
Betting on Catalan numbers

Dylan Da Silva Moreira, Hukic Ibrahim

December 31, 2019

Contents

1 Introduction 2

2 Experiment (Programming) 3
2.1 Program . 3
2.2 Results . 4

3 Theoretical approach 5
3.1 Preparation . 5
3.2 The expected value . 7

4 Outcome 8
4.1 What should player A do ? . 8
4.2 Biased coin and Markov Model 8

1

1 Introduction

A fair coin is �ipped 100 times yielding a sequence a = (a1, . . . , a100) of Heads
or Tails. Player A realizes that if one thinks of Heads as +1 and Tails as −1,
then for each k in [1, 100],

∑k
i=1 ai ≥ 0.

Furthermore,
∑100

i=0 a1 = 0.
Player B thinks such a sequence is extremely unlikely and o�ers a bet to A
with a 100 : 1 odds that if they �ip the coin again 100 times yielding a random
sequence x = (x1, . . . , x100), then x is not going to satisfy the properties of a.
Should A accept the bet? What are the true odds for such an event? Is there
a good graphical representation for the properties of a? What if there are 2n
coin �ips? Biased coin?

The solution to this problem will be structured in four parts. We start with a
practical approach and do some programming and computation to get a
feeling for the problem, after plotting our results we move over to �nd
theoretical answer to our problem.Next we calculate the asked probability and
check if it matches the probability value obtained in our experiment. Finally
we will answer the questions regarding the betting game and what happens in
the case of a biased coin.

2

2 Experiment (Programming)

2.1 Program

def verify(s):

if sum(s) == 0:

partial = 0

for i in s:

partial = partial + i

if partial < 0:

return False

return True

return False

def prob(n):

count = 0

for _ in range(n):

seq = [random.choice([-1,1]) for _ in range(l)]

if verify(seq):

count += 1

return count/n

The �rst function verify takes in a sequence s and checks if the given sequence
veri�es our conditions by outputting a boolean. The second function prob com-
putes n sequences of length l and counts how many of these sequences verify
our conditions by outputting it's probability.

v = [(x,prob(x)) for x in range(1,n+1)]

We save the result in a list v of tuples up to n times we want to repeat the
experiment. Now one only needs to plot the list using the list_plot(v)
command.

3

2.2 Results

The x-axis represents the n times we repeat the experiment and the y-axis the
value of the prob function.

200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025

0.03

For n = 1000 and l = 100

We can see that the probability value does converge as we increase the number
of tries. To have a better overview let us increase n , for computational power
reasons we have to decrease the length of the sequence l so the program
doesn't take too long.

500 1000 1500 2000

0.05

0.1

0.15

0.2

0.25

For n = 2000 and l = 10

Here we can see that the probability value does converge from both sides to a
certain value as we expected.

In both cases one can estimate the value to be around 0.002 for l = 100 and
0.05 for l = 10. The next step will be to determine this exact value and if does
match our approximation from the experiment.

4

3 Theoretical approach

3.1 Preparation

Let us rede�ne our +1,−1 random sequence into rightward (−1) and upward

(+1) steps. The solution to our coin �ip problem are all the paths that end on
the straight line f(x) = x (sum equals to zero) and don't cross the line at any
given moment (sum being always positive).

+1

−1
f

x

(n, n)

(n− 1, n+ 1)

Claim. The number of paths satisfying the above conditions is given by:(
2n

n

)
−
(

2n

n+ 1

)
, n ∈ N

Remark. A point on the line f is denoted by (n, n) where n = l
2 with l being

the length of the sequence.

Proof. To end up at the point (n, n) one has to choose n upward (or equivalently
rightward) steps out of 2n total steps. So the number of paths satisfying this
condition is equal to : (

2n

n

)

5

Considering this number still contains paths which will end on the line but cross
it at a given moment we need to exclude them. To �nd out the number of "bad
paths" we will �ip the portion of a path after it has crossed the line for the
�rst time. By "�ipping" one means interchanging all upwards and rightward

steps. The section of a bad path which hasn't been �ipped contains one more
upwards step than rightward steps, hence the remaining path contains one more
rightward step than upward step because it end on the line f . Since there are
2n steps and the �ipping process doesn't change the total amount of steps ,
every �ipped bad path will ends at the point (n − 1, n + 1). Thus the number
of bad paths is given by the possible permutations of n + 1 upward steps (or
equivalently, n− 1 rightward steps) for a total of 2n steps :(

n+ 1 + n− 1

n+ 1

)
=

(
2n

n+ 1

)
=

(
2n

n− 1

)
By subtracting one �nally obtains :(

2n

n

)
−
(

2n

n+ 1

)

Let us develop this expression furthermore :(
2n

n

)
−
(

2n

n+ 1

)
=

(2n)!

n! (2n− n)!
− (2n)!

(n+ 1)! (2n− n− 1)!

=
(2n)!

n! (2n− n)(2n− n− 1)!
− (2n)!

(n+ 1)n! (2n− n− 1)!

=
(2n)! (n+ 1− 2n+ n)

n! (2n− n− 1)! (2n− n)(n+ 1)

=
(2n)!

n! (2n− n− 1)! (2n− n)(n+ 1)

=
(2n)!

n! (2n− n)! (n+ 1)
=

(2n)!

(n+ 1)!n!

=
1

1 + n

(
2n

n

)
One realizes that this is the formula for the Catalan numbers, which is a
sequence of natural numbers given by :

Cn =
1

1 + n

(
2n

n

)
=

(2n)!

(n+ 1)!n!
=

n∏
k=2

n+ k

k
for n ≥ 0.

6

3.2 The expected value

Now one can easily determine the probability of such a sequence to occur. Let's
call this probability P100 for the sequence of length 100 and P10 for the sequence
of length 10 :

P100 =
C50

2100
= 0.0015605732821015443431 ' 0.00156 (1)

P10 =
C5

210
= 0.041015625 ' 0.041 (2)

Remark. Notice that the Catalan number C50 it the number of possibilities
satisfying our condtions for a length l = 100 since we de�ned n = l

2 . Analogously
for C5.

Let's see if these values correspond to our estimations:

200 400 600 800 1000

0.005

0.01

0.015

0.02

0.025

0.03

For n = 1000 and l = 100

500 1000 1500 2000

0.05

0.1

0.15

0.2

For n = 2000 and l = 10

Indeed, in both cases they converge to our calculated value (red line).

7

4 Outcome

4.1 What should player A do ?

In this section we will discuss if player A should accept the bet, if not under
which conditions should he play such that the bet would be in his favour.
To answer this question it su�ces to calculate the expected value E[X], where
X is a random variable and represents the outcome of either "winning 100eur"
or "loosing 1eur". Since one has only two possible outcomes this is fairly easy:

E[X] = 100P100 − (1− P100) = −0.84238209850774402135

Thus player A shouldn't accept the bet under a 100 : 1 ratio. The answer to

the second part it su�ces to solve the following inequality where m represents
the winning amount of money:

mP100 − (1− P100) > 0 ⇐⇒ m >
(1− P100)

P100
= 639.79015799459995134

Let us suppose cents coins are not accepted in this bet, then the bet is favourable
for player A if he accepts to play under a ratio of 640 : 1

4.2 Biased coin and Markov Model

To answer the question in the case of a biased coin we will use the Markov
Model to visualize our results. In order to do that we will take advantage of the
implemented function hmm.DiscreteHiddenMarkovModel in Sage:

a=hmm.DiscreteHiddenMarkovModel([[1/3,2/3],[1/2,1/2]], [[1,0],[0,1]],
[0.5,0.5],[-1, 1])

[1/3,2/3]

[1/2,1/2]

designs the transition matrix

[1,0]

[0,1]

designs the emission matrix

[0.5,0.5] is the initial probabilty condition and [-1,1] are the respective outcomes

for detailed description visit:
http://doc.sagemath.org/html/en/reference/stats/sage/stats/hmm/hmm.html
Notice that in order to make it a normal Markov model we use the identity
matrix as the emission matrix.

Now we can use

a.sample(l)

to sample a sequence of length l that obeys our biased coin,to write the fol-
lowing program:

8

http://doc.sagemath.org/html/en/reference/stats/sage/stats/hmm/hmm.html

def prob_markov(n):

count = 0

for _ in range(n):

seq = a.sample(l)

if verify(seq):

count += 1

return count/n

By saving this in a list as we did in section 2 and plotting it we get:

w = [(x,prob_markov(x)) for x in range(1,n+1)]

list_plot(w)

200 400 600 800 1000

0.05

0.1

0.15

0.2

For n = 2000 and l = 10

One observes that the probability value of prob_markov function con-
verges to a di�erent value in the case of a biased coin.
The reader is welcome to play around with the program sheet and see how the
graph changes accordingly to changes in the transitions matrix .

Reminder

We have created a interactive Jupyter sheet which contains all the programs
and plots used , you are welcome to play around with. The sheet and the whole
presentation has been put in Github repository which can be accessed HERE. In
order to use this sheet make sure you are using the SageMath Kernel in Jupyter
Notebook. It is also worth noticing that to compile the .tex �le you must use
the

pdflatex -synctex=1 -interaction=nonstopmode --shell-escape \%.tex

command in your texeditor.

9

https://github.com/DaSilvaMoreira/Betting_Game

	Introduction
	Experiment (Programming)
	Program
	Results

	Theoretical approach
	Preparation
	The expected value

	Outcome
	What should player A do ?
	Biased coin and Markov Model

