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Abstract

This article is the result of 3 months of research for a project undertaken at the
University of Luxembourg. It discusses the problem of sphere packing in Euclidean
space: which arrangement of non-overlapping n-dimensional balls has smaller volume
than the linear packing? All the following results have been calculated in Matlab.

The Sphere Packing Problem
Imagine someone going to the local grocery shop and seeing oranges packed in a net.
One could think about all the unnecessary space in the packaging that could be
eliminated. What would be the optimal arrangement of the oranges? Would it be lining
them up against each other or amassing them in any other form resembling a cluster?

The goal of this project is to find the most profitable arrangements of finite numbers of
equally sized balls whose convex hull has less volume than the linear positioning. The
convex hull of an arrangement of equally sized balls is the smallest convex set which
contains all balls.

Before we proceed with the investigation of the sphere packing in Rn, there is a bit of
information one should know to ensure complete comprehension.

Definition 1. (Finite Sphere Packing) Let Bn be the unit ball in Rn and CN = {c1, ..., cN}
be a set consisting of N linear independent vectors in Rn. For each vector ci ∈ CN
(1 ≤ i ≤ N), let Bi = Bn + ci be the translated copy of Bn. If Bi and Bj (1 ≤ i < j ≤ N)
are disjoint, then the set

P (Bn, CN) = {Bi | 1 ≤ i ≤ N}

is a finite sphere packing.

Definition 2. (Packing Density) Let P (Bn, CN) be a finite sphere packing, Bn + CN be
the Minkowski sum of Bn + CN and conv(S) denote the convex hull of a subset S ⊂ Rn.
Then

d(Bn, CN) =
N · V ol(Bn)

V ol(conv(Bn + CN))

is the packing density of the given sphere packing, i.e. the proportion of space occupied by
the spheres in their convex hull.
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Proposition 1. Let Bn(r) = {(x1, ..., xn) ∈ Rn |
∑n

i=1 x
2
i ≤ r2} be a n-dimensional ball

with radius r. Then its volume is given by

V ol(Bn(r)) =
π

n
2 rn

Γ(n
2

+ 1)

where Γ : R→ R, z 7→
∫∞
0
tz−1e−tdt is the Gamma function ([6],p.74-75).

Proof. The proof can be done by induction on n. To find the volume of a disc (i.e. n = 2),
one takes the function

√
r2 − x2 which defines the upper half of the disc on the domain

[−r, r]. Then: V ol(B2(r)) = 4
∫ r
0

√
r2 − x2dx = πr2. The induction step n 7→ n + 1 can

be looked up in the literature.

Proposition 2. Let P (Bn(r), CN) be a finite sphere packing with dim(conv(CN)) = 1,
so assuming each sphere touches the ones next to it, i.e. V ol(conv(CN)) = 2(N − 1)r. In
the latter case, we denote CN by SN . Moreover, its volume is given by

V ol(P (Bn(r), SN)) = V ol(Bn(r)) + 2r · (N − 1) · V ol(Bn−1(r))

Proof. The following illustration [1] explains the origin of the formula, which has been
established in the literature.

In Rn (2 ≤ n ≤ 4), one has the following:

∃N ∈ N such that d(Bn(r), SN) < d(Bn(r), CN)

Such a configuration is called "sausage disaster".

Conjecture 1 (Fejes Tóth). For n ≥ 5, the linear packing has maximal density. Hence,
there is no other arrangement of hyperspheres whose convex hull has smaller volume
([3],p.126).

The statement is known as "sausage conjecture", and was proven in dimensions n ≥ 14
by Betke, Henk and Wills [7]. Hence, the case for 5 ≤ n ≤ 13 still remains open. Now
we can move on to the investigation of some particular sphere packings.
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Investigating Sphere Packings

Sphere Packing in R2

In the 2-dimensional Euclidean space, for every N ≥ 3, one can find a cluster
configuration that satisfies

d(B2, S3) < d(B2, C3)

Indeed for N = 1 or N = 2, one can not distinguish between linear and cluster
configuration. For N = 3 consider the following configuration [1]:

Its volume, computed with Matlab [4], is given by: V ol(P (B2(1), C3)) ≈ 10.8708. Now
we want to compare this value with the volume of the linear pack with 3 circles. Using
the formula from Proposition 2 with n = 2, r = 1 and N = 3, we get:

V ol(P (B2(1), S3) = V ol(B2(1)) + 2 · 1 · (3− 1) · V ol(B1(1))

= π + 2 · 2 · 2
= 8 + π

≈ 11.1316.

Finally, we get: V ol(P (B2(1), S3) > V ol(P (B2(1), C3)).

Sphere Packing in R3

In this section, we aim at finding a packing of equal sized spheres that has smaller
volume than the linear packing.

Linear Packing with four 3-spheres in R3
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Looking for regular packings in R3, one first thinks about the platonic solids. To recall:
A platonic solid in three-dimensional space is a regular convex polyhedron. It is
constructed by using a regular polygon and having the same number of these polygons
meeting at each corner. There are exactly five such solids, see for instance [8].

Hence, one can construct a regular sphere packing by placing a sphere at each vertex of
a platonic solid. Indeed, we get the following regular packings (drawings made by the
author with Matlab):

Tetrahedral Packing with four spheres Hexahedral Packing with eight spheres

Octahedral Packing with six spheres
Dodecahedral Packing with twenty-one
spheres (twenty vertices and one sphere
at the center)

Icosahedral Packing with thirteen spheres (twelve vertices and one sphere at the center)

4



The following table gives the different volumes of the above depicted packings,
computed with Matlab.

Platonic solids Volume of our packing Volume of linear packing
Tetrahedron 23.5096 23.0383
Hexahedron 55.0192 48.1711
Octahedron 63.4380 35.6047

Dodecahedron 181.2516 129.8525
Icosahedron 73.7822 68.4639

One notes that none of these packings has less volume than the linear packing. Indeed,
we have the following Proposition:

Proposition. (Sausage Conjecture in R3, Gandini and Wills 1992) A sausage disaster
in 3-dimensional Euclidean space occurs with 56 spheres ([3],p.121).

To show that this claim is true, we will construct a packing with 56 equally sized
spheres whose convex hull has less volume than the linear packing with 56 spheres. The
idea of such a construction is to start with a packing consisting of more than 56 spheres
and then to remove some spheres until we reach the desired amount.

First one has to note that it is possible to extend the packings above by increasing the
length of the edges and then to add enough spheres to get a bigger packing with the
same structure. Hence, we can start by constructing a tetrahedral packing with 84
spheres. Let Ctetr

84 be this packing. Then, one cuts off 2 Ctetr
4 packings from two vertices

of the tetrahedron and two Ctetr
10 packings from the other two vertices. The resulting

packing consists of 56 spheres and has been drawn as follows by the author with Matlab:

Its volume, computed in Matlab, is given by: V ol(P (B3(1
2
), Ctetr

56 )) = 39.1940. The
volume of the linear packing with 56 spheres is given by:
V ol(P (B3(1

2
), S56)) = 4

3
π · (1

2
)3 + 55π · (1

2
)2 ≈ 43.7204. Therefore, we have found a

sausage disaster in R3.
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Sphere Packing in R4

Henceforth, any visualisation of a packing is not feasible with the employed tools. Also,
up to dimension 3, one can generate spheres with built-in Matlab commands, and let
Matlab compute the convex hulls on them. This option breaks down in Rn for n ≥ 4,
because the convex hull is only implemented for polyhedra with finitely many vertices.
Therefore, we have to construct an approximation of an (n − 1)-sphere with as much
precision as possible.

Approximation of Hyperspheres [2]

To recall: An (n− 1)-sphere with radius r is defined as
Sn−1(r) = {(x1, ..., xn) ∈ Rn |

∑n
i=1 x

2
i = r2}. To get a good approximation of the

n-dimensional ball, one has to uniformly distribute points on the surface of an
(n− 1)-sphere and then take the convex hull of these points. For our computations, we
first generate n Gaussian random variables x1, ..., xn. Then the distribution of the
vectors

1√∑n
i=1 x

2
i

 x1
...
xn


is uniform over the surface Sn−1. The amount of generated random variables gives the
desired approximation. To get an approximation of a (n− 1)-sphere with radius r, it
suffices to multiply the vectors with r. The following tabular shows the effectiveness of
this approximation for the volume of a 4-dimensional ball with radius 1.
Distribution of k4 points over S3:

k 3 5 7 10 15 17 20
Volume 2.8175 4.3281 4.6747 4.8327 4.9000 4.9099 4.9187

We recognize a strictly increasing sequence which looks like it’s converging to some
number.
Proposition 1 gives us a formula to compute the volume of a n-dimensional ball with
radius r. Hence for n = 4 and r = 1, we have:

V ol(B4(1)) =
π

4
2 14

Γ(4
2

+ 1)
=

1

2
π2 ≈ 4.9348

Therefore in the probabilistic sense, our sequence converges to the volume of a
4-dimensional ball. Now using this approximation technique, we can construct a sphere
packing by defining the center of each sphere and then generating a certain amount of
points around it.

6



Sphere Packing

As in the previous section, one could first try to place the centers of the spheres at the
vertices of a regular convex 4-dimensional polytope. This first attempt already fails
because of the following claim:

Claim 1 (Gandini and Zucco [5]). The sausage disaster in R4 only occurs with
around 370000 balls.

Unlike in three dimensions, the point at which a cluster configuration becomes more
dense than a linear configuration has not been exactly determined yet. The next part
will give an example of an arrangement of 4-balls which has less volume than the linear
pack.

Sausage Disaster

As just mentioned, this part gives an explicit example of an arrangement of 3-spheres
which has more density than the linear packing. To understand the arrangement, we
first need some definitions. A great deal of the information provided by those definitions
is irrelevant for our purposes. It suffices to have a general idea of what follows, but the
reader is invited to conduct further studies if needed.

Tessellation
In Rn, a tessellation is a space filling with regular polyhedra, so that there are no gaps.
An easy example is given in R2 [1]:

Tessellation of 2-dimensional space with regular hexagons

One can also fill the 2-dimensional space with squares. Analogously, one can tessellate
the 3-dimensional space with cubes and the 4-dimensional space with tesseracts
(4-dimensional cubes) and so on. Indeed if we tessellate the space with regular convex
polytopes, then every barycenter of a polytope has the same distance to each of its
neighbours. Given a tessellation of the n-dimensional space, one can place the centers of
the spheres on the barycenters and therefore create a sphere packing. Consequently, the
idea is to find the most efficient way to tessellate Euclidean 4-space and then create a
sphere packing with maximal density.
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24-Cell-Tessellation
The 24-cell is a regular convex 4-polytope. It has 24 vertices and 96 edges. It is self-dual
and is the unique regular convex 4-polytope which has no analogue in the 3-dimensional
space. It can be constructed by taking the convex hull of its vertices which can be
described as the permutations of (±1,±1, 0, 0) ∈ R4.

A regular tessellation of the 4-dimensional space exists with 24-cells. This packing is a
good candidate for our sausage disaster because it has the greatest kissing number in
R4, i.e. the highest number of equally sized non-overlapping spheres that can touch
another sphere of the same size, and its packing density is π2

16
, which is the densest

arrangement of equally sized spheres.

The regularity of this tessellation gives us an easy way to write our source code. We first
start with a 24-cell centered at the origin. As mentioned before, the coordinates are
given by the permutations of (±1,±1, 0, 0) ∈ R4. Now we want to build some shells
consisting of 24-cells around our first 24-cell. In fact, one can find the center of the
nearest 24-cell and then iterate the process to extend the tessellation as much as desired.
On the other hand, we recognize that every point has the same distance between each
other. Moreover, the sum of the components of each occurring center and vertex is a
multiple of 2. Hence, one can identify the centers of each 24-cell with the Hurwitz
quaternions with even square norm and their vertices with the Hurwitz quaternions with
odd square norm, where the Hurwitz quaternion is defined as a quaternion whose
components are either all integers or half integers.

Admitting these criteria, it suffices to find all points in the 4-dimensional space which
are of the form

{
(x1, x2, x3, x4) ∈ R4 |

∑4
i=1 xi ≡ 0 mod 2

}
. These points are exactly the

centers of the 24-cells. Matlab allows us to generate matrices under some conditions. It
is then not so difficult to create a matrix consisting of points which meet the criterion
above. After finding those points, one can easily create a loop which attributes to each
center the 24 vertices, as we already know the coordinates of the vertices for the center
(0, 0, 0, 0).

The 24-cell-tessellation is then defined to consist of the Voronoi cells of the set of all
created points.

Placing 4-spheres with radius r =
√
2
2

at each point created gives us the desired
arrangement. Of course, one has to pay attention that a big amount of spheres decreases
the precision of calculation. Nonetheless, this arrangement allows us to claim the
following:

Claim 2. The finite 4-balls packing defined above provides an arrangement of 375769
3-spheres whose convex hull has less volume than the linear packing with the same
amount of 3-spheres.

Indeed, this number fits with Claim 1 of Gandini and Zucco.
One can imagine a giant ball filled with 24-cells. The number 375769 was found by
building shell by shell and comparing each time the volume of the arrangement with the
linear pack. It took 12 shells in total to build this giant ball, but the result is an
arrangement which is stable and more efficient than the linear pack. The following table
compares the approximate volume of the linear pack with the volume of our constructed
packing.
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Number of Spheres Constructed Packing Linear Packing Points on each Sphere
25 62 51 10000
625 1479 1298 10000
7225 16070 14832 9000
21025 45771 43784 8500
70225 149845 145217 8500
177241 373569 370513 6000
297025 622126 620123 4000
375769 785010 786668 3300

The volume of the linear pack was also calculated in Matlab. Indeed, the volume
calculated with the formula of Proposition 2 gives
V ol(P (B4(

√
2
2

)), S375769) = 787007.8925.

Improvement of our Packing
Even though the constructed packing has less volume than the linear packing, one can
always try to find an arrangement with less spheres. Hence like in the 3-dimensional
case, we will try to remove some spheres in the hope that the resulting packing stays
more efficient than the linear packing. We will cut off some spheres by picking a
constant c and then removing all points whose x4-coordinate is less than c. The
following table of approximate volumes shows the process:

Constant c Number of Spheres Resulting Packing Linear Pack Points on each Sphere
-16 371875 776873 777910 3000
-15 367302 767330 768281 1700
-14 361992 756043 756878 1300
-13 355895 743081 743766 1000

We can stop at this point. Indeed, we managed to reduce the amount of points and to
get a packing which still has less volume than the linear packing. However, in our
implementation, which uses only the outermost shell to construct the convex hull, we
need to compute more spheres along the cutting hyperplane the more we are cutting off.
So with each augmentation of c, we have to pay the price that we lose precision and the
resulting packing loses stability under the varying random positions of the points on
each sphere. Actually, the table shows that in the author’s experiments, the amount of
points generated on each sphere had to be decreased. Therefore, at some stage the
values calculated on Matlab lose accuracy. Nonetheless, the precision is enough to
conclude that it is possible to remove spheres as indicated above.

Conjecture 2. With the above described cut-off process, we arrive at a sausage disaster
with significantly less 4-balls than predicted by Gandini and Zucco.
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Sphere Packing in Rn (5 ≤ n ≤ 8)

This section is only an outline. The main goal of this project was to construct an
explicit example of the sausage disaster in R4. Moreover, it is conjectured by Fejes Tóth
that the sausage disaster does not occur for n ≥ 5.

We will just give an idea whether a better arrangement may exist or not. To do so, we
are going to compare the density of the linear packing with the density of the densest
known infinite packings ([3],p.72). We get the following table:

n densest known infinite packing density of linear packing with 108 n-spheres
2 π

2
√
3
≈ 0.91 ≈ 0.79

3 π
3
√
2
≈ 0.74 ≈ 0.67

4 π2

16
≈ 0.62 ≈ 0.59

5 π2

15
√
2
≈ 0.47 ≈ 0.53

6 π3

48
√
3
≈ 0.37 ≈ 0.49

7 π3

105
≈ 0.30 ≈ 0.46

8 π4

374
≈ 0.25 ≈ 0.43

The densities of the different linear packings were calculated with the formula from
Definition 2. This comparison shows again that there must be a better arrangement
than the linear packing for n ≤ 4. For n ∈ [5, 8], this comparison does not give a
guarantee that there exists a better arrangement. This question remains open.

Conclusion
In this report, we have investigated sphere packings in up to 4 dimensions. In R2 and
R3, we gave the most profitable arrangement with a minimal amount of spheres as it
was already known in the literature. In R4, we gave an explicit example of an
arrangement which has more density than the linear packing. However, our packing does
not have the minimal amount of spheres. The lack of precision makes it impossible to
find out how many spheres we could remove. Indeed there could be a completely
different optimal packing with less spheres. What we can conjecture for sure, is that
there are packings which reach the sausage disaster with significantly less points than
claimed by Gandini and Zucco. There is still a lot more to be investigated, including the
sausage conjecture in Rn for n ≥ 5.
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