
FSTC: Bachelor of Mathematics

Supervisor: Simon Campese

Random Walks
Yanis Bosch, Tim Seuré

Experimental mathematics 2
Winter semester 2019/20

Abstract

In the following, we will investigate random walks on Z and Z2. We will suggest some ways of
representing them and analyse random variables connected to the random walks. In particular,
our goal will be to experimentally examine their properties and check accordance with theoretical
results.

We have initially chosen the topic Runs in random sequences, but upon studying runs in random
walks, we have found other interesting properties that we wanted to report about. Therefore, we
have entirely focused our mind on random walks in general.

i

ii

Contents

1 One-dimensional random walk 1

1.1 Introduction . 1

1.2 Returning to zero . 2

1.3 Counting occurrences of a pattern E . 5

1.4 Reaching distance N from the origin . 9

2 Two-dimensional random walk 15

2.1 Introduction . 15

2.2 Number of points reached . 16

2.3 Maximal distance . 18

2.4 Leaving square . 19

iii

iv

1 One-dimensional random walk

1.1 Introduction

Casually described, consider a bunny with initial position 0 ∈ Z and at each step, jumping either
one unit to the left (interpreted as −1) with a probability of p ∈ [0, 1], or one unit to the right
(interpreted as +1) with a probability of q := 1− p ∈ [0, 1]. The path this bunny treads will be
described as a one dimensional random walk, or more concretely, a random walk on Z.
In this section, we will be trying to analyse the following questions:

• How can the bunny’s movement be illustrated?

• If the bunny does n jumps in total, how often does it return to the origin 0?

• If the bunny does n jumps in total, how often will it jump in a given pattern E? How
many times will it jump until it has bounced in a given pattern E?

• How many times will the bunny have to jump until it has a distance N to the origin 0?

Firstly, let us give a more formal definition of what is meant by a random walk on Z.

Definition 1 (Random walk on Z). Let p ∈ [0, 1] and q := 1− p. Let (Xi)i∈N be a sequence of
independent and identically distributed random variables satisfying ∀i ∈ N : P{Xi = 1} = p and
P{Xi = −1} = q. For n ∈ N, let

Sn :=

n∑
i=1

Xi.

Then (Sn)n∈N is called a random walk on Z. If p = 1
2 , the random walk (Sn)n∈N is symmetric.

Now, a random walk (Sn) can be illustrated by representing the points (n, Sn) in a two-dimensional
orthogonal coordinate system, as illustrated in the following, where p = 1

2 and we’re representing
random walks (Sn)0≤n≤m for m = 30, 300:

1

The same random walks can be depicted by drawing the lines connecting the points (n, Sn) and
(n+ 1, Sn+1):

The latter representation is the one we will be using for the following, as the first one might be
confusing for small m.

1.2 Returning to zero

Informally speaking, the question we’re asking is how often the bunny returns to its starting
point, given the amount of jumps it puts into practice. It is clear that this question does not
have a precise answer, as we are talking about a random event. Nonetheless, we will see that
it can be approximated quite well. We will limit ourselves to the symmetric random walk, i.e.
p = 1

2 .

Let us now mathematically formulate what we are trying to analyse.

Definition 2 (Number of zeroes). Let (Sn)n∈N be a symmetric random walk on Z. For a given
m ∈ N, let us define

Ym :=
m∑
i=1

1{Si=0}.

Ym is called the number of zeroes of (Sn)0≤n≤m.

Note that one always has S0 = 0 by definition, but this zero is not counted in Ym. Also, one
could reduce the sum above to only account for those i that are even, as the random walk can
never hit the x-axis after an odd amount of steps.

To investigate the problem, we shall illustrate some random walks (Sn)0≤n≤100 and mark the
points (n, 0) if Sn = 0.

2

Those graphs suggest that the number of zeroes seems to fluctuate strongly, i.e. the variance of
Ym is great. Let us represent the number of zeroes Y100 for 10 different random walks generated
with Sage.

Y100 7 2 5 7 4 6 9 1 3 8

Their arithmetic mean is 5.2. Let us now take a sample of 10 000 random walks (Sn)0≤n≤100 and
compute, again using Sage, the arithmetic mean Y of their number of zeroes Y100. One obtains
Y = 7.0403. Redoing this gives Y = 7.0447, suggesting that we are indeed close the the expected
value of Y100. This is confirmed by the following

Theorem 1. The expected value of the number of zeroes Y2m,m ≥ 1, is given by

E(Y2m) = (2m+ 1)

(
2m
m

)
22m

− 1.

Proof. This theorem follows from the probability

P (Sn = k) =

(
n
n+k
2

)
2n

, where− n ≤ k ≤ n.

A proof of this formula can be found in Irrfahrten [2]. Using this, combined with the equality
Y2m =

∑m
i=1 1{S2i=0} (which follows from the fact that S2i+1 is never equal to 0), we obtain:

E(Y2m) = E

(
m∑
i=1

1{S2i=0}

)
=

m∑
i=1

E1{S2i=0} =
m∑
i=1

P(S2i = 0) =
m∑
i=1

(
2i
i

)
22i

= (2m+ 1)

(
2m
m

)
22m

− 1,

where the last equality can be shown inductively over m ≥ 1:

m = 1: We have:
1∑
i=1

(
2i
i

)
22i

=
1

2
= (2 · 1 + 1)

(
2·1
1

)
22·1

− 1.

m→ m+ 1: Assume the formula holds for a given m ≥ 1. Then:

m+1∑
i=1

(
2i
i

)
22i

=

m∑
i=1

(
2i
i

)
22i

+

(
2m+2
m+1

)
22m+2

= (2m+ 1)

(
2m
m

)
22m

+

(
2m+2
m+1

)
22m+2

− 1 =
4(2m+ 1)

(
2m
m

)
+
(
2m+2
m+1

)
22m+2

− 1,

3

where the second equality uses the induction hypothesis. Hence:
m+1∑
i=1

(
2i
i

)
22i

=
4(2m+ 1)(2m)!(m+ 1)2 + (2m+ 2)!

(m+ 1)!(m+ 1)! · 22m+2
− 1

=
(2(m+ 1) + 1) (2m+ 2)!

(m+ 1)!(m+ 1)! · 22m+2
− 1

= (2m+ 3)

(
2m+2
m+1

)
22m+2

− 1,

as desired.

Note that E(Y2m+1) = E(Y2m), as there cannot be a zero at the (2m+ 1)st step.

We can now check that the previous values of Y were indeed close to the expected value of Y100:

E(Y100) = E(Y2·50) = (2 · 50 + 1)

(
2·50
50

)
22·50

− 1 ≈ 7.0385.

We will now compute N symmetric random walks of length n. Let Z(k) be the amount of
random walks whose number of zeroes is exactly k for 0 ≤ k ≤ n. We will then plot the points
(k, Z(k)) for 0 ≤ k ≤ n,Z(k) > 0.

Here is an example for N = 10 000, n = 50:

Next, let us plot the points
(
k, Z(k)N

)
, where Z(k)

N should be an approximation for the probability
P {Yn = k}. The following again uses N = 10 000, n = 50:

4

One shall not be mistaken if one thinks that this has similarities with the right half of the bell
curve. In fact, one has the following theorem, also found in Irrfahrten [2]:

Theorem 2. ∀x > 0, one has

lim
n→+∞

P
(
Y2n√
2n
≤ x

)
=

√
2

π

∫ x

0
exp

(
− t

2

2

)
dt.

This implies that our plot can, in a way, be normalized by representing the points
(

k√
2n
,
√
2n
N Z(k)

)
and should be approximated by the curve of the function

f :

R≥0 → R

x 7→
√

2
π exp

(
−x2

2

)
.

The following graph, which represents f and the points
(

k√
2n
,
√
2n
N Z(k)

)
for n = 500, N = 60 000,

shows how well the approximation behaves, even for small n:

1.3 Counting occurrences of a pattern E

The following is partially based on the definitions found in the book An Introduction to Probability
Theory and Its Applications [1]. Some information on multithreading has been found on the
websites [4] and [3].

Definition 3. Let (Sn)n∈N be a random walk on Z, E = (Xi)0≤i≤m a sequence whereXi ∈ {±1}.
Then we say that E occurs at position k, if E occurs in the subsequence (Sn)0≤n≤k.

Note that if E occurs at position k, we count a second occurrence of E if and only if E occurs in
the subsequence (Sn)n>k. The same holds for third, fourth, ... occurrences of E. This ensures
that the appearance of E qualifies as a recurrent event.

Definition 4. Let (Sn)n∈N be a random walk on Z, E = (Xi)0≤i≤m a sequence, whereXi ∈ {±1}.
We define the event

Nn := "the number of occurences of E in (Si)0≤i≤n".

5

We will now study the behaviour of Nn. To do so we will calculate Nn multiple times and plot
the relative frequencies of the obtained values. The programming here was done using Python,
the generation of our random variables was done using the NumPy and random modules. The
plotting was achieved using the matplotlib module. We presented two functions to compute and
plot the values of Nn: run_st() and run_mt() contained in the file maths_exp_N_n_main.py.

The first version used only one thread and the second one used multiple threads increasing the
efficiency of our program for large computations. Our functions took the following inputs:

• N : number of values of Nn being computed

• n: length of the runs

• E: a pattern as described in definition 3

• p: probability associated to our random walks (default value: 0.5)

• t: number of threads used (only for run_mt()) (default value: 8)

Let us call run_mt() with the following inputs for N ∈
{
10i : i ∈ {3, 4, 5, 6}

}
:

• n = 1000

• E = [1, 0, 1]

• p = 0.5

• t = 8

This yielded the following graphs:

6

We see that when N → +∞, our graph resembles more and more that of a normal distribution.
We were given the following formulae to normalize our graph, i.e. to get an expectation of 0 and
a standard deviation of 1:

µ =
1− pn

(1− p)× pn

σ =

√
1

((1− p)× pn)2
− 2× n+ 1

(1− p)× pn
− p

(1− p)2

Nn 7→
Nn − n× µ
σ ×
√
n

But for any large values of n, Python rounded the values of some of the denominators to 0, causing
zero division errors. Hence, we omitted the normalization for our program. Nevertheless, we can
notice that the expectation seems to be around 100 for our inputs given as above.

Definition 5. Let (Sn)n∈N be a random walk on Z, E = (Xi)0≤i≤m a sequence, whereXi ∈ {±1}.
We define the event

Tr := "the minimal length of a subsequence (Si)0≤i≤n such that E occurs r times".

We now want to take a closer look at the behaviour of Tr. We will proceed exactly as before: This
time we defined the functions run_st() and run_mt() contained in the file maths_exp_T_r_main.py.
Just like before, run_st() was a single threaded version of run_mt() , which was multi-threaded.
They took the following parameters:

• N : number of values of Tr being computed

• r: number of required occurrences of E

• E: a pattern as described in definition 3

• p: probability associated to our random walks (default value: 0.5)

• t: number of threads used (only for run_mt()) (default value: 8)

Let us call run_mt() with the following inputs for N ∈
{
10i : i ∈ {3, 4, 5, 6, 7}

}
:

• r = 3

• E = [1, 0, 1]

• p = 0.5

• t = 8

This yielded the following graphs:

7

Again, for N → +∞, our graph starts to resemble that of a normal distribution. Yet we can
notice two things:

• The graph seems to be slightly asymmetric, which is not the case for a normal distribution.
This is due to the fact that the minimum possible result of Tr is r times the length of E,
hence excluding any smaller results.

• The normalization does not centre our graph around the y-axis, i.e. the expectation after
the normalization is not 0. We can notice that when we set r to larger values the graph
is shifted further and further towards the left. We can also notice that the graph becomes
more and more narrow, indicating that the standard deviation is not 1.

One explanation could be that the formula for our normalization does not depend on the length
on E (which should impact the expectation) and that it does not depend on the number of 1’s
and −1’s in E (which should also impact the expectation as for example with p = 0.3, (−1,−1)
will appear far less often than (1, 1)).

8

The formulae used for the normalization of our results were the following:

µ =
1− pr

(1− p)× pr

σ =

√
1

((1− p)× pr)2
− 2× r + 1

(1− p)× pr
− p

(1− p)2

Tr 7→
Tr − r × µ
σ ×
√
r

Remark: After further looking into this topic, we’ve found out that the distribution we are
dealing with is much more likely to be a Rayleigh-distribution.

1.4 Reaching distance N from the origin

Using the analogy of the bunny, the question we are asking is after how many jumps the bunny
will be at a distance N from the origin. For this event we will not only limit ourselves to
symmetric random walks: We will first consider random walks where p = 1

2 , and then briefly
analyse random walks where for other 0 < p < 1. Let’s start with a more formal definition of
the problem we are analysing.

Definition 6. Let (Sn)n∈N be a random walk on Z. Then we define

dN := min {n ∈ N : |Sn| = N} ,

the first index at which our random walk is at a distance N from the origin.

9

For the following part we will be using the script math_exp_random_run_over_N_main.py coded
in Python using the same modules as before. This time we will only use the run_st(), as
the multi-threaded version turned out to be very inefficient. Multi-threading generates a lot of
overhead, which is not alleviated by the multiple threads working simultaneously, as each thread
only has to take care of small calculations (generation of random variables). In practice, it is
around 100 times slower than the single threaded approach. However, as it does work, it can
still be called using run_mt(). Both run_st() and run_mt() use the following as input:

• N : the desired distance to the origin

• p: the associated probability to the random walks (default value: 0.5)

Case 1: p = 1
2 : We consider N = 50 and p = 1

2 . We obtain the following images:

We notice that it takes quite a few steps until our random walk reaches a distance 50 from the
origin. After 500 steps most walks will not even have reached a distance of 20 from the origin.
It seems that on average it takes around 2 500 steps to reach the desired distance (the average
length of our 4 runs here is 2 523). Computing the average of 1 000 runs gives us an average
length of 2 514 steps, which is very close to the average over our 4 runs.

Case 2: p < 1
2 : We consider N = 50 and p = 0.3. We obtain the following images:

10

We immediately notice that it takes far fewer steps to reach a distance of 50 to the origin.
Whereas in the case p = 1

2 the number of steps was around N2, here we notice that it is far
closer to 2N . This makes sense as with p = 1

2 , the random walk tends to stay around the origin,
whereas with p = 0.3 the random run is far more likely to take a step upwards. This is also
confirmed by the fact that our random walk reached +N in all four of our runs, whereas in the
case p = 1

2 , it reaches +N only two out of four times. Calculating the average length of 1 000
random walks with associated probability 0.3 until it reaches a distance of N = 50 to the origin
yields an average of 126 steps which is relatively close to our average of 137 over our 4 example
runs.

Case 3: p > 1
2 : We consider N = 50 and p = 0.7. We obtain the following images:

11

This case is analogous to the previous case because of symmetry.

What we have noticed is that no matter how big we choose N , the random walk will eventually
reach a distance of N to the origin. This holds even for p = 1

2 , as one can see in the following
example, where N = 5000. this specific random walk finally reached a distance of N to the
origin after over 3.5 · 107 steps.

Much quicker was the case N = 5000, p = 0.3. Here, the random walk reached the wanted
distance already after under 13 000 steps.

12

Lastly, we want to plot multiple random walks simultaneously. In addition, we can rotate the
graph by 90 degrees to the right and we will notice that if we plot a lot of random walks, we
get a shape resembling that of a normal distribution. Here again we presented two approaches
using Python, one being multi-threaded, the other being single-threaded. Both approaches took
the following as input:

• nbr: the number of random walks to plot

• N : the length of the plotted random walks

• p: the probability associated to the random walks (default value: 0.5)

• t: the number of threads used (only for run_mt()) (default value: 8)

We ran run_mt() with the following input:

• nbr = 1000

• N = 1000

• p = 1
2

and got the graph below:

In order to see whether the multi-threaded approach yielded a faster computation time, we ran
our functions run_st() and run_mt() with N = nbr = 10(i+1)/2, where i ∈ {0, 1, 2, 3, 4, 5, 6, 7}.
We got the following output in the IDLE Shell:

—————————————————–
Multi-Threaded

— 0.060402870178222656 seconds —
Single-Threaded

— 0.010157108306884766 seconds —
—————————————————–

Multi-Threaded
— 0.02314901351928711 seconds —

13

Single-Threaded
— 0.02015066146850586 seconds —

—————————————————–
Multi-Threaded

— 0.06358504295349121 seconds —
Single-Threaded

— 0.05956912040710449 seconds —
—————————————————–

Multi-Threaded
— 0.2403881549835205 seconds —

Single-Threaded
— 0.24015402793884277 seconds —

—————————————————–
Multi-Threaded

— 1.0713260173797607 seconds —
Single-Threaded

— 1.1993682384490967 seconds —
—————————————————–

Multi-Threaded
— 7.101611137390137 seconds —

Single-Threaded
— 8.303792715072632 seconds —

—————————————————–
Multi-Threaded

— 60.43592023849487 seconds —
Single-Threaded

— 71.8449342250824 seconds —
—————————————————–

Multi-Threaded
— 590.5307519435883 seconds —

Single-Threaded
— 732.1697857379913 seconds —

We notice that for our last call of run_st() and run_mt() the multi-threaded approach was
more than 2 minutes quicker than the single-threaded approach. For smaller inputs though the
single-threaded approach remained faster.

14

2 Two-dimensional random walk

As the two-dimensional random walk is much more complex than the one-dimensional one, we
will unfortunately not be able to find the same level of detail in the answers to our questions.

In order not to repeat it during the whole section, we shall note this now: When we mention the
radius of a square, we are talking about half of the square’s side length. This is atypical, but
simplifies the below notation.

2.1 Introduction

In this section, we will consider a bunny starting at the origin (0, 0) ∈ Z2 and taking one jump
after the other, either upwards, downwards, to the left, or to the right, each with a probability
of p = 1

4 . We are interested in the following questions:

• How can we illustrate the bunny’s movement?

• Given the amount of jumps the bunny does, how many different points does it reach?

• If the bunny jumps n times in total, what will be its maximal distance to the origin during
its path?

• How many jumps does the bunny need in order to leave a given square centred at the
origin?

Again, let us start with a formal definition of the symmetric random walk on Z2.

Definition 7 (Symmetric random walk on Z2). Let (Xi)i∈N be a sequence of independent
and identically distributed random variables satisfying ∀i ∈ N,∀{x, y} ∈ {{0,±1}} : P{Xi =
(x, y)} = 1

4 . For n ∈ N, let

Sn :=
n∑
i=1

Xi.

Then (Sn)n∈N is called a symmetric random walk on Z2.

Such a walk can be illustrated by plotting the points Sn in Z2 in a two-dimensional orthogonal
coordinate system, as shown in the following, where we’re representing random walks (Sn)0≤n≤m
for m = 500, 5000:

15

Now, instead of plotting the points, one can also draw the lines connecting Sn and Sn+1. The
following is representing a random walk (Sn)0≤n≤500:

In order to see the exact course of the random walk, we can add some colour to the lines, changing
"continuously" as n increases. The below representation shows a random walk (Sn)0≤n≤5000:

2.2 Number of points reached

How many different points does the bunny reach, given that it jumps n times in total? Let us
formulate this question mathematically.

Definition 8 (Number of points reached). Let (Sn)n∈N be a symmetric random walk on Z2. For
m ∈ N, let

Rm := #{S0, S1, . . . , Sm}.
Then Rm is the number of points reached for (Sn)0≤n≤m.

16

Hence, we are interested in the expected value of Rm. As before, it might make sense to ap-
proximate E(Rm) by computing some random walks of same length m, counting the number of
points reached by them, then taking their average.

Using Sage, we get the following approximations for E(Rm), where we’re always taking the
average of 1 000 random walks:

m 10 50 100 500 1 000 10 000

≈ E(Rm) 7.278 27.37 48.94 196.4 361.6 2 864

The next step should be to compute N symmetric random walks on Z2 of length m and count
the amount Z(k) of random walks that reach exactly k different points, where 0 ≤ k ≤ m.
Afterwards, we plot the points (k, Z(k)) for Z(k) > 0.

Using Sage, we get for m = 100, N = 100 000:

Aiming to obtain a Gaussian bell curve, we are looking for a way to normalize this curve. As
described in Irrfahrten [2], we have the asymptotic behaviour

E(Rm) ∼
πm

lnm
, m→ +∞.

Unfortunately, as this clear curve only arises if N is much bigger than m, we cannot choose our
m too big, as otherwise we would have problems computing. Choosing m = 100, which is small,
and N = 100 000, we get the following when plotting

(
k − πm

lnm , Z(k)
)
:

Hence, our m was chosen too small in order to centralize using the asymptotic behaviour of
E(Rm). Fortunately, Irrfahrten [2] mentions tight upper and lower boundaries for E(R2m−1),m ≥

17

7, originally given by P. Erdős and A. Dvoretzky in Some problems on random walk in space,
namely

2πm

1.16π − 1 + lnm
< E (R2m−1) <

2πm

1.066π − 1 + lnm
.

Taking the average E2m−1 of those upper and lower bounds gives us a better approximation for
the expected value of E(R2m−1), at least for small m.

Hence, we can now try to centralize our plotting using Em by representing (k − Em, Z(k)) for
m = 99 (has to be odd by above formula), N = 100 000:

We were not able to get closer to the bell curve than this, mostly due to the complexity of Rn
and the fact that it is hard to grasp as a random variable (see its definition).

2.3 Maximal distance

Given that the bunny jumps n times in total, we’re interested in the maximal Chebyshev-distance
to the origin the bunny has during its walk. The following definition should fix this idea in a
formal way.

Definition 9 (Maximal distance). Let (Sn)n∈N be a symmetric random walk on Z2 and

d :

{
Z2 × Z2 → Z≥0
((a, b), (c, d)) 7→ max {|a− c|, |b− d|}

(2.1)

the Chebyshev-distance on Z2. For m ∈ N, let

Dm := max{d(Sn, 0) : 0 ≤ n ≤ m}.

Then Dm is the maximal distance of (Sn)0≤n≤m to the origin.

Geometrically speaking, we are interested in the radius of the smallest square (whose sides are
parallel to the x- and y-axis) centred at the origin that contains our whole random walk. Below
is a random walk (Sn)0≤n≤1 000 where D1000 = 48, which equals the radius of the drawn square:

18

Our goal is to see how the expected value of Dm depends on m. For this, let us compute the
average Dm of 1 000 random walks, which should be an approximation for E(Dm):

m 10 50 100 500 1 000 10 000

≈ E(Dm) 3.091 7.232 10.342 23.58 33.63 107.9

What one notices is that the approximated values of E(Dm) are very close to
√
m. Hence, it

might make sense to compute E(Dm)/
√
m and observe what we obtain.

m 10 50 100 500 1 000 10 000

≈ E(Dm)/
√
m 0.9775 1.023 1.034 1.055 1.063 1.079

Hence, it appears that

E(Dm) ∼ ϕ(m)
√
m, m→ +∞,

where ϕ : N → R such that ∃M ∈ N : ∀m ≥ M : ϕ(m) > 1. We were not able to get a better
estimation of E(Dm) for m→ +∞.

2.4 Leaving square

We want to know how long the bunny needs to leave an (open) square centred at the origin,
whose sides are parallel to the x- and y-axis and whose radius equals r ∈ N. In other words, we
are interested in E(Lr), where

Lr := min{n ∈ N : d(Sn, 0) ≥ r}.

Here, we use the Chebyshev-distance function from (2.1).

For example, we can generate a random walk that will be drawn until it leaves the square of
radius r = 60 centred at the origin, as is shown in the following 2 random walks:

19

The first random walk needed 10 331 steps to leave the square, the second one only 951 steps.
Hence, it is not wrong to assume that the variance of Lr is elevated.

Below is a random walk that needed 44 397 steps to leave the square with radius r = 200:

Now, for a fixed r ∈ N, we compute N random walks on Z2 and count the amount Z(k) of
random walks that needed exactly k steps to leave the square or radius r centred at the origin.
Afterwards, we plot the points (k, Z(k)/N), where Z(k)/N should be an approximation of the
probability P(Lr = k). In order to get a meaningful plot, we shall choose N much greater to r,
to emulate N → +∞.

Below are the plots of (k, Z(k)/N), where we chose r = 5, 10 and N = 100 000:

One notices similarities with the Rayleigh-distribution.

20

Bibliography

[1] W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1 (v. 1), John
Wiley and Sons (WIE), 3rd ed., 1968.

[2] N. Henze, Irrfahrten – Faszination der Random Walks. Ein elementarer Einstieg in die
stochastischen Prozesse, Springer, 2nd ed., 2018.

[3] M. MCCURDY, Python Multithreading and Multiprocessing Tutorial.

[4] TutorialsPoint, Python - Multithreaded Programming.

21

https://www.toptal.com/python/beginners-guide-to-concurrency-and-parallelism-in-python
https://www.tutorialspoint.com/python/python_multithreading.htm

	One-dimensional random walk
	Introduction
	Returning to zero
	Counting occurrences of a pattern E
	Reaching distance N from the origin

	Two-dimensional random walk
	Introduction
	Number of points reached
	Maximal distance
	Leaving square

