Projet en mathématiques expérimentales Semestre III

Wolff Vincent, Karst Philippe, Geimer Arno $12~{\rm janvier}~2018$

Table des matières

1	Définitions	4
2	Morphismes de \mathbb{F}_2 dans $PSL(2,\mathbb{R})$	5
3	Morphismes de \mathbb{F}_2 dans $PSL(2,\mathbb{C})$	6
4	Morphismes de \mathbb{F}_2 dans $PSL(2, \mathbb{R} + \tau \mathbb{R})$	7
5	Enveloppes convexes des orbites 5.1 Dans \mathbb{C} :	8 8 9

Résumé

Le but de ce projet est de visualiser l'action de PSL sur le demi-espace supérieur par des enveloppes convexes sur l'orbite d'un point.

1 Définitions

Définition 1. Le *Groupe libre* \mathbb{F} engendré par un ensemble S est tel que toute application de S dans un groupe G s'étend de manière unique en un morphisme de \mathbb{F} vers G. Cela revient à dire que les éléments de S sont "indépendants", c'est-à-dire que les images des uns ne contraignent pas les images des autres. Pour le reste du projet, nous travaillerons avec le groupe libre \mathbb{F}_2 , i.e. #S=2.

Définition 2. Le Groupe projectif spécial linéaire sur V, PSL(n,F), où $V=F^n$ est un espace vectoriel de dimension n, est défini comme le quotient de SL(V) par SZ(V), SL étant le groupe spécial linéaire sur V et SZ(V) son sous-groupe de transformations scalaires avec déterminant normal. Dans ce projet, nous considérerons les groupes $PSL(2,\mathbb{R})$ et $PSL(2,\mathbb{C})$, donc les groupes des matrices à coefficients dans \mathbb{R} , respectivement \mathbb{C} , qui ont déterminant 1 et qui ne sont pas des matrices scalaires.

Définition 3. Le Demi-plan supérieur est défini par :

$$\mathbb{H}^2 := \{ a + bi \in \mathbb{C} \mid b > 0 \}$$

Corrolaire 1. Les définitions précédentes nous mènent à l'action de PSL(2,F) sur \mathbb{H}^2 . Soit $M \in PSL$ une matrice à coefficients dans \mathbb{R} resp. \mathbb{C} ,

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Soit $z \in \mathbb{H}^2$, z = x + iy. Alors

$$M(z) = \frac{az+b}{cz+d} = \frac{ax+b+iay}{cx+d+icy}$$

En développant, on remarque que PSL envoie \mathbb{H}^2 sur \mathbb{H}^2 .

Définition 4. Soit x un point dans \mathbb{H}^n avec $n \in \mathbb{N}$, soit $\phi : \mathbb{F}_2 \to PSL(n,\mathbb{R})$ un morphisme de groupes. Alors l'orbite de x est définie par l'ensemble suivant :

$$Orb(x) := \{M(x)|M \in Im(\phi)\}$$

Définition 5. On appelle l'ensemble des nombres pseudo-complexes l'ensemble $\mathbb{R} + \tau \mathbb{R} := \{a + b\tau \mid a,b \in \mathbb{R}\}$, où τ est un symbole formel. On définit l'addition et la multiplication sur $\mathbb{R} + \tau \mathbb{R}$ comme suit :

$$\begin{array}{ll} (a+b\tau)+(c+d\tau) &:=& (a+c)+(b+d)\tau \\ (a+b\tau)(c+d\tau) &:=& (ac+bd)+(ad+bc)\tau \end{array}$$

Par définition, $\tau^2=1$. Il est facile de vérifier que la commutativité, l'associativité ainsi que la distributivité s'appliquent dans $\mathbb{R}+\tau\mathbb{R}$, avec élément neutre 1. Néanmoins, pas tous les nombres pseudo-complexes n'ont un inverse.

Définition 6. On appelle Triangulation de Delaunay d'un ensemble de points E une division de E en triangles tels qu'aucun point de E ne se trouve à l'intérieur strict du cercle circonscrit d'un triangle. Cette triangulation n'est pas nécessairement unique.

2 Morphismes de \mathbb{F}_2 dans $PSL(2,\mathbb{R})$

Le premier but est de trouver des morphismes $\phi: \mathbb{F}_2 \to PSL(n,\mathbb{R})$ tels que la trace du commutateur soit égale à -2 à conjugaison près. C'est-à-dire que, pour $a,b\in\mathbb{F}_2$:

$$tr(\phi[a,b]) = -2$$

avec $\phi[a,b] := A*B*A^{-1}*B^{-1}$ pour $\phi(a) = A$ et $\phi(b) = B$. On remarque que le morphisme est entièrement déterminé par l'image des éléments de S (cf. définition du groupe libre). On prend B comme :

$$B = \begin{pmatrix} l & 0 \\ 0 & l^{-1} \end{pmatrix}$$

À partir de cela, on peut déduire la forme de la matrice A.

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

Or la trace du commutateur de A et B doit être égale à -2 :

$$tr \begin{bmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} l & 0 \\ 0 & l^{-1} \end{pmatrix} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \begin{pmatrix} l^{-1} & 0 \\ 0 & l \end{pmatrix} \end{bmatrix} = -2$$

On veut que A envoie

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (s) = s$$

et

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (t) = t$$

avec $s, t \in \mathbb{R}^*$. Par calculs en SageTM, on trouve que

$$A = \begin{pmatrix} \frac{-s+t+\sqrt{s^2+2st+t^2+4}}{2} & st\\ 1 & a+s-t \end{pmatrix}$$

 ${\it et\ donc}$

$$B = \begin{pmatrix} l & 0 \\ 0 & 1/l \end{pmatrix}$$

avec $l = \sqrt{\frac{2\sqrt{st+1}+2+st}{st}}$.

3 Morphismes de \mathbb{F}_2 dans $PSL(2,\mathbb{C})$

On a : $\mathbb{H}^3=\{z+tj|z\in\mathbb{C},t\in\mathbb{R}_+\}$, avec ij=-ji et $j^2=-1$. L'action de $PSL(2,\mathbb{C})$ sur \mathbb{H}^3 est définie par :

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} (z+tj) := \frac{a(z+tj)+b}{c(z+tj)+d}$$

Lemme 1. $PSL(2,\mathbb{C})$ renvoie \mathbb{H}^3 sur \mathbb{H}^3 .

 $D\'{e}monstration.$

$$\begin{split} A(z+tj) &= \frac{a(z+tj)+b}{c(z+tj)+d} \\ &= \frac{(a(z+tj)+b)((\bar{z}-tj)\bar{c}+\bar{d})}{|cz+d|^2+|c|^2t^2} \\ &= \frac{a(z+tj)(\bar{z}-tj)\bar{c}+a(z+tj)\bar{d}+b(\bar{z}-tj)\bar{c}+b\bar{d}}{|cz+d|^2+|c|^2t^2} \\ &= \frac{a(|z|^2-ztj+ztj+t^2)\bar{c}+az\bar{d}+adtj+b\bar{z}\bar{c}-bctj+b\bar{d}}{|cz+d|^2+|c|^2t^2} \\ &= \frac{(az+b)(\bar{c}z+\bar{d})+a\bar{c}t^2+tj}{|cz+d|^2+|c|^2t^2} \in \mathbb{H}^3 \end{split}$$

Les matrices A et B sont de la même forme que celles dans $PSL(2,\mathbb{R})$, seulement avec des coefficients complexes.

4 Morphismes de \mathbb{F}_2 dans $PSL(2, \mathbb{R} + \tau \mathbb{R})$

Lemme 2. $PSL(2, \mathbb{R} + \tau \mathbb{R})$ est isomorphe à $PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$.

Démonstration. Soit $\omega_+ := \frac{1+\tau}{2}$ et $\omega_- := \frac{1-\tau}{2}$. Alors l'application

$$\psi: PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R}) \quad \to \quad PSL(2,\mathbb{R} + \tau \mathbb{R})$$

$$(C_1; C_2) \quad \mapsto \quad C_1\omega_+ + C_2\omega_-$$

est un isomorphisme. On prouve cela en remarquant que

$$\begin{array}{rcl} \omega_{+}\omega_{-} & = & 0 \\ \omega_{+}\omega_{+} & = & \omega_{+} \\ \omega_{-}\omega_{-} & = & \omega_{-} \end{array}$$

Lemme 3. $PSL(2, \mathbb{R} + \tau \mathbb{R})$ envoie \mathbb{H}^3 sur \mathbb{H}^3 .

Démonstration. En remarquant que, comme dans $PSL(2,\mathbb{C})$, $\tau j = -j\tau$ et que $(a+\tau b)(a-\tau b)=a^2-b^2\in\mathbb{R}$, la preuve est analogue à celle du Lemme 1.

Construisons maintenant un morphisme de \mathbb{F}_2 dans $PSL(2,\mathbb{R})\times PSL(2,\mathbb{R}).$ On définit

$$\phi': \quad \mathbb{F}_2 \quad \to \quad PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R}): \\ \left\{ \begin{array}{ccc} a & \mapsto & (A_1;A_2) \\ b & \mapsto & (B_1;B_2) \end{array} \right.$$

avec

$$A_i(s_i) = s_i$$

 $A_i(t_i) = t_i$

ce qui nous mène, comme dans $PSL(2,\mathbb{R}),$ à

$$A_i = \begin{pmatrix} a_i & s_i t_i \\ 1 & a_i + s_i - t_i \end{pmatrix} \quad B_i = \begin{pmatrix} l_i & 0 \\ 0 & 1/l_i \end{pmatrix}$$

avec $l_i = \sqrt{\frac{2\sqrt{s_it_i+1}+2+s_it_i}{s_it_i}}$.

Finalement, on obtient le morphisme $\Gamma = \psi \circ \phi' : \mathbb{F}_2 \to PSL(2, \mathbb{R} + \tau \mathbb{R}).$

5 Enveloppes convexes des orbites

Nous définissons l'orbite d'un point $a \in \mathbb{H}^3$ dans \mathbb{H}^2 comme suit :

$$Orb_{\mathbb{H}^2}(a) := \{(x, y) \in \mathbb{H}^2 | (x, y, z) \in Orb(a), z \le 10^{-3} \}.$$

Pour visualiser, on applique la triangulation de Delaunay sur l'orbite.

5.1 Dans \mathbb{C} :

Supposons qu'on ait $Orb_{\mathbb{H}^2}(a)$.

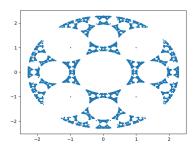


FIGURE $1 - Orb_{\mathbb{H}^2}(1i, 2i)$

On construit, à l'aide de la triangulation de Delaunay, des "cercles maximaux", c'est-à-dire des cercles tels que :

- tout cercle contienne au moins trois points de l'orbite
- il n'y ait aucun point de l'orbite à l'intérieur d'un cercle
- tout point de l'orbite appartienne à au moins un cercle

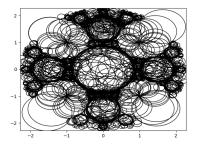


Figure 2 – $Orb_{\mathbb{H}^2}(1i,2i)$ avec "cercles maximaux"

Ensuite, on construit pour tout cercle la demi-sphère dans \mathbb{H}^3 de même rayon et de même centre que le cercle.

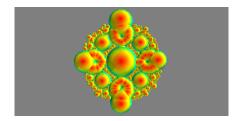


FIGURE $3-Orb_{\mathbb{H}^2}(1i,2i)$ avec demi-sphères

5.2 Dans $\mathbb{R} + \tau \mathbb{R}$:

Supposons qu'on ait $Orb_{\mathbb{H}^2}(a)$.

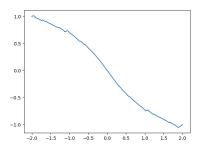


Figure $4 - Orb_{\mathbb{H}^2}((1,3);(3,5))$

On construit, à l'aide de la triangulation de Delaunay, des "hyperboles maximales", c'est-à-dire des hyperboles telles que :

- toute hyperbole contienne au moins trois points de l'orbite
- \bullet tous les points de l'orbite soient du même côté que le centre de l'hyperbole
- tout point de l'orbite appartienne à au moins une hyperbole

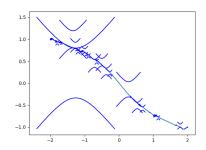


Figure 5 – $Orb_{\mathbb{H}^2}((1,3);(3,5))$ avec "hyperboles maximales"

Ensuite, on construit pour toute hyperbole l'hyperboloïde correspondante. L'hyperbole a l'équation paramétrique

$$\{(a\sinh t,\pm a\cosh t),t\in]-\infty;+\infty[\}$$

Alors son hyperboloïde correspondante a l'équation

$$\{(a\sqrt{1+t^2}\cos(\theta),a\sqrt{1+t^2}\sin(\theta),at),t\in]-\infty;+\infty[,\theta\in[0,2\pi[\}$$

Cela correspond, en effet, à une rotation de l'hyperbole autour de l'axe non focal.

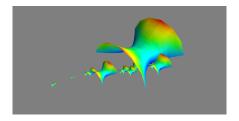


FIGURE 6 – $Orb_{\mathbb{H}^2}((1,3);(3,5))$ avec hyperboloïdes