT ′ = T ∈ E[n] and div(f) = n[T]− n[∞]. Then, we can define

c(nV, vW) =
fnV+nW (X)

fnV (X)fnW (X − nV)
, d(V,W) =

gnV+nW (X)

gnV (X)gnW (X − V)
,

where X is a variable point on E. However, the left hand side of the equations
does not include X. The reason for that, is given by the following lemma:

Lemma 2.4
c(nV,nW) and d(V,W) are constants and

d(V,W)n = c(nV, nW).

Proof.
First, we need to prove that div(c(nV, nW)) = 0, which will prove that

c(nV, nW) is constant:

div(c(nV, nW)) = n[nV + nW]− n[∞]− (n[nV]− n[∞] + n[nW]− n[∞])

and thus,

div(c(nV, nW)) = n[nV]+n[nW]−n[∞]−n[∞]−n[nV]+n[∞]−n[nW]+n[∞] = 0

The computation for div(d(V,W)) is identical and will also result in 0, thus,
d(V,W) is also constant. Second, since gnnV = fnV ◦ n, we have

d(V,W)n =
fnV+nW (nX)

fnV (nX)fnW (nX − nV)
=

fnV+nW (X ′)

fnV (X ′)fnW (X ′ − nV)
= c(nV, nW),

because c(nV, nW) is independent of X.

16

For the next few lemmas, we choose points U,V and W such that U, V,W ∈
E[n2] and we will try to relate c and d.

Lemma 2.5
d(V,W + nU) = d(V,W) and d(V + nU,W) = d(V,W)en(nU, nW).

Proof.
First, notice the following

n(W + nU) = nW + n2U = nW +∞ = nW.

This implies that the functions gn(W+nU) and gnW are equal. Therefore,

d(V,W+nU) =
gnV+n(W+nU)(X)

gnV (X)gn(W+nU)(X − V)
=

gnV+nW (X)

gnV (X)gnW (X − V)
= d(V,W).

In the same way n(V + nU) = nV and one can prove that

d(V+nU,W) =
gn(V+nU)+nW (X)

gn(V+nU)(X)gnW (X − V − nU)
=

gnV+nW (X)

gnV (X)gnW (X − V − nU)
.

We can manipulate the last equality by

gnV+nW (X)

gnV (X)gnW (X − V − nU)

gnW (X − V)

gnW (X − V)
=

gnV+nW (X)

gnV (X)gnW (X − V)

gnW (X − V)

gnW (X − V − nU)

and conclute finally that

d(V + nU,W) = d(V,W)en(nU, nW),

where for the last equations one uses the definition of the Weil Pairing.

Lemma 2.6

d(U, V)

d(V, U)
=
d(V,W)d(U +W,V)

d(V, U +W)d(W,V)

Proof.
By the definition of d and by multiplying the equality by the denominator

we get:

gnU+(nV+nW)(X) = d(U, V +W)gnU(X)gnV+nW (X − U)

and applying the definition of d another time for gnV+nW (X − U) one gets

gnV+nW (X − U) = d(V,W)gnV (X − U)gnW (X − U − V),

17

because it is independent of X and one could choose X = X − U . Thus, we
get

gnU+(nV+nW)(X) = d(U, V +W)gnU(X)d(V,W)gnV (X−U)gnW (X−U −V).

In the same way, one can compute the following expression

g(nU+nV)+nW (X) = d(U + V,W)gnU(X)d(U, V)gnV (X −U)gnW (X −U − V).

. Since gnU+(nV+nW) = g(nU+nV)+nW , we can cancel equal terms and get

d(U, V +W)d(V,W) = d(U + V,W)d(U, V) (29)

Consequently,

d(U, V) =
d(U, V +W)d(V,W)

d(U + V,W)

and

d(V, U) =
d(V, U +W)d(U,W)

d(U + V,W)

which leads to
d(U, V)

d(V, U)
=
d(U, V +W)d(V,W)

d(V, U +W)d(U,W)
(30)

Now, let’s switch V and W in (29) and solve for d(U,W)

d(U,W) =
d(U, V +W)d(W,V)

d(U +W,V)

and replace d(U,W) in equation (30), which leads to

d(U, V)

d(V, U)
=
d(U, V +W)d(V,W)d(U +W,V)

d(V, U +W)d(U, V +W)d(W,V)
=
d(V,W)d(U +W,V)

d(V, U +W)d(W,V)

Remark 2.3
The left-hand side of the previous equation does not depend on W. This will
be useful for the proof of the next lemma.

Lemma 2.7
Let S, T ∈ E[n]. Then

en(S, T) =
c(S, T)

c(T, S)
.

18

Proof.
Choose U, V ∈ E[n2] such that nU = S, nV = T . By the previous remark,

the expression proved in lemma 2.6 does not depend on W . Thus, we can
evaluate that expression at different W ’s. Let’s take W = jU for 0 ≤ j < n.
By lemma 2.4 we get

c(S, T)

c(T, S)
=
c(nU, nV)

c(nV, nU)
=
(d(U, V)

d(V, U)

)n
As these functions d do not depend on W, we can take a different W = jU
for every factor. Applying lemma 2.6 for each of these n factors, we get

(d(U, V)

d(V, U)

)n
=

n−1∏
j=0

d(V, jU)d(U + jU, V)

d(V, U + jU)d(jU, V)

Almost all factors cancel out, except for some of the cases j = 0 and j = n−1.
Additionaly 0U =∞., Thus, we get

c(S, T)

c(T, S)
=
d(V,∞)d(nU, V)

d(V, nU)d(∞, V)
(31)

Now, using lemma 2.5, we replace in the first equation W =∞ and we get

d(V,∞+ nU) = d(V, nU) = d(V,∞)

Using the second equation of lemma 2.5, we replace V = ∞ and W = V to
get

d(∞+ nU, V) = d(nU, V) = d(∞, V)en(nU, nV).

Thus, we get by equation (31)

c(S, T)

c(T, S)
=
d(V,∞)d(∞, V)en(nU, nV)

d(V,∞)d(∞, V)
= en(nU, nV) = en(S, T).

Finally, we can prove that both definitions are equivalent:

Theorem 2.6
The definition of the Weil Pairing defined in 2.3 is equivalent to the definition
of the faster Weil Pairing defined in 2.4.

19

Proof.
The definition of c gives us

en(S, T) =
c(S, T)

c(T, S)
=
fS+T (X)fT (X)fS(X − T)

fS(X)fT (X − S)fT+S(X)
=
fT (X)fS(X − T)

fS(X)fT (X − S)
, (32)

which is again independent of X. Let’s define

D′S = [S]− [∞], D′T = [X0]− [X0 − T],

where X0 is choosen such that D′S and D′T are disjoint divisors. Define

F ′S(X) = fS(X), F ′T (X) =
1

fT (X0 −X)
.

Then we get that,

div(F ′S) = div(fS(X) = n[S]− n[∞] = nD′S

and

div(F ′T) = − div(fT (X0−X)) = −(n[X0−T]−n[X0]) = n[X0]−n[X0−T] = nD′T .

By the equation (32) we get finally

en(S, T) =
F ′T (D′S)

F ′S(D′T)
,

because the condition of theorem 2.4 are fulfilled and thus it can be applied.
Consequently, the theorem is true for the choice of the divisors D′S and D′T ,
which were not chosen arbitrary. We need to treat the case, when we consider
arbitrary choices. Let DS be any divisor of degree 0 such that sum(DS) = S
and let DT be any divisor of degree 0 such that sum(DT) = T . Then for
some functions h1, h2 we have,

DS = div(h1) +D′S, DT = div(h2) +D′T

Define
FS = hn1F

′
S, FT = hn2F

′
T .

Then,

nDS = div(FS), nDT = div(FT) div(F ′S) = nD′S div(F ′T) = nD′T

First, we assume that the divisors D′S and DS are disjoint from D′T and DT .
Then, we get

FT (DS)

FS(DT)
=
h2(DS)nF ′T (DS)

h1(DT)nF ′S(DT)
=
h2(div(h1))

nh2(D
′
S)nF ′T (div(h1))F

′
T (D′S)

h1(div(h2))nh1(D′T)nF ′S(div(h2))F ′S(D′T)

20

The Weil reciprocity (Lemma 2.2) implies that h2(div(h1)) = h1(div(h2)).
Furthermore, we get

h2(D
′
S)n = h2(nD

′
S) = h2(div(F ′S)) = F ′S(div(h2)).

Similarly,
h1(D

′
T)n = F ′T (div(h1)),

which implies that

FT (DS)

FS(DT)
=
h2(div(h1))

nF ′S(div(h2))F
′
T (div(h1))F

′
T (D′S)

h1(div(h2))nF ′T (div(h1))F ′S(div(h2))F ′S(D′T)
=
h2(div(h1))

nF ′T (D′S)

h2(div(h1))nF ′S(D′T)

and we finally get
FT (DS)

FS(DT)
=
F ′T (D′S)

F ′T (D′S)
= en(S, T).

If D′S and DS are not disjoint from D′T and DT , one can proceed in two steps.
First,

D′′S = [X1 + S]− [X1], D′′T = [Y1 + T]− [Y1],

where X1 and Y1 are chosen so that D′S and D′′S are disjoint from D′T and
D′′T and so that D′′S and DS are disjoint from D′′T and DT . After that, the
preceding argument show that,

FT (DS)

FS(DT)
=
F ′′T (D′′S)

F ′′S (D′′T)
=
F ′T (D′S)

F ′S(D′T)
= en(S, T).

3 Elliptic curve cryptography

3.1 Discrete logarithm problem

For a general introduction, let p be a prime number and let a and b be
integers that are nonzero (mod p). Suppose we know that there exists an
integer k, without knowing its exact value. Then, the classical discrete
logarithm problem is to find k, fulfilling the following condition:

ak ≡ b (mod p). (33)

In our case, we are interested in the discrete logarithm problem over an
elliptic curve E(Fq), which has a group law. Let a and b be two points of
E(Fq), then we are trying to find k such that

ka = b. (34)

21

The security of cryptosystems using the discrete logarithm problem depends
on how difficult it is to solve the used discrete logarithm problem. In general,
one uses very large prime numbers to define a finite field. Thus, a brute force
attack trying to solve the discrete logarithm problem is very impractical as
the answer might be an integer of several hundred digits.

3.2 Attack using the Weil Pairing

In this section I am going to present the MOV attack, which transforms a
discrete logarithm problem in E(Fq) to one in F×qm , which can be computed
much faster (under the condition that Fqm is not much larger than Fq).

Let E be an elliptic curve over the field Fq and let P,Q ∈ E(Fq). Let N
be the order of P (i.e. NP =∞). Assume that

gcd(N, q) = 1.

We want to find k such that Q = kP . First, we need to check, that a such k
exists.

Lemma 3.1
Let N be the order of P and gcd(N, q) = 1. There exists k such that Q = kP
if and only if NQ =∞ and the Weil Pairing eN(P,Q) = 1.

Proof.
⇒ If Q = kP , this implies that NQ = kNP = k∞ = ∞ (because N is

the order of P). We also know that,

eN(P,Q) = eN(P, kP) = eN(P, P)k = 1k = 1,

by theorem 2.3.
⇐ If NQ =∞, then N is the order of Q and thus Q ∈ E[n]. As we know

that gcd(N, q) = 1, we know that N does not divide q. Thus, by theorem
2.1, we have that E[n] ' Z/NZ ⊕ Z/NZ. Now, we choose a point R such
that {P,R} forms a basis of E[N]. Thus, there are some integers a and b
such that we can define Q as follows:

Q = aP + bR.

Consequently, by lemma 2.3 eN(P,R) = ξ is a primitive Nth root of unity.
If eN(P,Q) = 1, we get

1 = eN(P,Q) = eN(P, aP + bR) = eN(P, aP)eN(P, bR)

22

Thus, we get
1 = eN(P, P)aeN(P,R)b = 1ξb = ξb.

This implies that b is a divider of N, which is the order of P. Thus, b ≡ 0
(mod N) and bR =∞ (because R ∈ E[N]). Therefore, we get

Q = aP + bR = aP +∞ = aP,

which is, what we were looking for.

Theorem 3.1
Choose m such that

E[N] ⊆ E(Fqm).

Since all the points of E[N] have coordinates in Fq =
⋃
j≥1 Fqj , such an m

exists. The group µN of N th roots of unity is contained in Fqm. All the
calculations will be done in Fqm. The MOV attack algorithm is described by
the following steps:

1. Choose a random point T ∈ E(Fqm).

2. Compute the order M of T.

3. Let d = gcd(N,M) and let T1 = M
d
T . Then T1 has order d, which

divides N , so T1 ∈ E[N].

4. Compute ζ1 = eN(P, T1) and ζ2 = eN(Q, T1). Then both ζ1 and ζ2 are
in µd ⊆ F×qm.

5. Solve the discrete logarithm problem ζ2 = ζk1 in F×qm. This will give k
(mod d).

6. Repeat with random points in T until the least common multiple of the
various d′s obtained is N .This determines k (mod N)

This algorithm and therefore the MOV attack might not be very useful for
some cases, because m could still be very large. However, for supersingular
elliptic curves, i.e. elliptic curves where

a ≡ 0 (mod p)

one can usually take m = 2, which reduces the problem significantly. This
implies a much easier computation of the discrete logarithm problem as for
arbitrary elliptic curves. In general, two possible cases can occur for super-
singular elliptic curves:

23

1. If a = 0, then the discrete logarithm problem over Fq can be reduced
to a calculation in F×q2 .

2. If a 6= 0, then one could usually take m = 3, 4 or 6 and still speed up
the computation significantly.

3.3 A cryptosystem based on the Weil Pairing

Elliptic curves are used in cryptographic applications, because they provide
security equivalent to classical systems, while using fewer bits. This can be
very interesting for different occasions, because the computation can be much
faster whereas it can ensure the same security level. One typical usage is for
example on the chips of a passport, where the storage capacity is limited.

The method I am going to present is due to Boneh and Franklin. I pre-
sented in the previous section that the Weil Pairing can be used to reduce the
discrete logarithm problem on elliptic curves to a discrete logarithm problem
for the multiplicative group of a finite field. This method will use the Weil
Pairing on these curves (other pairing could also be used). At a first glance,
this might sound paradox, but quicker computation will be essential for the
algorithm I will present. Additionally, as a reminder: the reduced discrete
logarithm problem is still not trivial, if the field is large enough.

For simplicity, I will use the following elliptic curve E to present the
algorithm:

y2 = x3 + 1,

over the field Fp, where p ≡ 2 (mod 3).
Let ω ∈ Fp2 be a primitive cube root of unity. Define a map

β : E(Fp2) −→ E(Fp2), (x, y) −→ (ωx, y), β(∞) =∞.

Suppose P has order n. Then β(P) has also order n. Now, let’s define the
modified Weil Pairing:

ẽn(P1, P2) = en(P1, β(P2)),

where en is the usual Weil Pairing and P1, P2 ∈ E[n].

Lemma 3.2
Let P ∈ E(Fp) and let n be the order of P . If 3 - n, then ẽn(P, P) is a
primitive nth root of unity.

Proof.
Let a and b be integers such that aP = bβ(P). Then

β(bP) = bβ(P) = aP ∈ E(Fp),

because P ∈ E(Fp) and E a group.

24

1. If bP =∞, then aP =∞⇒ a ≡ 0 (mod n) , because n is the order of
P . Thus, a = n or a divider of n.

2. If bP 6=∞, then bP = (x, y), with x, y ∈ Fp. Then,

(ωx, y) = β(bP) ∈ Fp,

by definition of β. But ω /∈ Fp,because the order of F×p is p − 1,
which is not a multiple of 3 (Remember: ω is a primitive cube root
of unity). This implies that x = 0, because (ωx, y) ∈ Fp. Therefore,
bP = (0,±1), which has order 3 (because we are working over an elliptic
curve, thus 3P = ∞ ⇐⇒ 2P = −P). That is impossible, because
we assumed that 3 - n. Thus, the only possible relation of the form
aP = bβ(P) is that a ≡ 0 (mod n) and b ≡ 0 (mod n). This implies
that P and β(P) form a basis of E[n]. Finally, by lemma 2.3 we get
that ẽn(P, P) = en(P, β(P)) is a primitive nth root of unity.

Since E is supersingular, by Proposition 2.1, E(Fp) has order p + 1. In
addition, one needs to assume that p = 6l − 1 for some prime l. Then 6P
has order l or 1 for each P ∈ E(Fp).

For the following scenario, we pretend that Alice wants to send a message
to Bob. Description of the situation:

1. Each user (Alice and Bob) has a public key, based on her or his identity
(such as an email adresse).

2. A central trusted authority assigns a corresponding private key to each
user.

3. The authentication happens in the initial communication between Bob
and the trusted authority. After that, Bob is the only one who has
the information, which are necessary to decrypt messages that are en-
crypted using his public identity.

The system described as the following gives the basic idea, but is not secure
against certain attacks. There are, however, methods to strengthen the sys-
tem, which will not be discussed in this thesis. The trusted authority needs
to do the following things:

1. Chooses a large prime p = 6l − 1 as above.

2. Chooses a point P of order l in E(Fp).

25

3. Chooses hash functions H1 and H2. The function H1 takes a string
of bits of arbitrary length and ouputs a point of order l on E. The
function H2 inputs an element of order l in F×p2 and outputs a binary
string of length n, where n is the length of the messages that will be
sent.

4. Chooses a secret random s ∈ F×l and computes Ppub = sP .

5. Makes p,H1, H2, n, P, Ppub public, while keeping s secret.

If a user with identity ID wants a private key, the trusted authority does the
following:

1. Computes QID = H1(ID). This is a point on E.

2. Lets DID = sQID.

3. After verifying that ID is the identification for the user with whom he
is communicating, send DID to his user.

If Alice wants to send message M to Bob, she does the following:

1. Looks up Bob’s identity, for example, ID = bob@uni.lu (written as a
binary string) and computes QID = H1(ID).

2. Chooses a random r ∈ F×l .

3. Computes gID = ẽl(QID, Ppub).

4. Lets the ciphertext be the pair

c = (rP,M ⊕H2(g
r
ID)),

where ⊕ denotes XOR (=bitwise addition (mod 2)).

Bob decrypts a ciphtertext (u, v) as follows:

1. Uses his private key DID to compute hID = ẽl(DID, u).

2. Computes m = v ⊕H2(hID).

The decryption works because

ẽl(DID, u) = ẽl(sQID, rP) = ẽl(QID, P)sr = ẽl(QID, sP)r = ẽl(QID, Ppub)
r = grID.

Therefore,

m = v ⊕H2(ẽl(DID, u)) = (M ⊕H2(g
r
ID))⊕H2(g

r
ID) = M.

26

Alice Bob Public Trusted authority

QID = H1(ID) ID p, l p = 6l − 1 =prime
r ∈ F×l DID H1, H2 P order l in E(Fp)

gID = ẽl(QID, Ppub) n, P s ∈ Fp
c = (rP,M ⊕H2(g

r
ID)) Ppub QID = H1(ID) ∈ E

c = (u, v) ID DID = sQID

Ppub = sP

3.4 Security of the scheme

First, an overview to show you, who has gotten which information.
The crucial information, which are only known by the proper person,

are colorized in red. Important information, which can be intercepted, (not
necessarily difficult to get) are colorized in blue. As shown before, in order
to decrypt the message, one needs to compute

v ⊕H2(hID) = (M ⊕H2(g
r
ID))⊕H2(g

r
ID)

M ⊕H2(g
r
ID) = v is known or can easily be intercepted. So, you need to get

the value of grID for being able to decrypt the message. Bob can decrypt it,
because

ẽl(DID, u) = grID = ẽl(QID, P)sr

Here is, what the scheme makes secure. Eve knows (or can easily compute)
the values for QID and P . However, she should not know r and s, which
are necessary do decrypt the message. This could be interpreted as being
equivalent to the prime factorization problem of the RSA scheme. In our case,
this problematic is called the Bilinear Diffie-Hellman Problem (BDH).
Consequently, the security of this scheme depends on the hardness of solving
the BDH problem. In this case, the BDH problem is generalized by

Theorem 3.2
The Bilinear Diffie-Hellman Problem (BDH) in (Fp, µn, ẽl), where P is a
generator of Fp and n is the order of Fp, is defined by: given (P, aP, bP, cP)
for some a, b, c ∈ F×l , compute v ∈ µn such that v = ẽl(P, P)abc.

Proof. The proof of the security of the BDH problem is based on the in-
tractability of the problem itself, which will not be given in this thesis.

Eve knows the values for sP = Ppub and rP = u, but because Eve does
not know the specific value for s and r, she will not be able to compute the
value for

ẽl(sQID, rP) = ẽl(QID, P)sr = ẽl(QID, sP)r,

which would eventually lead to the decryption of the message.

27

3.5 How to use the Boneh-Franklin python implemen-
tation

In this section I am going to show how to use my python implementation
for encrypting and decrypting messages. As mentioned earlier, the Boneh-
Franklin scheme is not chosen ciphertext secure. There is a universal trans-
formation method due to Fujisaki and Okamoto that allows for conversion
to a scheme having this property. My implementation is very basic in order
to show easily how one can establish such a scheme. For a real world appli-
cation, one would need to split the scripts, extend and adapt them to the
needed environment.

One needs to start with the boneh-chiff.py script, which is going to fix
the parameters and which will encrypt the message. It is necessary to fix a
prime number, to create the finite fields and to choose a third root of unity.

#l is a prime number such that 6*l-1 is also a prime number. This

is important, otherwise computations will not work.

#in this case, 56453 is a suitable prime number (but way too small

for secure cryptographic applications)

l = int(56453)

#p is the prime number, over which we will work.

p = int(int(6) * l - int(1))

#define the two fields for later purposes

#important to give the irreducible polynomial, otherwise a random

irreducible polynomial is created.

#thus, random outcomes will occur, which is not usable.

#create the field F_p

Fp = FiniteField(p,1)

#create the Field F_{p^2}, with the ideal generator 1+x^2+x^3 with

coordinates in F_p

Fp2 = FiniteField(p,2,

Polynomial([ModP(1,p),ModP(1,p),ModP(1,p)],p))

#define ONE third root of unity of Fp^2

#in this case, it is the polynomial 0+x

b = Fp2([0,1])

Next, an algorithm will choose a random point on the elliptic curve, which
will be used as a base point. If necessary, one could skip this and fix the point
on your own.

#C is the elliptic curve, which is created by the script.

28

P = findPoint2(C,l,p)

print(P)

#the point P needs to have order l. Thus, l*P = infinity

print(l*P)

Continuying in the script, it will be necessary to fix some more elements.

#s and r are both in F_l^x

#one is chosen by the authority, the other one is chosen by the

person who wants to encrypt his message.

#for simplicity and for purpose of illustration, both are chosen

by myself here

s = int(13)

r = int(7)

If you run the script, you will have to enter an ID. This ID will then
generate a point, which is called DID. The coordinates of this point are
important for the decryption. Thus, one needs to pass them to the person
who wants to decrypt the message.

After that, the script will ask you to enter your message, which you want
to encrypt.

Once finished, the script will have created a textfile, which includes all
necessary information. To enable your partner to decrypt the message, he
will need the coordinates of the point DID and the very last line of the
textfile. This is your decrypted message.

If you have changed some parameters in the file boneh-chiff.py, you will
also need to change some parameters in the file boneh-dechiff.py

the same prime number l as chosen in the other script

l = 56453

the same prime number p, as generated in the other script

p = int(6 * l - 1)

you need to create the same field F_{p^2}

this is the reason, why it is necessary to fix an irreducible

polynomial which will be the ideal generator

Fp2 = FiniteField(p,2,

Polynomial([ModP(1,p),ModP(1,p),ModP(1,p)],p))

this one is not necessary to update. it just generates the

elliptic curve

E2 = EllipticCurve2(Fp2([0]), Fp2([1]), Fp2)

this one is the third root of unity chosen in the first script

b = Fp2([0,1])

these coordinates depend on the base point generated in the

29

previous script, as well as on the chosen number r

cypherACordX = 240099

cypherACordY = 283222

Once the parameters are fixed and adapted to the choices made in the
first script, you can run the script. You will be asked to enter the coordi-
nates of the point DID. After that, you will be asked to enter the encrypted
message. The script should then decrypt the message and print out the orig-
inal message. To pass the parameters to the third party, one can usually
use one of the existing key exchange protocols available (for example, the
Diffie-Hellman key exchange).

30

References

[1] Paulo S. L. M. Barreto and Michael Naehrig. Pairing-friendly elliptic
curves of prime order.

[2] Dan Boneh and Matthew Franklin. Identity-based encryption from the
weil pairing.

[3] Darrel Hankerson, Alfred Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer Professional Computing. Springer, 2003.

[4] Myungsun Kim and Kwangjo Kim. A new identification scheme based
on the bilinear diffie-hellman problem.

[5] Luther Martin. Introduction to Identity-based Encryption. Artech House
information security and privacy series. Artech House, 2008.

[6] L.C. Washington. Elliptic curves: number theory and cryptography. Dis-
crete Mathematics and Its Applications Series. Chapman & Hall/CRC,
2008.

31

A Python implementations

There are several test scripts available to show how to use the following
scripts. I invite the reader to analyze carefully my implementations before
using them for some real life applications. Also notice, that I implemented
the scripts in python3.

My implementations are largely inspired, but adapted to my own pur-
poses, by the very detailed and informative website:

http://jeremykun.com/2014/02/08/introducing-elliptic-curves/
The Weil Pairing is identical to the Sage implementation. Once installed,

you can find it in the subdirectory: sage\src\sage\schemes\elliptic curves\ell point.py
The Boneh-Franklin scheme is completely developed by my own.

A.1 Modular arithmetic - modular.py

#creating a class for being able to represent finite fields

for instance: 7 (mod 11)

class ModP (object):

def __init__(self, n, p):

#prime number p for (mod p)

self.p = int(p)

#class of n in (mod p)

self.n = int(int(n) % p)

#name of the field

self.name = "Z/%dZ" % p

#method for adding two elements of the same field

def __add__(self, other):

if isinstance(other, int):

return ModP(self.n + other, self.p)

if other.p == self.p:

return ModP(self.n + other.n, self.p)

else:

raise Exception("Different fields")

def __radd__(self, other):

if isinstance(other, int):

return self + other

if other.p == self.p:

return ModP(self.n + other.n, self.p)

else:

32

raise Exception("Different fields")

#method for subtracting two elements of the same field

def __sub__(self, other):

if isinstance(other, int):

return ModP(self.n - other, self.p)

if other.p == self.p:

return ModP(self.n - other.n, self.p)

else:

raise Exception("Different fields")

#method for multiplying two elements of the same field

def __mul__(self, other):

if isinstance(other, int):

other = ModP(other, self.p)

if other.p == self.p:

return ModP(self.n * other.n, self.p)

else:

raise Exception("Different fields")

def __rmul__(self, other):

return self * other

#method for dividing two elements of the same field

def __truediv__(self, other):

if isinstance(other, int):

other = ModP(other, self.p)

if other.p == self.p:

return self * other.inverse()

else:

raise Exception("Different fields")

#method for dividing two elements of the same field

def __div__(self, other):

if isinstance(other, int):

other = ModP(other, self.p)

if other.p == self.p:

return self * other.inverse()

else:

raise Exception("Different fields")

#method for getting the inverse of an element

def __neg__(self):

33

return ModP(-self.n, self.p)

#check if two elements are the same

def __eq__(self, other):

if isinstance(other, int):

other = ModP(other,self.p)

return other.p == self.p and self.n == other.n

#absolute value of an element

def __abs__(self):

return abs(self.n)

#string representation

def __str__(self):

return "%d (mod %d)" % (self.n, self.p)

#usual representation

def __repr__(self):

return "%d (mod %d)" % (self.n, self.p)

#multiplicative inverse of an element is calculated by Euclidean

Algorithm

def inverse(self):

g, x, y = EuclideanAlgo(self.n, self.p)

if g != 1:

raise ValueError

return ModP(x, self.p)

#Euclidean Algorithm for computing the inverse of an element

#http://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

def EuclideanAlgo(a,b):

lastremainder, remainder = abs(a), abs(b)

x, lastx, y, lasty = 0, 1, 1, 0

while remainder:

lastremainder, (quotient, remainder) = remainder,

divmod(lastremainder, remainder)

x, lastx = lastx - quotient*x, x

y, lasty = lasty - quotient*y, y

return lastremainder, lastx * (-1 if a < 0 else 1), lasty * (-1

if b < 0 else 1)

34

A.2 Polynomials - polynomial.py

import fractions

import itertools

import modular

import random

ModP = modular.ModP

#strip all copies of eraseValue of the end of the list

#i.e. erase all 0 at the end (in our case)

def strip(L, eraseValue):

if len(L) == 0:

return L

i = len(L)-1

while i>=0 and L[i] == eraseValue:

i = i-1

return L[:i+1]

#define polynomials under the form of:

#a + b*x + c*x^2 + ...

class Polynomial(object):

def __init__(self, c, p):

if type(c) is Polynomial:

self.coefficients = c.coefficients

elif isinstance(c, ModP):

self.coefficients = [c]

elif not hasattr(c, ’__iter__’) and not hasattr(c, ’iter’):

self.coefficients = [ModP(c,p)]

else:

self.coefficients = c

self.p = p

self.coefficients = strip(self.coefficients, ModP(0,p))

self.name = ’(Z/%dZ)[x]’ % p

#check if the polynomial is 0

35

def isZero(self):

return self.coefficients == []

#function to print the polynomial

def __repr__(self):

if self.isZero():

return ’0’

#iterate through the list of coefficients and add them to one

string

else:

return ’ + ’.join([’%s x^%d’ % (a,i) if i>0 else ’%s’ % a

for i,a in enumerate(self.coefficients)])

#length of the polynomial

def __abs__(self):

return len(self.coefficients)

#length of the polynomial

def __len__(self):

return len(self.coefficients)

#subtract to polynomials by subtracting their coeff.

def __sub__(self, other):

return self + (-other)

def __rsub__(self, other):

return -self + other

#iterate through the coefficients

def __iter__(self):

return iter(self.coefficients)

#negative of a polynomial

def __neg__(self):

return Polynomial([-a for a in self],self.p)

#iterate through polynomial

def iter(self):

return self.__iter__()

#the leading coefficient of a polynomial

def leadingCoefficient(self):

return self.coefficients[-1]

36

#the degree of a polynomial, ie largest exponent

def degree(self):

return abs(self)-1

#check whether two polynomials are equal or not by comparing

coefficients and same degree

def __eq__(self,other):

return self.degree() == other.degree() and all([x==y for

(x,y) in zip (self,other)])

#add two polynomials by adding their coefficients

def __add__(self,other):

#if integer, than one needs to make a constant polynomial

if isinstance(other, int):

other = Polynomial([other],self.p)

#adding the coefficients together. fillvalue defines the

value to use if one polynomial

#has a smaller degree than the other one.

newCoefficients = [sum(x) for x in

itertools.zip_longest(self,other, fillvalue =

ModP(0,self.p))]

return Polynomial(newCoefficients, self.p)

def __radd__(self, other):

return self + other

#multiplication of two polynomials

def __mul__(self,other):

if isinstance(other, int):

return self*Polynomial([other],self.p)

if self.isZero() or other.isZero():

return Zero(self.p)

else:

#set all coefficients to zero

newCoefficients = [ModP(0,self.p) for _ in range(len(self)

+ len(other) - 1)]

#general formula for the coefficients of the

multiplication of two poly.

for i,a in enumerate(self):

for j,b in enumerate(other):

newCoefficients[i+j] = newCoefficients[i+j] + a*b

37

return Polynomial(newCoefficients,self.p)

def __rmul__(self, other):

return self * other

#divmod for polynomials

def __divmod__(self,divisor):

quotient = Zero(self.p)

remainder = self

divisorDeg = divisor.degree()

divisorLC = divisor.leadingCoefficient()

while remainder.degree() >= divisorDeg:

StockExponent = remainder.degree() - divisorDeg

StockZero = [ModP(0,self.p) for _ in range(StockExponent)]

StockDivisor = Polynomial(StockZero +

[remainder.leadingCoefficient() / divisorLC], self.p)

quotient = quotient + StockDivisor

remainder = remainder - (StockDivisor * divisor)

return quotient, remainder

#modular function for polynomials

def __mod__(self, divisor):

x,y = divmod(self, divisor)

return y

def __pow__(self, p):

x = self

r = Polynomial(1,self.p)

while p != 0:

if p % 2 == 1:

r = r * x

p = p - 1

x = x * x

p = p / 2

return r

#polynomial to the power p modulo other

def powmod(self, p, other):

38

x,y = divmod(self**p, other)

return y

#usual division

def __truediv__(self, divisor):

if divisor.isZero():

raise ZeroDivisionError

x,y = divmod(self, divisor)

return x

#usual division

def __div__(self, other):

return self.__truediv__(other)

#returns a Zero polynomial

def Zero(p):

return Polynomial([],p)

#check whether a polynomial is irreducible or not

def isIrreducible(polynomial, p):

#polynomial "x"

x = Polynomial([ModP(0,p), ModP(1,p)],p)

powerTerm = x

isUnit = lambda p: p.degree() == 0;

for _ in range(int(polynomial.degree() / 2)):

powerTerm = powerTerm.powmod(p, polynomial)

gcdOverZmodp = gcd(polynomial, powerTerm - x)

if not isUnit(gcdOverZmodp):

return False

return True

#greatest common divisor

def gcd(a,b):

if abs(a) < abs(b):

return gcd(b,a)

while abs(b) > 0:

q,r = divmod(a,b)

a,b = b,r

39

return a

#returns an irreducible polynomial

def generateIrrduciblePolynomial(p, degree):

while True:

coefficients = [ModP(random.randint(0, p-1),p) for _ in

range(degree)]

randomMonicPolynomial = Polynomial(coefficients +

[ModP(1,p)],p)

if isIrreducible(randomMonicPolynomial, p):

return randomMonicPolynomial

def extentedEuclideanAlgorithm(a, b):

if abs(b) > abs(a):

(x,y,d) = extentedEuclideanAlgorithm(b,a)

return (y,x,d)

if abs(b) == 0:

return (1,0,a)

x1, x2, y1, y2 = 0,1,1,0

while abs(b) > 0:

q, r = divmod(a,b)

x = x2 - q*x1

y = y2 - q*y1

a, b, x2, x1, y2, y1 = b, r, x1, x, y1, y

return (x2, y2, a)

40

A.3 Finite fields - finiteField.py

import fractions

import itertools

import modular

import random

import polynomial

generateIrrduciblePolynomial =

polynomial.generateIrrduciblePolynomial

ModP = modular.ModP

Polynomial = polynomial.Polynomial

#one can fix a polynomialModulus if you define a finite field

#however, it needs to be irreducible

def FiniteField(p, m, polynomialModulus=None):

#generates a random irreducible polynomial

#not very good for Test purposes! because always

#new examples will appear randomly

if polynomialModulus is None:

polynomialModulus = generateIrrduciblePolynomial(p, m)

class Fq(object):

fieldsize = int(p**m)

primeSubfield = p

idealGenerator = polynomialModulus

def __init__(self, poly):

if type(poly) is Fq:

self.poly = poly.poly

elif type(poly) is int:

self.poly = Polynomial([ModP(poly,p)],p)

elif isinstance(poly, ModP):

self.poly = Polynomial([ModP(poly.n,p)],p)

elif isinstance(poly, Polynomial):

self.poly = poly % polynomialModulus

else:

self.poly = Polynomial([ModP(x,p) for x in poly],p) %

polynomialModulus

self.field = Fq

41

def __add__(self, other):

return Fq(self.poly + other.poly)

def __sub__(self, other):

return Fq(self.poly - other.poly)

def __mul__(self, other):

return Fq(self.poly * other.poly)

def __eq__(self, other):

return isinstance(other, Fq) and self.poly == other.poly

#fast polynomial multiplication

def __pow__(self,n):

x = self

r = Fq([1])

while n != 0:

if n % 2 == 1:

r = r * x

n = n - 1

x = x * x

n = n / 2

return Fq(r.poly)

def __neg__(self):

return Fq(-self.poly)

def __abs__(self):

return abs(self.poly)

def __repr__(self):

return repr(self.poly) + ’ over ’ + self.__class__.__name__

def __divmod(self, divisor):

q, r = divmod(self.poly , divisor.poly)

return (Fq(q), Fq(r))

#inverse of an element

def inverse(self):

if self == Fq(0):

42

raise ZeroDivisionError

x,y,d = extentedEuclideanAlgorithm(self.poly,

self.idealGenerator)

return Fq(x) * Fq(d.coefficients[0].inverse())

#dividing

def __div__(self,other):

return self * other.inverse()

#dividing

def __truediv__(self, other):

return self * other.inverse()

#dividing

def __rdiv__(self,other):

return self * other.inverse()

#dividing

def __rtruediv__(self, other):

return self * other.inverse()

Fq.__name__ = ’F_{%d^%d}’ % (p,m)

return Fq

def extentedEuclideanAlgorithm(a, b):

if abs(b) > abs(a):

(x,y,d) = extentedEuclideanAlgorithm(b,a)

return (y,x,d)

if abs(b) == 0:

return (1,0,a)

x1, x2, y1, y2 = 0,1,1,0

while abs(b) > 0:

q, r = divmod(a,b)

x = x2 - q*x1

y = y2 - q*y1

a, b, x2, x1, y2, y1 = b, r, x1, x, y1, y

return (x2, y2, a)

43

A.4 Elliptic curves over prime fields - ellipticCurve-
Mod.py

import modular

ModP = modular.ModP

#to understand the concept behind these conditions, check the

documentation

#of elliptic curve in my bachelor thesis

class EllipticCurve(object):

def __init__(self,a,b):

#this construction only works for the Weierstrass form

y^2 = x^3 + a*x + b

self.a = a

self.b = b

self.p = self.a.p

#compute the discriminant to check whether there are multiple

roots or not

self.discriminant = ModP(4,self.p)*a*a*a+ ModP(27,self.p)*b*b

#if the curve has multiple roots, then we have to raise an

exception

#we do not want to work with curves with multiple roots

if self.isSingular():

raise Exception("The curve %s has multiple roots. Bad

choice!" % self)

#function to check if there are multiple roots

def isSingular(self):

if the discriminant is zero, the method returns true

thus, there are multiple roots

return self.discriminant == ModP(0,self.p)

#function to check whether a point is on the curve or not

def isPoint(self, x,y):

enter the coordinates of the point into the equation of the

curve

return true if the point is on the curve

int cast necessary to prevent wrong multiplication as:

1*1*1 = 3 ... (yes, this happened)

44

x1 = int(x.n)

y1 = int(y.n)

a1 = int(self.a.n)

b1 = int(self.b.n)

return (ModP(y1*y1,x.p)) == (ModP(x1*x1*x1 + a1 * x1 +

b1,x.p))

#define the string for a elliptic curve to print it properly

def __str__(self):

return "y^2=x^3+ %Gx+ %G" % (self.a.n, self.b.n)

#check whether two elliptic curves are equal or not

def __eq__(self, other):

return (self.a, self.b) == (other.a, other.b)

#class for a point on the elliptic curve (!)

class Point(object):

#we need to take the curve as an argument, because we

immediately check

#if the point is on the curve or not

def __init__(self, curve, x, y):

self.curve = curve

self.x = x

self.y = y

self.p = self.x.p

#if the point is not on the curve, we do not need to create

the point

if not self.curve.isPoint(x,y):

raise Exception("The point %s is not on the curve %s" %

(self, self.curve))

#function to output the point

def __str__(self):

return "(%s,%s)" % (self.x,self.y)

#the negative/opposite point P s.t. P-P=infinity

def __neg__(self):

return Point(self.curve, self.x, -self.y)

#we are going to define the addition of two points, check

documentation

45

def __add__(self, P):

#if no point, the addition does not make sense

if isinstance(P, Infinity):

return self

if (self.x, self.y) == (P.x, P.y) :

if self.y == ModP(0,self.p):

return Infinity(self.curve)

else:

m = (ModP(3,self.p) * self.x * self.x + self.curve.a)

/ (ModP(2,self.p) * self.y)

p = m * m - ModP(2,self.p) * self.x

q = m * (self.x - p) - self.y

return Point(self.curve, p ,q)

else:

if self.x == P.x:

return Infinity(self.curve)

else:

m = (P.y - self.y) / (P.x - self.x)

p = m*m - self.x - P.x

q = m*(self.x - p) - self.y

return Point(self.curve, p, q)

#method for subtracting

def __sub__(self, P):

#adding with a negative point

return self + -P

#adding a point several times to itself

def __mul__(self, n):

#if not an integer, does not make sense

if not isinstance(n, int):

raise Exception("You need to input an integer")

else:

#if zero times, it results infinity

if n == 0:

return Infinity(self.curve)

if n == 1:

46

return self

#if negative integer, adding the negative point n times

if n < 0:

return -self * -n

else:

#double-and-add algorithm for faster addition

#not in binary, might change that later

#http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

P = self

Q = Infinity(self.curve)

while n > 0:

if (n % 2) == 1:

Q = P + Q

n = n-1

else:

P = P + P

n = n / 2

return Q

def __rmul__(self, n):

return self * n

def __eq__(self, other):

if isinstance(self, Infinity) and isinstance(other, Infinity):

return True

if isinstance(self, Infinity) and not isinstance(other,

Infinity):

return False

if not isinstance(self, Infinity) and isinstance(other,

Infinity):

return False

if self.x == other.x and self.y == other.y and self.p ==

other.p:

return True

#general remark: we always have integer < string

class Infinity(Point):

def __init__(self,curve):

self.curve = curve

47

#the infinity point is always on the curve

#maybe I will change the notation to make it look more

mathematically

def __str__(self):

return "Infnity"

#stays the same, because neutral element

def __neg__(self):

return self

#infinity is neutral element

def __add__(self, P):

return P

#infinity is neutral element

def __sub__(self,P):

return P

#adding infinity n times to itself

def __mul__(self, n):

#if not integer, doesnt make sense

if not isinstance(n, int):

raise Exception("You need to input an integer")

else:

return self

#there is an explanation of the algorithm in my thesis

def MillerFunction(P, R, Q):

if isinstance(P, Infinity) or isinstance(R, Infinity):

if P == R:

return ModP(1, Q.p)

if isinstance(P, Infinity):

return Q.x - R.x

if isinstance(R, Infinity):

return Q.x - P.x

else:

if P != R:

if P.x == R.x:

48

return Q.x - P.x

else:

l = (R.y - P.y) / (R.x - P.x)

return Q.y - P.y - l * (Q.x - P.x)

else:

numerator = ModP(3, P.p) * (P.x * P.x) + P.curve.a

denominator = ModP(2, P.p) * P.y

if denominator == ModP(0, P.p):

return Q.x - P.x

else:

l = numerator / denominator

return Q.y - P.y - l * (Q.x - P.x)

def Miller(P, Q, m):

t = ModP(1,P.p)

V = P

S = 2*V

mylist = list(bin(m)[2:])

i = 1

while i < len(mylist):

S = 2*V

t = (t*t)*(MillerFunction(V,V,Q) / MillerFunction(S,-S,Q))

V = S

if mylist[i] == ’1’:

S = V + P

t = t * (MillerFunction(V,P,Q) / MillerFunction(S,-S,Q))

V = S

i = i + 1

return t

def WeilPairing(P,Q,m):

if not isinstance(m*P, Infinity) or not isinstance(m*Q,

Infinity):

raise Exception("The two points do not have order %d" %m)

if P == Q:

return ModP(1,P.p)

if isinstance(P, Infinity) or isinstance(Q, Infinity):

return ModP(1, P.p)

fmPQ = Miller(P,Q,m)

fmQP = Miller(Q,P,m)

49

if fmQP == ModP(0, P.p):

return ModP(1, P.p)

return (ModP((int(-1))**(m),P.p))*(fmPQ / fmQP)

50

A.5 Elliptic curves over all finite fields - ellipticCurve.py

import finiteField

import modular

ModP = modular.ModP

#to understand the concept behind these conditions, check the

documentation

#of elliptic curve in my bachelor thesis

class EllipticCurve(object):

def __init__(self,a,b, field):

#this construction only works for the Weierstrass form

y^2 = x^3 + a*x + b

self.a = a

self.b = b

self.field = field

self.p = field.primeSubfield

#compute the discriminant to check whether there are multiple

roots or not

self.discriminant = self.field([4])*a*a*a+

self.field([27])*b*b

#if the curve has multiple roots, then we have to raise an

exception

#we do not want to work with curves with multiple roots

if self.isSingular():

raise Exception("The curve %s has multiple roots. Bad

choice!" % self)

#function to check if there are multiple roots

def isSingular(self):

if the discriminant is zero, the method returns true

thus, there are multiple roots

return self.discriminant == self.field([0])

#function to check whether a point is on the curve or not

def isPoint(self, x,y):

enter the coordinates of the point into the equation of the

curve

return true if the point is on the curve

51

return (y*y - x*x*x - self.a * x - self.field([1]) ==

self.field([0]))

#define the string for a elliptic curve to print it properly

def __str__(self):

return "y^2=x^3+ %s*x+ %s" % (self.a, self.b)

#check whether two elliptic curves are equal or not

def __eq__(self, other):

return (self.a, self.b) == (other.a, other.b)

#class for a point on the elliptic curve (!)

class Point(object):

#we need to take the curve as an argument, because we

immediately check

#if the point is on the curve or not

def __init__(self, curve, x, y):

self.curve = curve

self.field = curve.field

self.x = x

self.y = y

#if the point is not on the curve, we do not need to create

the point

if not self.curve.isPoint(x,y):

raise Exception("The point %s is not on the curve %s" %

(self, self.curve))

#function to output the point

def __str__(self):

return "(%s,%s)" % (self.x,self.y)

#the negative/opposite point P s.t. P-P=infinity

def __neg__(self):

return Point(self.curve, self.x, -self.y)

#we are going to define the addition of two points, check

documentation

def __add__(self, P):

#if no point, the addition does not make sense

if isinstance(P, Infinity):

return self

52

if (self.x, self.y) == (P.x, P.y) :

if self.y == self.field([0]):

return Infinity(self.curve)

else:

m = (self.field([3]) * self.x * self.x + self.curve.a)

/ (self.field([2]) * self.y)

p = m * m - self.field([2]) * self.x

q = m * (self.x - p) - self.y

return Point(self.curve, p ,q)

else:

if self.x == P.x:

return Infinity(self.curve)

else:

m = (P.y - self.y) / (P.x - self.x)

p = m*m - self.x - P.x

q = m*(self.x - p) - self.y

return Point(self.curve, p, q)

#method for subtracting

def __sub__(self, P):

#adding with a negative point

return self + -P

#adding a point several times to itself

def __mul__(self, n):

#if not an integer, does not make sense

if not isinstance(n, int):

raise Exception("You need to input an integer")

else:

#if zero times, it results infinity

if n == 0:

return Infinity(self.curve)

if n == 1:

return self

#if negative integer, adding the negative point n times

if n < 0:

53

return -self * -n

else:

#double-and-add algorithm for faster addition

#not in binary, might change that later

#http://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication

P = self

Q = Infinity(self.curve)

while n > 0:

if (n % 2) == 1:

Q = P + Q

n = n-1

else:

P = P + P

n = n / 2

return Q

def __rmul__(self, n):

return self * n

def __eq__(self, other):

if isinstance(self, Infinity) and isinstance(other, Infinity):

return True

if isinstance(self, Infinity) and not isinstance(other,

Infinity):

return False

if not isinstance(self, Infinity) and isinstance(other,

Infinity):

return False

if self.x == other.x and self.y == other.y:

return True

#general remark: we always have integer < string

class Infinity(Point):

def __init__(self,curve):

self.curve = curve

#the infinity point is always on the curve

#maybe I will change the notation to make it look more

mathematically

def __str__(self):

54

return "Infnity"

#stays the same, because neutral element

def __neg__(self):

return self

#infinity is neutral element

def __add__(self, P):

return P

#infinity is neutral element

def __sub__(self,P):

return P

#adding infinity n times to itself

def __mul__(self, n):

#if not integer, doesnt make sense

if not isinstance(n, int):

raise Exception("You need to input an integer")

else:

return self

def MillerFunction(P, R, Q):

field = P.curve.field

if isinstance(P, Infinity) or isinstance(R, Infinity):

if P == R:

return field([1])

if isinstance(P, Infinity):

return Q.x - R.x

if isinstance(R, Infinity):

return Q.x - P.x

else:

if P != R:

if P.x == R.x:

return Q.x - P.x

else:

l = (R.y - P.y) / (R.x - P.x)

return Q.y - P.y - l * (Q.x - P.x)

else:

numerator = field([3]) * (P.x * P.x) + P.curve.a

55

denominator = field([2]) * P.y

if denominator == field([0]):

return Q.x - P.x

else:

l = numerator / denominator

return Q.y - P.y - l * (Q.x - P.x)

def Miller(P, Q, m):

field = P.curve.field

t = field([1])

V = P

S = 2*V

mylist = list(bin(m)[2:])

i = 1

while i < len(mylist):

S = 2*V

t = (t*t)*(MillerFunction(V,V,Q) / MillerFunction(S,-S,Q))

V = S

if mylist[i] == ’1’:

S = V + P

t = t * (MillerFunction(V,P,Q) / MillerFunction(S,-S,Q))

V = S

i = i + 1

return t

def WeilPairing(P,Q,m):

field = P.curve.field

if P == Q:

return field([1])

if isinstance(P, Infinity) or isinstance(Q, Infinity):

return field([1])

fmPQ = Miller(P,Q,m)

fmQP = Miller(Q,P,m)

if fmQP == field([0]):

return field([1])

return (field([(-1)**(m)]))*(fmPQ / fmQP)

def ModifWeilPairing(P,Q,m,b):

if isinstance(Q, Infinity):

return WeilPairing(P,Q,m)

else:

56

Q = Point(Q.curve, b*Q.x, Q.y)

return WeilPairing(P,Q,m)

57

A.6 Boneh-Franklin Scheme initialization and encryp-
tion - boneh-chiff.py

#python modules

import hashlib

import binascii

import os

import random

#general modules written by myself

import modular

import ellipticCurveMod

import ellipticCurve

import finiteField

import polynomial

#if we want to work of fields different than Z/pZ

FiniteField = finiteField.FiniteField

Polynomial = polynomial.Polynomial

ModifWeil = ellipticCurve.ModifWeilPairing

EllipticCurve2=ellipticCurve.EllipticCurve

Point2=ellipticCurve.Point

#if we want to work only over the field Z/pZ

EllipticCurve=ellipticCurveMod.EllipticCurve

Point=ellipticCurveMod.Point

Infinity=ellipticCurveMod.Infinity

ModP = modular.ModP

#class to store the ciphertext

class Ciphertext (object):

def __init__(self, a, b):

self.a = a

self.b = b

def __str__(self):

return "%s and %s" % (self.a, self.b)

#find a point on the elliptic curve

#starting with the y coordinate

def findPoint(C,l, p):

58

i = int(3)

while True:

#replace y by value an find the x value

Py = ModP(i,p)

Px = (Py*Py-ModP(1,p))

Px = ModP(Px.n**(1/3.0),p)

#if a point and order correct, return it

if C.isPoint(Px,Py):

P = Point(C, Px, Py)

if isinstance(P*l, Infinity):

return P

#6*P is of order 1 or l, check proposition

elif isinstance(6*P*l, Infinity):

return 6*P

i = i + 1

#if we tried too much possibilities, we stop the program

if i > 300000:

raise Exception("No point could be found")

#find a point on the elliptic curve

#starting with the x coordinate

#test have shown that in most cases this one finds faster a point

def findPoint2(C,l, p):

i = int(3)

while True:

#replace x by value and find y

Px = ModP(i,p)

Py = (Px*Px*Px+ModP(1,p))

Py = ModP((Py.n)**(1/2.0),p)

#if a point and order correct, return it

if C.isPoint(Px,Py):

P = Point(C, Px, Py)

if isinstance(P*l, Infinity):

return P

#6*P is of order 1 or l, check proposition

elif isinstance(6*P*l, Infinity):

return 6*P

i = i + 1

#if tried too much possibilites, try to find a point

#by starting with y value

if i > 300000:

P = findPoint(C,l,p)

return P

59

def hash (ID, C, p, Q, l):

i = int(0)

while True:

#always initialize the hash function, so that both parties

can find the same hashed point

hash1 = hashlib.md5()

hash1.update(ID.encode(’utf-8’))

#get the integer from the hash value and multiply it to the

base point

k = int.from_bytes(hash1.digest(), byteorder=’big’)+i

P = Q*k

#if point of order l, return it

if isinstance(P*l, Infinity) and P!=Q:

return P

#6*P is of order 1 or l, check proposition

elif isinstance(6*P*l, Infinity) and P!=Q:

return 6*P

i = i + 1

#if no point found, try to replace y by a value and find x

if i > 300000:

raise Exception("No point could be found")

#second hash function: input an element of order l in Fp^2 and

outputs a string of length n

#where the length of the message is n

def hash3 (value, lengthMessage):

sum = 0

#sum the coefficients

for i,a in enumerate(value.poly):

sum = sum + a

value = sum.n

length = lengthMessage

#Knuth’s multiplicative method:

hash = value * 2654435761 % (2**32)

hash = bin(hash)

hash = hash + hash[2:] + hash[2:] + hash[2:] + hash[2:] +

hash[2:]

hash = hash[:length]

output = bytearray(hash.encode())

60

return output

#xor function: bitwise addition

def xor (a,b):

c = bytearray(len(a))

for i in range(len(a)):

c[i] = a[i] ^ b[i]

return c

#open file to save parameters gotten

#through this computation

print("-------------------------------")

outputFile = open(’parameters.txt’,’w’)

outputFile.write(’If you are going to change the parameters in the

encrypting file, you need to adapt some parameters in the

decryption file’+’\n’)

outputFile.write(’You will always need to adapt the coordinates of

DID and you need to copy the last output line of this file to

properly decrypt’+’\n’)

outputFile.write(’-------------------------------’+’\n’)

print("-------------------------------")

print("-------------------------------")

print("Initializing:")

#l=109

#l=127

#l=199

#l=56453

#defining the values for l and p of the scheme

#l = int(127) #working!!!

l = int(56453)

p = int(int(6) * l - int(1))

61

#define the two fields for later purpose

#Fp = FiniteField(p,1) #for l=127

#important to give the irreducible polynomial

#Fp2 = FiniteField(p,2,

Polynomial([ModP(6,p),ModP(758,p),ModP(1,p)],p)) #for l=127

Fp = FiniteField(p,1) #for l=56453

Fp2 = FiniteField(p,2,

Polynomial([ModP(1,p),ModP(1,p),ModP(1,p)],p)) #for l=56453

#define ONE third root of unity of Fp^2

#b = Fp2([249,341]) #for l = 127

b = Fp2([0,1]) #for l=56453

print("The prime number l is:")

print(l)

outputFile.write(’The prime number l is: ’+str(l)+’\n’)

print("The prime number p is:")

print(p)

outputFile.write(’The prime number p is: ’+str(p)+’\n’)

print("The third root of unity is:")

print(b)

outputFile.write(’Third root of unit is: ’+str(b)+’\n’)

#condition of the scheme to work properly

if (p-2) % 3 != 0:

raise Exception("p does not verifiy the condition 2 mod 3")

print("-------------------------------")

print("The elliptic curve is:")

C = EllipticCurve(ModP(0,p),ModP(1,p))

print(C)

print("The choosen point of order %d is:" % l)

P = findPoint2(C,l,p)

print(P)

print("Check if the order is correct:")

print(l*P)

ID = input("Enter the ID you want to use: ")

#print("The ID is:")

62

#ID = "steve@uni.lu"

print(ID)

#s in F_l^x

print("s is equal to :")

s = int(13)

print(s)

Ppub = s*P

print("Ppub is equal to %s " % Ppub)

print("-------------------------------")

print("The hashed point is:")

QID = hash(ID,C,p,P,l)

print(QID)

DID = s*QID

print("DID is equal to: %s" % DID)

outputFile.write(’DID is equal to: ’+str(DID)+’\n’)

print("-------------------------------")

print("Alice part:")

QIDAlice = hash(ID,C,p, P, l)

print(QIDAlice)

#r in F_l^x

r = int(7)

print("r is equal to:")

print(r)

print("-------------------------------")

print("Test if points are of order")

print(l)

print("Point l*QID Alice")

print(l*QIDAlice)

print("Point l*Ppub")

print(l*Ppub)

print("-------------------------------")

print("Weil pairing and verification")

63

#define the points of the Elliptic Curve to the new

#elliptic curve. we have an inclusion

#E(Fp) C E(Fp^2)

#but for further computation, we need to be able to

#work over the new elliptic curve (for the Weil pairing)

E2 = EllipticCurve2(Fp2([0]), Fp2([1]), Fp2)

QIDAlice2 = Point2(E2, Fp2([QIDAlice.x.n]), Fp2([QIDAlice.y.n]))

Ppub2 = Point2(E2, Fp2([Ppub.x.n]), Fp2([Ppub.y.n]))

gID = ModifWeil(QIDAlice2, Ppub2, l , b)

print("gID is equal to:")

print(gID)

print("Check if it is a lth rooth:")

print(gID**(l))

print("-------------------------------")

print("Encryption")

print("\n")

M = input("Enter the message you want to encrypt: ")

#M = " hello, this is a test. are you sure this is working? I

could easily break your decryption!"

lengthMessage = len(M)

print("The message to encrypt is : %s" % M)

#decode the message to bytes and hash it

b1 = bytearray(M.encode(’utf-8’))

hash = hash3(gID**(r), lengthMessage)

#bitwise addition

xor1 = xor(b1,hash)

#create the cyphertext to send it to someone else

cypher = Ciphertext(r*P,xor1)

outputFile.write(’First value of the cyphertext:

’+str(cypher.a)+’\n’)

outputFile.write(’Second value of the cyphertext:

’+str(cypher.b)+’\n’)

64

print("The message after encryption in bytes: ")

print(xor1)

#create a hex representation of the encrypted message. this way,

it is easier to communicate to a third party

#and independent of the machine which is running.

decoded = binascii.hexlify(xor1)

outputFile.write("This is a hex representation of the encrypted

message. This hex-code needs to be entered to the decryption

script: " + str(decoded)[2:len(str(decoded))-1])

#close file

outputFile.close()

65

A.7 Boneh-Franklin Scheme decryption - boneh-dechiff.py

#python modules

import hashlib

import binascii

import os

import random

import binascii

#general modules written by myself

import modular

import ellipticCurveMod

import ellipticCurve

import finiteField

import polynomial

#if we want to work of fields different than Z/pZ

FiniteField = finiteField.FiniteField

Polynomial = polynomial.Polynomial

ModifWeil = ellipticCurve.ModifWeilPairing

EllipticCurve2=ellipticCurve.EllipticCurve

Point2=ellipticCurve.Point

#if we want to work only over the field Z/pZ

EllipticCurve=ellipticCurveMod.EllipticCurve

Point=ellipticCurveMod.Point

Infinity=ellipticCurveMod.Infinity

ModP = modular.ModP

#second hash function: input an element of order l in Fp^2 and

outputs a string of length n

#where the length of the message is n

def hash3 (value, lengthMessage):

sum = 0

#sum the coefficients

for i,a in enumerate(value.poly):

sum = sum + a

value = sum.n

length = lengthMessage

#Knuth’s multiplicative method:

66

hash = value * 2654435761 % (2**32)

hash = bin(hash)

hash = hash + hash[2:] + hash[2:] + hash[2:] + hash[2:] +

hash[2:]

hash = hash[:length]

output = bytearray(hash.encode())

return output

#xor function: bitwise addition

def xor (a,b):

c = bytearray(len(a))

for i in range(len(a)):

c[i] = a[i] ^ b[i]

return c

l = 56453

p = int(6 * l - 1)

Fp2 = FiniteField(p,2,

Polynomial([ModP(1,p),ModP(1,p),ModP(1,p)],p)) #for l=56453

E2 = EllipticCurve2(Fp2([0]), Fp2([1]), Fp2)

b = Fp2([0,1])

DIDCordX = input("Enter the X-coordinate for the Point DID as an

integer: ")

DIDCordY = input("Enter the Y-coordinate for the Point DID as an

integer: ")

cypherACordX = 240099

cypherACordY = 283222

print("-------------------------------")

print("Decryption")

67

DID = Point2(E2, Fp2([DIDCordX]), Fp2([DIDCordY]))

cypherA = Point2(E2, Fp2([cypherACordX]), Fp2([cypherACordY]))

cypherB = input("Enter the encrypted message, which you want to

decrypt: ")

#get the binary representation of the encrypted message in hex

cypherB = binascii.unhexlify(cypherB)

length = len(cypherB)

print("The first value of the cyphertext is:")

print(cypherA)

hID = ModifWeil(DID, cypherA, l , b)

print("hID is equal to:")

print(hID)

hash = hash3(hID, length)

print("The decrypted message is:")

c = xor(cypherB , hash)

print(c.decode())

68

