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Introduction

In this Master thesis, we consider an imaginary quadratic number �eldQ(
√
−m),

with m a squarefree positive integer, and its associated ring of integers O−m,
which we also just denote by O. The groups SL2(O) and PSL2(O) are the so-
called Bianchi groups. These groups act in a natural way on the 3-dimensional

hyperbolic space. Luigi Bianchi (see [4]), an Italian mathematician who is pri-

marily known for his contributions to di�erential geometry, computed in 1892

fundamental domains for this group action for the values of

m ∈ {1, 2, 3, 5, 6, 7, 10, 11, 13, 15, 19} .

As such a fundamental domain has the shape of a hyperbolic polyhedron (up

to some missing vertices), we call it the Bianchi fundamental polyhedron.

The aim of this thesis is to develop a comprehensible description of the con-

struction of a Bianchi fundamental polyhedron for a less advanced audience

in mathematics. More precisely, the aim of chapter 2 is to describe a relevant

algorithm that is used to compute the Bianchi fundamental polyhedron (see

[1]). The second part of this thesis consists of computations of the Bianchi

fundamental polyhedron for m = 2 and for m = 5.

Another part of this thesis was to visualize the Bianchi fundamental poly-

hedron. For this, I collected screenshots of the fundamental polyhedron for the

Bianchi group of discriminant −427, computed with Bianchi.gp and visualized

with the program "Geomview". Then using these screenshots, I established an

animated "GIF"-�le (see 'Appendix'). Furthermore, via the program "GeoGe-

bra", I established constructions (mainly for the subsections 2.2.2 and 2.2.3)

to clarify the ideas of de�nitions and notations, and to follow the development

of the computation of the corresponding Bianchi fundamental polyhedron.
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Chapter 1

Preliminaries

The aim of this chapter is to collect several de�nitions, explanations and results

of hyperbolic Geometry to rise the comprehension for the next chapter.

1.1 De�nitions, Notations and Examples

This section recalls some de�nitions of Geometry and Algebra.

Let us start with the de�nition of a group action, because in this thesis we

will treat the action of SL2(O) on the upper-half space model H (of which the

details will follow later).

De�nition 1. Let E be a set with E ≠ ∅ and let G be a group. Then the map

ϕ ∶ G ×E → E

(g, x) ↦ ϕ(g, x) ∶= g ⋅ x

is called (left) group action of G on E if the following conditions are satis�ed:

i) e ⋅ x = x, for all x ∈ E, and e ∈ G denotes the identity element of G,

ii) g ⋅ (g′ ⋅ x) = (gg′) ⋅ x, for all (g, g′) ∈ G2, for all x ∈ E.

Example 1. The action

⋅ ∶ G ×E → E

(g, x) ↦ x

is called the trivial action.
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Example 2. Let G = Z/2Z = ({1,−1}, ⋅) and let E = R. Then we consider the

map

ϕ ∶ Z/2Z ×R→ R
(g, x) ↦ g ⋅ x

which is a group action of Z/2Z on R. Indeed, ϕ satis�es both conditions

de�ned in De�nition 1:

i) 1 ⋅ x = x, for all x ∈ R, and e = 1 is the identity element of Z/2Z,

ii) By associativity of ⋅ , we clearly have g ⋅ (g′ ⋅x) = (gg′) ⋅x, for all (g, g′) ∈
(Z/2Z)2, and for all x ∈ R.

De�nition 2. Let E be a set with E ≠ ∅, G be a group and ϕ be a group

action.

1. We call the orbit the subset G ⋅ x = {g ⋅ x ∣ g ∈ G}, where x ∈ E.

2. We call the stabilizer of x ∈ E the subgroup Gx = {g ∈ G ∣ g ⋅x = x} of G.

3. We call the kernel of the group action the subset

ker(ϕ) = {g ∈ G ∣ g ⋅ x = x , ∀x ∈ E} = ⋂x∈EGx.

The stabilizer contains all group elements �xing the point x, i.e. that send

x to itself. The orbit of x ∈ E is in fact the set of elements in E to which x

can be moved by the elements of G.

Example 3. Let G = Z/2Z, E = R and let us consider the group action ϕ as

de�ned in Example 2.

1. The orbit is Z/2Z ⋅ x = {g ⋅ x ∣ g ∈ Z/2Z} = {(x,−x)}, where x ∈ R, as

ϕ ∶ Z/2Z ×R→ R
(1, x) ↦ 1 ⋅ x = x

(−1, x) ↦ (−1) ⋅ x = −x .

In other words, the orbits are pairs of points of opposite sign. Note that

the orbit of 0 consists of just one point, namely 0 = −0.
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2. The stabilizer of x ∈ R equals to

(Z/2Z)x = {g ∈ Z/2Z ∣ g ⋅ x = x} = { {1} , if x ≠ 0

{1,−1} , if x = 0 .

3. The kernel of the group action is

ker(ϕ) = {g ∈ Z/2Z ∣ g ⋅ x = x , ∀x ∈ R} = ⋂x∈R(Z/2Z)x = {1}.

De�nition 3. Let m ∈ N be a positive integer. We call m squarefree if m =
p1 ⋅ p2 ⋅ . . . ⋅ pn with pi, pj pairwise di�erent prime numbers.

In other words, the prime decomposition of m does not contain repeated

factors.

Example 4. � All prime numbers are obviously squarefree.

� Since 165 = 3 ⋅ 5 ⋅ 11, we have that 165 is a squarefree positive integer.

Let us now recall some groups:

De�nition 4. 1. The group

SL2(C) = {( a b

c d
) a, b, c, d ∈ C such that ad − bc = 1}

is called the special linear group and contains the 2 × 2-matrices with

entries in C and determinant equal to 1.

2. The quotient group

PSL2(C) ∶= SL2(C)/⟨I,−I⟩ ,

where I = ( 1 0

0 1
) denotes the identity matrix, is called the projective

special linear group over C. So this group contains the 2 × 2-matrices

with determinant one modulo its center {±I}. This means that we are

identifying I with −I; i.e. I = −I in PSL2(C).

Note that the elements of PSL2(C) are actually {( a b

c d
) ; ( −a −b

−c −d )}.

But for the whole of this thesis we will use the notation M = ( a b

c d
) for the

elements of SL2(C) and for their classes in PSL2(C).
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Let us now recall the de�nition of the ring of integers:

De�nition 5. Let K be an algebraic number �eld. Then its ring of integers

is denoted by OK and it is de�ned to be

OK ∶= {x ∈K ∣ ∃n ∈ N, ∃a0, a1, ..., an ∈ Z and an = 1 ∶ a0 + a1x + a2x2 + ... + anxn = 0}
= {x ∈K ∣ ∃n ∈ N, ∃a0, a1, ..., an−1 ∈ Z ∶ a0 + a1x + a2x2 + ... + an−1xn−1 + xn = 0} .

Now consider K ∶= Q(
√
−m ) = {q + r

√
−m ∣ q, r ∈ Q} ⊂ C the imaginary

quadratic number �eld where m is a �xed squarefree positive integer.

Then for O−m ⊂ K the ring of imaginary quadratic integers, constructed ac-

cording to De�nition 5, it turns out that O−m = Z⊕ ω ⋅Z with

ω = {
√
−m , if m ≡ 1 or 2 mod 4

√
−m +1
2 , if m ≡ 3 mod 4

Remark 1. For x = a + b
√
−m ∈ Z[

√
−m], with a, b ∈ Z and m a positive

squarefree integer, we can use

x2 = a2 + 2ab
√
−m −mb2

= −a2 + 2a2 + 2ab
√
−m −mb2

Thus, we get x2−2a2−2ab
√
−m = −a2−mb2, or equivalently, x2−2ax = −a2−mb2.

Hence, if we set

−2a =∶ a1 ∈ Z and − a2 −mb2 =∶ −a0 ∈ Z ,

we �nally obtain x2 + a1x+ a0 = 0; i.e. x ∈ OQ(
√
−m). Thus, we have shown that

Z[
√
−m] ⊂ OQ(

√
−m). Note that the inverse inclusion does not always exist.

For example, for m = 3, we have that 1+
√
−3

2 ∈ OQ(
√
−3), but

1+
√
−3

2 ∉ Z[
√
−3].

Thus, we clearly have OQ(
√
−3) ⊄ Z[

√
−3]. Actually, OQ(

√
−3) has twice as much

points as Z[
√
−3].

To simplify the following reading, we set O−m =∶ O.

Example 5. For m = 1, we have O = Z ⊕
√
−1 ⋅ Z where

√
−1 =∶ i. Then the

ring O is called the ring of Gaussian integers.
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Figure 1.1: O−1

Note that K = Q(
√
−1 ) is then called the �eld of Gaussian rationals and

that the set of units of O−1 is (O−1)× = {±1;±i}. The points in the grid O−1,
displayed in Figure 1.1, are the possible entries for the matrices in SL2(O−1).

Remark 2. � The groups SL2(O−m) and PSL2(O−m) play an important

role in the next chapter.

� The groups of the form SL2(O−m) and PSL2(O−m), where m is a square-

free positive integer, are called Bianchi groups.

Note 1. Let K ∶= Q(
√
−m ) be an imaginary quadratic number �eld where m

is a squarefree positive integer. Then the discriminant of K, denoted by dK ,

takes the following values:

dK = { −4m , if −m ≡ 2 or 3 mod 4

−m , if −m ≡ 1 mod 4 .

Note that this is not the de�nition of the discriminant. The discriminant

is de�ned more generally for algebraic number �elds, and its de�nition can be

found in books on algebraic number theory.

Example 6. As in the previous example, let m = 1. Then the discriminant

dK of K = Q(
√
−1) is equal to −4. Indeed, since −1 ≡ 3 mod 4, then we have

dK = −4.
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De�nition 6. A pair of elements (µ,λ) ∈ O2 is called unimodular if the ideal

sum µO + λO = {λ ⋅ α + µ ⋅ β ∣ α,β ∈ O} equals O.

Example 7. 1. Let us check if (2,3) is a unimodular pair:

Choose (α,β) = (1,−1) ∈ O2, then 2O + 3O ∋ 2 ⋅ (−1) + 3 ⋅ 1 = 1. Thus, as

1 ∈ 2O+ 3O, we can conclude that 2O+ 3O = O ; or equivalently (2,3) is
a unimodular pair.

2. Does iO + 2O = O ?

Choose (α,β) = (0,−i) ∈ O2, then iO + 2O ∋ i ⋅ (−i) + 2 ⋅ 0 = 1. Thus, as

1 ∈ iO + 2O, we can conclude that iO + 2O = O ; or equivalently (i,2) is

a unimodular pair. Moreover, as we chose α = 0, we also proved iO = O.

3. Let us check if (2i,3) is a unimodular pair:

For (α,β) = (1, i) ∈ O2, then we have 2iO+ 3O ∋ 2i ⋅ i+ 3 ⋅ 1 = 1. Thus, as

1 ∈ 2iO+ 3O, we can conclude that 2iO+ 3O = O ; or equivalently (2i,3)
is a unimodular pair.

Remark 3. i) Let us recall the de�nition of an ideal of a ring:

Let (R,+, ⋅) be a ring. Then I ⊆ R is called a (left) ideal of R if

1. (I,+) is a subgroup of (R,+),
2. for every x ∈ I, and for every r ∈ R, we have rx ∈ I.

ii) To draw the conclusion "if 1 ∈ µO + λO, then µO + λO = O" in Example

7, we use the following property of Algebra:

Let R be a ring, and let I ⊆ R be an (left or right) ideal. If 1 ∈ I, then
I = R.
Indeed, let r ∈ R. If 1 ∈ I, then we have r = r ⋅1 ∈ I by the second property

of ideals (see i)). Hence, R ⊆ I. Finally, we proved that, if 1 ∈ I, then
I = R.

iii) Let us check that µO + λO = {λ ⋅ α + µ ⋅ β ∣ α,β ∈ O} is indeed an ideal:

Let us consider the ideals µO = {µ ⋅ β ∣ β ∈ O} and λO = {λ ⋅ α ∣ α ∈ O}
of O.

1. Let λ ⋅α1 +µ ⋅ β1 ∈ µO+λO, for (α1, β1) ∈ O2, and let λ ⋅α2 +µ ⋅ β2 ∈
µO + λO, for (α2, β2) ∈ O2. Then we have

(λ ⋅ α1 + µ ⋅ β1) − (λ ⋅ α2 + µ ⋅ β2) = λ ⋅ (α1 − α2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ O

+µ ⋅ (β1 − β2)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈ O

∈ µO + λO .
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2. Let λ ⋅ α + µ ⋅ β ∈ µO + λO, for (α,β) ∈ O2, and let ν ∈ O. Then we

have

ν(λ ⋅ α + µ ⋅ β) = ν(λ ⋅ α) + ν(µ ⋅ β)
= λ ⋅ (ν ⋅ α)

´¹¹¹¹¹¸¹¹¹¹¹¶
∈ O

+µ ⋅ (ν ⋅ β)
´¹¹¹¹¸¹¹¹¹¹¶
∈ O

∈ µO + λO .

Hence, µO + λO is an ideal of O.

1.2 Upper half-space Model

In this section, we want to describe the upper half-space model of the 3-

dimensional hyperbolic space. More details can be found in [3]. Nowadays,

there exist many convenient models (for example: Poincaré ball model, Kleinian

model) to describe the 3-dimensional hyperbolic space, but we will use the

upper half-space model because it is computationally convenient. In two di-

mensions, it is the upper half-plane model for the hyperbolic plane.

We de�ne the upper half-space as a set

H ∶= {(z, ζ) ∈ C ×R ∣ ζ > 0} = C×]0;+∞[ .

Moreover, the space H can be equipped with the hyperbolic metric coming

from the line element:

ds2 = dx
2 + dy2 + dζ2

ζ2
,

where z ∶= x+iy ∈ C, with x, y ∈ R. Equipped with this metric, we have that the

3-dimensional hyperbolic space is the unique 3-dimensional connected and sim-

ply connected Riemannian manifold with constant sectional curvature equal

to −1.

Let us start with some recalls of the plane hyperbolic Geometry.

We have that the special linear group

SL2(Z) = {( a b

c d
) a, b, c, d ∈ Z such that ad − bc = 1}

acts on the 2-dimensional upper half-plane

H2 = {x + iy ∈ C ∣ (x; y) ∈ R2, y > 0, i2 = −1} ⊂ C
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via the so called Möbius transformation; i.e. let z = x + iy ∈ H2, then

( a b

c d
) ⋅ z = a ⋅ z + b

c ⋅ z + d ∈ H2 .

Notation 1. We can denote " SL2(Z) acts on H2 " as follows: SL2(Z) ⟳ H2.

Remark 4. In the previous section we de�ned the group PSL2(C). Actually,
this group has a natural action on H which can be described as follows:

LetM ∈ PSL2(C), thenM induces a biholomorphism of the complex projective

line P1C ∶= C ∪ {∞}, called the Riemann sphere.

Now, as

−I ⋅ z = ( −1 0

0 −1
) ⋅ z = −1 ⋅ z + 0

0 ⋅ z + (−1) = z ,

where −I ∈ SL2(C) and z ∈ H2, we say that −I acts trivially. We have in fact

that the subset {I,−I} of SL2(C) is the kernel of the group action described

above. Moreover, the fact that −I acts trivially implies that we really have an

action on the quotient group PSL2(C).

Notation 2 (See [12], [13], [14]). For a given group action of a group G on

a set E, we have de�ned the orbit of a point as the collection of its images

under the group action. Then, a subset of the set E, which contains exactly

one point of each orbit, is called a strict fundamental domain. Thus, a fun-

damental domain is used as a realization for the set of representatives of the

orbits (in a geometrical way if E comes with a geometry).

Normally, it is requested that a fundamental domain is a connected subset

with some restrictions. One example of such a restriction is on its boundary,

as it will be the case in the next chapter. Note that a fundamental domain for

a subgroup of PSL2(C) that is also a polyhedron is also called a fundamental

polyhedron.

There are various versions of constructing a fundamental domain. But, once

a fundamental domain is chosen, the images of it under the group action then

"tile" the space. This is called a tessellation, and an individual image of the

fundamental domain is called a tile.

Example 8. (See [7]) In the picture below, we have the Dedekind - tessella-

tion of the upper half-plane in hyperbolic triangles drawn in black and white.
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Any pair consisting of a black and a white hyperbolic triangle in this tessella-

tion forms a fundamental domain for the action of SL2(Z) on H2.

More precisely, let us denote the fundamental domain for this action by F . So
we have

F = {1 black and 1 white hyperbolic triangle}
and, as we have that these black and white triangles tile the the upper half-

plan, we can write

SL2(Z) ⋅ F = H2 .

Figure 1.2: See [7]: Tessellation of the upper half-plane in hyperbolic triangles

We have that SL2(Z) is generated by two rotations α and β, satisfying

α2 = ( −1 0

0 −1
) = −I = β3 .

So we obtain SL2(Z) ≅ ⟨α⟩ ∗{±I} ⟨β⟩.
An example for α and β would be

α = ( 0 1

−1 0
) and β = ( 0 −1

1 1
) .

In Figure 1.2, at some points where two black and two white triangles are

coming together, we can see the following:
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If we choose one white or black triangle, and if we rotate it twice by α, then

the triangle is again at its initial position; i.e. α2 = −I.
Now, at some points where three black and three white triangles are coming

together, we can recognize the comparable following:

If we rotate around the �xed point of β three times, then everything is again

at its initial position; i.e. β3 = −I acts trivially.

In Figure 1.2, the half-circles and vertical lines are the geodesics which are

sometimes called hyperbolic lines. Note that a geodesic is actually a "straight

line" in a curved space; it describes the shortest path between two points on

a curved surface.

Note: If we return to the 3-dimensional hyperbolic space, then these hy-

perbolic lines are orthogonal to the boundary plane C in the Euclidean sense.

Moreover, the geodesic surfaces are Euclidean half-planes or hemispheres which

are again orthogonal to the boundary C.

Let us state explicitly the action of SL2(O) ⊂ GL2(C) on the upper-half

space model H, in the form in which we will use it:

Lemma 1 (See [10]). If γ = (a b

c d
) ∈ GL2(C) = {σ ∈ Mat2×2(C) ∣ det(σ) ≠ 0},

then the action of γ on H is given by γ ⋅ (z, ζ) = (z′, ζ ′), where

ζ ′ = ∣detγ∣ζ
∣cz − d∣2 + ζ2∣c∣2 ,

z′ =
(d − cz ) (az − b) − ζ2c̄a

∣cz − d∣2 + ζ2∣c∣2 .

Example 9. Taking the point (z, ζ) = (1
2 +

√
−2
2 , 12) ∈ H computed in Section

2.2.2 and γ = ( 0 −1

1 i
) ∈ GL2(C) (as detγ = 1, it is also in SL2(C)), we obtain

γ ⋅ (z, ζ) = (z′, ζ ′), where

ζ ′ = ∣detγ∣ζ
∣cz − d∣2 + ζ2∣c∣2

=
1 ⋅ 12

∣1 ⋅ (1
2 + i

√
2
2 ) − i∣2 + 1

4 ⋅ 1
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=
1
2

∣12 + i(
√
2
2 − 1)∣2 + 1

4

=
1
2

(1
2)2 + (

√
2
2 − 1)2 + 1

4

=
1
2

1
4 + 3

2 −
√

2 + 1
4

=
1
2

2 −
√

2

= 1

4 − 2
√

2
⋅ 4 + 2

√
2

4 + 2
√

2

= 4 + 2
√

2

8

= 1

2
+

√
2

4

and

z′ =
(d − cz ) (az − b) − ζ2c̄a

∣cz − d∣2 + ζ2∣c∣2

=
( i − 1 ⋅ (1

2 + i
√
2
2 ) ) (0 ⋅ z + 1) − 1

4 ⋅ 1 ⋅ 0

2 −
√

2

=
(−1

2 + i(1 −
√
2
2 ) )

2 −
√

2

=
−1

2 − i(1 −
√
2
2 )

2 −
√

2
⋅ 2 +

√
2

2 +
√

2

= −2 +
√

2

4
− i1

2

= −2 +
√

2

4
−

√
−1

2
.

Remark 5. By solving the equation

(a b

c d
) ⋅ (z, ζ) = (z, ζ)

for a, b, c and d, we obtain the stabilizer for (z, ζ).
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Lemma 2 (See [6]; [2], Lemma 3.3 and Lemma 3.4). The hyperbolic metric is

invariant under the action of GL2(C). The set of geodesics for the hyperbolic

metric is stable under the action of GL2(C).

Proposition 1 (See [3]). The stabilizer of j = (0,0,1) ∈ H with respect to the

action of SL2(C) on H is equal to the special unitary group

SU2 = {V ∣ V ∈ U2, det(V ) = 1} ,

where U2 = {M ∈ GL2(C) ∣ MT
M = I} is the unitary group of 2 × 2-unitary

matrices.

Proof. Let M = ( a b

c d
) ∈ SL2(C). We have that M belongs to the stabilizer

of j if and only if ∣c∣2 + ∣d∣2 = 1 and ac + bd = 0. Assume that M belongs to the

stabilizer of j. To accomplish the proof, we have to show that M ∈ SU2.

SinceM ∈ SL2(C), we have that ad−bc = 1. But this implies that the conditions

above are equivalent to M = ( d̄ −c̄
c d

) ∈ SL2(C). Indeed, det(M) = d̄d + cc̄ =

∣d∣2 + ∣c∣2 = 1. Moreover, we also have that M ∈ U2:

M
T
M = ( d c̄

−c d̄
)( d̄ −c̄

c d
) = ( d̄d + c̄c −c̄d + c̄d

−cd̄ + cd̄ c̄c + d̄d ) = ( 1 0

0 1
) = I .

Hence, M ∈ SU2.

Note: SL2(C) has a simple set of generators. This set will be described in

the following proposition:

Proposition 2 (See [3]). The group SL2(C) is generated by the elements

( 1 a

0 1
) and ( 0 −1

1 0
)

with a ∈ C. These generators operate on H as follows:

( 1 a

0 1
)(z, ζ) = (z + a, ζ) and ( 0 −1

1 0
)(z, ζ) = ( −z̄

∣z∣2 + ζ2 ,
ζ

∣z∣2 + ζ2) ,

where z = x + iy ∈ C (with x, y ∈ R), and (z, ζ) denotes a point in H.
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Proof. Suppose M = ( a b

c d
) ∈ SL2(C).

� If c ≠ 0, then we can factorize M as follows

( a b

c d
) = ( 1 ac−1

0 1
)( 0 −1

1 0
)( c 0

0 c−1
)( 1 dc−1

0 1
) .

� If c = 0 then we obtain the factorization

( a b

0 a−1
) = ( a 0

0 a−1
)( 1 a−1b

0 1
) .

So we can conclude that the matrices de�ned in the statement together with

the matrices

Dβ ∶= ( β 0

0 β−1
) , with 0 ≠ β ∈ C ,

generate SL2(C). But Dβ may be factorized as a product of matrices de�ned

in the statement. This becomes clear by the following:

( β 0

0 β−1
) = ( 1 β2 − β

0 1
)( 1 0

β−1 1
)( 1 1 − β

0 1
)( 1 0

−1 1
) ,

( 1 0

α 1
) = ( 0 −1

1 0
)( 1 −α

0 1
)( 0 −1

1 0
)( −1 0

0 −1
) ,

( −1 0

0 −1
) = ( 0 −1

1 0
)( 0 −1

1 0
) .

This �nishes the proof.

The next Theorem gives us an important relation between the groups

PSL2(C)and PSL2(O).
Theorem 1 (See [3]). Let K be an imaginary quadratic �eld of discriminant

dK < 0, and let O be its ring of integers. Then the group PSL2(O) has the

following properties:

1. PSL2(O) is a discrete subgroup of PSL2(C).

2. PSL2(O) has a fundamental domain FK bounded by �nitely many geodesic

surfaces.

3. The covering of H by the σFK, σ ∈ PSL2(O), is locally �nite.

4. The set {σ ∈ PSL2(O) ∣ σFK ∩ FK ≠ ∅} is �nite.

5. PSL2(O) is a geometrically �nite group.



Chapter 2

Algorithms to compute the

quotient space

The aim of this chapter is to describe an algorithm that, given any Bianchi

group, computes a fundamental domain for its action on the 3-dimensional

hyperbolic space. I will mainly follow the structure of [1].

2.1 Swan's concept

In this section, we recall Richard G. Swan's work (see [2]): From the theoreti-

cal viewpoint, he described an algorithm to compute the Bianchi fundamental

polyhedron. This algorithm has been put into practice in the realization de-

scribed in Section 2.2.

2.1.1 De�ning the Bianchi fundamental polyhedron

For this chapter, we will useK = Q(
√
−m ) ⊂ C as an imaginary quadratic num-

ber �eld, where m ∈ N is a squarefree positive integer, and then O−m ∶= O ⊂K
as its ring of imaginary quadratic integers.

We will consider the familiar group action of the group Γ ∶= SL2(O) ⊂ GL2(C)
on the 3-dimensional hyperbolic space, for which we will use the upper-half

space model H described in Section 1.2. An explicit formula for the mentioned

group action was given in Lemma 1 (see Chapter 1).

18
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Recall that we de�ned the upper half-space model H as a set:

H = {(z, ζ) ∈ C ×R ∣ ζ > 0}.

De�nition 7. The coordinate ζ for a point (z, ζ) in H is called the height.

The Bianchi/Humbert theory ([4], [5]) gives a fundamental domain for the

group action mentioned above. Let us start by presenting a geometric descrip-

tion of this domain, and the arguments why it is in fact a fundamental domain.

The boundary of H is the Riemann sphere ∂H ∶= C ∪ {∞} (as a set). The

Riemann sphere clearly contains the complex plane C. Recall that the totally
geodesic surfaces in H are the Euclidean vertical planes and the Euclidean

hemispheres whose centers lie on the complex plane C. Note that we de�ne

here vertical as to be orthogonal to the complex plane in the Euclidean sense.

Notation 3. For a given unimodular pair (µ, λ) ∈ O2 with µ ≠ 0, we denote

by Sµ,λ ⊂ H the hemisphere given by the equation ∣µz − λ∣2 + ∣µ∣2ζ2 = 1.

Then this hemisphere is de�ned by its center λ
µ which lies on the complex

plane C, and by its radius 1
∣µ∣ .

Let us de�ne the set

B ∶= {(z, ζ) ∈ H : The inequality ∣µz − λ∣2 + ∣µ∣2ζ2 ⩾ 1

is ful�lled for all unimodular pairs (µ, λ) ∈ O2 with µ ≠ 0 }.

Then the set B contains all the points in H which lie on or above all hemi-

spheres Sµ,λ, with (µ, λ) a unimodular pair.

Example 10. Let O be an arbitrary ring of integers. We choose (µ,λ) =
(2,3) ∈ O2 which is a unimodular pair ( as 2 ⋅ (−1) + 3 ⋅ 1 = 1 ∈ 2O + 3O, with
2,−1,3,1 ∈ O).
Then we denote S2,3 ⊂ H the hemisphere given by the equation

∣2z − 3∣2 + ∣2∣2ζ2 = 1 ,

i.e.

∣2z − 3∣2 + 4ζ2 = 1 .

This hemisphere has center λ
µ = 3

2 on the complex plane C, and has radius
1
∣µ∣ = 1

2 .
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Figure 2.1: The hemisphere S2,3 of center 3/2 and of radius 1/2

Lemma 3 (See [2]). The set B contains representatives for all the orbits of

points under the action of SL2(O) on H.

Proof. Consider the 3-dimensional hyperbolic space as the set of positive def-

inite Hermitian forms f in two complex variables, modulo homotheties (i.e. a

geometric transformation corresponding to an extension or a reduction). The

action of GL2(C) on the variables by linear automorphisms of C2 induces an

action on this set by the formula γ ⋅ f(z) ∶= f(γ−1z) for γ ∈ GL2(C), z ∈ C2.

This action corresponds to the familiar action on H. This latter action was

even de�ned by Swan this way.

Now we have that the set B corresponds to the Hermitian forms which take

their proper minimum at the argument (1,0). Then from Humbert [5], it

follows that for any binary Hermitian form f ∈ B, there exists an element

γ ∈ SL2(O) such that γ ⋅ f takes its proper minimum at (1,0).

Using another notation, we have that Lemma 3 states Γ ⋅B = H.

The group action extends continuously to the boundary ∂H, which is a

Riemann sphere.

Now in Γ ∶= SL2(O), we will denote by Γ∞ the stabilizer subgroup of the

point ∞ ∈ ∂H.

Remark 6. For m = 1 and m = 3, Γ∞ contains some rotation matrices like

( 0
√
−1√

−1 0
), which we want to exclude. These two cases have been treated

amongst others in [8] and in [9].
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So for the following, we assume m ≠ 1, m ≠ 3 . Then,

Γ∞ = {±(1 λ

0 1
) λ ∈ O} ,

which performs translations by the elements of O with respect to the Euclidean

geometry of the upper-half space H.

Notation 4. A fundamental domain for Γ∞ is given by

� the rectangle

D0 ∶=
⎧⎪⎪⎨⎪⎪⎩

{x + y
√
−m ∈ C ∣ 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1}, m ≡ 1 or 2 mod 4,

{x + y
√
−m ∈ C ∣ − 1

2 ⩽ x ⩽ 1
2 , 0 ⩽ y ⩽ 1

2}, m ≡ 3 mod 4.

in the complex plane C considered as a subset of ∂H,

� D∞ ∶= {(z, ζ) ∈ H ∣ z ∈D0} in H; i.e. we can write Γ∞ ⋅D∞ = H.

Now we are able to give the important de�nition of the Bianchi fundamental

polyhedron, which is one of the main objects in this thesis.

De�nition 8. We de�ne the Bianchi fundamental polyhedron as

D ∶=D∞ ∩B .

It is a polyhedron in hyperbolic space up to the missing vertex ∞, and up

to missing vertices at the singular points if O is not a principal ideal domain

(see for more details Subsection 2.1.3).

Example 11. In the picture below, there is a cutout of a fundamental domain,

for m = 37, represented which is computed with BianchiGP and visualized by

M. Fuchs:
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Figure 2.2: (See [16]) Visualization of a fundamental domain

Remark 7. Note that, since Γ∞ ⋅D∞ = H, this implies Γ∞ ⋅D = Γ∞ ⋅(D∞∩B) =
H ∩B = B. Now, as Lemma 3 states Γ ⋅B = H, and as Γ∞ ⋅D = B, we obtain
Γ ⋅D = H.

Moreover, we observe the following notion of the strict fundamental do-

main: the interior of the Bianchi fundamental polyhedron doesn't contain two

points which are identi�ed by Γ.

The following theorem implies that the boundary of the Bianchi fundamen-

tal polyhedron only consists of �nitely many cells.

Theorem 2 (See [2]). There is only a �nite number of unimodular pairs

(λ,µ) ∈ O2 such that the intersection of Sµ,λ with the Bianchi fundamental

polyhedron is non-empty.

Swan also proved a corollary, from which it can be deduced that the action

of Γ on H is properly discontinuous. Before we state the mentioned corollary,

let us �rst give the de�nition of a properly discontinuous group action.

De�nition 9. Let G be a topological group and E be a topological space.

Then the action of G on a E is called properly discontinuous if G has the

discrete topology and if every point x ∈ E has a neighborhood Ux such that

the intersection g(Ux) ∩Ux with its translate under the group action via some

element g ∈ G is non-empty only for the neutral element e ∈ G. In other words,

if g(Ux) ∩Ux ≠ ∅, then this implies that g = e.
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Corollary 1 (See [2]). There are only �nitely many matrices γ ∈ SL2(O) such
that D ∩ γ ⋅D ≠ ∅.

2.1.2 Determining the Bianchi fundamental polyhedron

By De�nition 8, we have that the set B, which has been de�ned using in�nitely

many hemispheres, determines the Bianchi fundamental polyhedron. But we

will know from Theorem 2 that only a �nite number of hemispheres are sig-

ni�cant for this intention and need to be computed. For this, we will state a

criterion for what is an appropriate choice that gives us precisely the set B.

In addition, we will see later that this criterion will be easy to verify in practice.

For this purpose, suppose that we have a �nite number n ∈ N of hemi-

spheres. We denote the i-th hemisphere by S(αi), with i ∈ {1, . . . , n}, and
where αi is its center given by a fraction αi = λi

µi
in the number �eld K. We

require that the ideal (λi, µi) is the whole ring of integers O; i.e. (λi, µi) is

a unimodular pair for each i. This requirement has also be made for all the

hemispheres in the de�nition of the set B.

Now, we are able to give an approximation of Notation 3, using, modulo

the translation group Γ∞, a �nite number of hemispheres.

Notation 5. Let B(α1, . . . , αn) ∶= {(z, ζ) ∈ H:

The inequality ∣µz − λ∣2 + ∣µ∣2ζ2 ⩾ 1 is ful�lled for all unimodular pairs

(µ, λ) ∈ O2 with λ
µ = αi + γ, for some i ∈ {1, . . . , n} and some γ ∈ O }.

Then, using a �nite selection of n hemispheres, we have that B(α1, . . . , αn)
is the set of all points in H lying above or on all hemispheres S(αi + γ), for
i = 1, . . . , n, for any γ ∈ O.

Fact: The intersection B(α1, . . . , αn) ∩D∞ of B(α1, . . . , αn) with the fun-

damental domain D∞ for the translation group Γ∞ is our candidate to equal

the Bianchi fundamental polyhedron de�ned in De�nition 8.

Convergence of the approximation. Our goal is to give a method to de-

cide when B(α1, . . . , αn) = B. This gives us an e�ective way to �nd B, which

determines the Bianchi fundamental polyhedron, by adding more and more
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elements to the set {α1, . . . , αn} until we �nd B(α1, . . . , αn) = B.

For this purpose, we consider the boundary ∂B(α1, . . . , αn) ofB(α1, . . . , αn)
in H ∪C. The boundary ∂B(α1, . . . , αn)

� contains the points (z, ζ) ∈ H∪C which satisfy all the non-strict inequal-

ities ∣µz − λ∣2 + ∣µ∣2ζ2 ⩾ 1 that we have used to de�ne B(α1, . . . , αn),

� satisfy the additional condition that at least one of these non-strict in-

equalities is in fact an equality,

� has a natural cell structure (See below Subsection 2.1.5).

This, together with the following de�nitions, makes it possible to state the

important criterion (see Subsection 2.1.4) which tells us when we have found

all the signi�cant hemispheres for the Bianchi fundamental polyhedron.

De�nition 10. Let (µ,λ) ∈ O2 and (β,α) ∈ O2 be two unimodular pairs with

µ ≠ 0 and β ≠ 0.

1. We say that the hemisphere Sµ,λ is strictly below the hemisphere Sβ,α at

a point z ∈ C if the following inequality is satis�ed:

∣z − α
β
∣
2

− 1

∣β∣2 < ∣z − λ
µ
∣
2

− 1

∣µ∣2 .

2. We say that a point (z, ζ) ∈ H ∪C is strictly below a hemisphere Sβ,α, if

there is a point (z, ζ ′) ∈ Sβ,α with ζ ′ > ζ. This case is also illustrated in

the following Figure 2.3.

Figure 2.3: Strictly below
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Remark 8. The �rst statement of the latter de�nition is, of course, an abuse

of language because there may not be any points on Sβ,α or Sµ,λ with coordi-

nate z ∈ C. But if there is a point (z, ζ) on Sµ,λ, another point (z, ζ ′) ∈ Sβ,α
and if we assume that Sµ,λ is strictly below below Sβ,α, then the right hand

side of the inequality stated in De�nition 10 is just −ζ2. Thus the left hand

side is negative and is of the form −(ζ ′)2. Clearly, (z, ζ ′) ∈ Sβ,α and ζ ′ > ζ.

Moreover, let us give an additional explanation why the right hand side of

the inequality equals to −ζ2 if there is a point (z, ζ) on Sµ,λ:
If (z, ζ) is a point which lies on Sµ,λ, then it satis�es the equation

∣µz − λ∣2 + ∣µ∣2ζ2 = 1 ,

or equivalently,

∣z − λ
µ
∣
2

+ ζ2 = 1

∣µ∣2 ,

i.e.

∣z − λ
µ
∣
2

− 1

∣µ∣2 = −ζ
2 .

The same reasoning follows for the point (z, ζ ′) on Sβ,α.

Observation 1. We observe that the set of z ∈ C over which some hemisphere

is strictly below another is either C or an open half-plane.

2.1.3 Singular points

Before we are able to state Swan's termination criterion, we study the notion

of cusps and singular points.

De�nition 11. Let K be a number �eld. A cusp is an element of the number

�eld K considered as a point in the boundary of the 3-dimensional hyperbolic

space, via the inclusion K ⊂ C ∪ {∞} ≅ ∂H.

Generally, we represent cusps in the form λ
µ , where µ,λ ∈ O not both zero.

By convention, we write ∞ = 1
0 , which is also considered as a cusp. To each

representation λ
µ , we associate the ideal (λ,µ) = λO + µO and its ideal class

[(λ,µ)].

The set of cusps is closed under the action of SL2(O) on ∂H. Moreover,

we have the following bijective correspondence between the SL2(O)-orbits of
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cusps and the ideal classes in O:
A cusp λ

µ is in the SL2(O)-orbit of the cusp λ′

µ′ , if and only if the ideals (λ′, µ′)
and (λ,µ) are in the same ideal class (See [15], proof of Theorem 1.1).

So we can say that the SL2(O)-orbit of a cusp λ
µ in K ∪ {∞} corresponds to

the ideal class [(λ,µ)] of O. From this follows that the orbit of the cusp∞ = 1
0

corresponds to the principal ideals.

Lemma 4 (See [3]). Let (λ,µ), (λ′, µ′) ∈K×K. Then the following statements

are equivalent:

(1) [(λ,µ)] = [(λ′, µ′)]

(2) there exists γ ∈ SL2(O) such that γ ( λ

µ
) = ( λ′

µ′
).

Theorem 3 (See [11]). Let K = Q(
√
−m) be an imaginary quadratic number

�eld with m > 0. Then OK is a principal ideal domain if and only if

m ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163} .

De�nition 12. � The cusp λ
µ , such that the ideal (λ,µ) is not principal,

is called singular.

� Let us call singular points the singular cusps which lie in ∂B.

From the characterization of the singular points by Bianchi, it follows that

they are precisely the points in C ⊂ ∂H which cannot be strictly below any

hemisphere. In the case where O is a principal ideal domain, K ∪{∞} consists

of only one SL2(O)-orbit. Hence, there are no singular points.

To compute representatives, modulo the translations by Γ∞, of the singular

points, we will use the following formula derived by Swan.

Lemma 5 (See [2]). The singular points of K, mod O, are given by p(r+
√
−m)

s ,

where p, r, s ∈ Z, s > 0, −s
2 < r ⩽ s

2 , s2 ⩽ r2 +m, and

� if m ≡ 1 or 2 mod 4,

s ≠ 1, s ∣r2+m, the numbers p and s are coprime (i.e. gcd(p, s) = 1), and

p is taken mod s;
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� if m ≡ 3 mod 4,

s is even, s ≠ 2, 2s ∣ r2 +m, the numbers p and s
2 are coprime; p is taken

mod s
2 .

Example 12. 1. Let m = 5 ≡ 1 mod 4, then in O−5 = Z ⊕
√
−5Z, there

exists the ideal (
√
−5 + 1,2) which is not principal.

Indeed, let us start by proving that 2 is an irreducible element of O−5.
We will do this by contradiction:

Let us suppose that 2 is reducible; i.e. 2 = a ⋅ b where a, b ∈ O−5 and both

are no units. Then, by considering the norm N(x + y
√
−5) = ∣x2 + 5y2∣

with x, y ∈ Z, we have N(2) = 4 = 2 ⋅ 2 = N(a) ⋅N(b).
But this implies that N(a) = 2 as a is not a unit. Thus, since a ∈ O−5, a
can be written as a = x+y

√
−5 with x, y ∈ Z. So we get N(a) = ∣x2+5y2∣ =

2.

But this is impossible for any x, y ∈ Z. Hence, the assumption is wrong;

i.e. 2 is an irreducible element of O−5.

Now let us check that the ideal (
√
−5 + 1,2) is not principal in O−5. We

will proceed again by contradiction:

Let us suppose that the ideal (
√
−5 + 1,2) is principal. Thus, the ideal

(
√
−5+1,2) is of the form (n) where 1 ≠ n ∈ O−5. So 2 = (

√
−5+1)⋅0+2⋅1 ∈

(n).
But, as 2 ∈ (n), this implies that 2 = n ⋅m for some m ∈ O−5. Since 2

is irreducible in O−5, then we must have that n = 2 and m = 1. Then

we have that
√
−5 + 1 ∈ (n) = (2); i.e.

√
−5 + 1 = 2 ⋅ (x + y

√
−5), where

x, y ∈ Z. This implies that x = 1
2 .

But this leads us to a contradiction as x was supposed to be in Z. Hence,
the assumption is wrong; i.e. the ideal (

√
−5+1,2) is not principal in O−5.

This means that the cusp
√
−5+1
2 is singular and corresponds to the sin-

gular point 1+
√
−5

2 in the fundamental polyhedron.

This can also be proven using Lemma 5: All the conditions are ful�lled

for m ≡ 1 mod 4, s = 2, and p = 1 = r.

2. Let m = 6 ≡ 2 mod 4, then in O−6 = Z ⊕
√
−6Z, the ideal (

√
−6,2) =√

−6O−6 + 2O−6 is not principal.
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So let us check that the ideal (
√
−6,2) is not principal in O−6. We will

do this by contradiction:

Let us suppose that (
√
−6,2) is a principal ideal. Thus, the ideal (

√
−6,2)

is of the form (n), where n ∈ O−6 and n ≠ 1 (If n = 1, then (
√
−6,2) = O−6

which is not possible here). As we can write 2 =
√
−6 ⋅ 0 + 2 ⋅ 1 (since

2 ∈ (
√
−6,2)), we also have that 2 = 2 ⋅ 1 ∈ (n).

But this implies that 2 is of the form 2 = n ⋅m for some m ∈ O−6 (i.e.

m = x + y
√
−6 with x, y ∈ Z). Using the same procedure as in Example

12.1, we can prove that 2 is an irreducible element in O−6. Since 2 is

an irreducible element in O−6, then we must have that n = 2 and m = 1.

Consequently, (n) = (2). Similarly, if
√
−6 ∈ (2), then this implies that√

−6 = 2 ⋅ (x + y
√
−6), where x, y ∈ Z. This implies that x = 0 and y = 1

2 .

But this leads us to a contradiction as y was supposed to be in Z. Hence,
the assumption is wrong; i.e. the ideal (

√
−6,2) is not principal in O−6.

This means that we have the singular point
√
−6
2 .

Fact: The singular points need not be considered in Swan's termination

criterion, because they cannot be strictly below any hemisphere Sµ,λ.

2.1.4 Swan's termination criterion

Consider Observation 1. In the case, where the set of z ∈ C over which some

hemisphere is strictly below another is an open half-plane, then the boundary

of this half-plane is a line.

Notation 6. We denote by L(αβ , λµ) the set of z ∈ C over which neither Sβ,α is

strictly below Sµ,λ, nor vice versa.

The line L(αβ , λµ) is computed by turning the inequality in De�nition 10

into an equation. Swan calls it the line over which two hemispheres agree. We

can see this also on Figure 2.3. Later in this thesis, we will see that the most

important edges of the Bianchi fundamental polyhedron lie on the preimages

of such lines.

Let us now return to a �nite set of hemispheres, modulo the translations

in Γ∞.
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De�nition 13. Let S(αi+γ) be a �nite set of hemispheres, where i ∈ {1, . . . , n},
and γ ∈ O. We call this set of hemispheres a collection, if every non-singular

point z ∈ C ⊂ ∂H (as de�ned in Section 2.1.3) is strictly below some hemisphere

in this set.

De�nition 14. The intersection point of more than two hemispheres of the

collection S(αi + γ) is called vertex.

Example 13. In Figure 2.2 of Example 11, the brown point illustrates one

example of such a vertex.

Now consider a set B(α1, . . . , αn) which is determined by such a collection

of hemispheres de�ned in De�nition 13. Finally, we are able to state the

following important criterion:

Theorem 4 (Swan's termination criterion, see [2]). We have B(α1, . . . , αn) =
B if and only if no vertex v of ∂B(α1, . . . , αn) can be strictly below any hemi-

sphere Sµ,λ.

In other words, no vertex v of the boundary ∂B(α1, . . . , αn) can lie strictly

below (or can be covered by) any hemisphere Sµ,λ; i.e. the value of the height ζ

of the lowest intersection point is greater than the radiuses 1
∣µ∣ of the remaining

hemispheres.

This criterion implies that it is enough to compute the cell structure of

∂B(α1, . . . , αn) to see if our choice of hemispheres gives us the Bianchi fun-

damental polyhedron. This has only to be done modulo the translations of

Γ∞, which preserve the height and, thus, the situations of being strictly below.

Consequently, the computations only need to be done for a �nite number of

hemispheres.

2.1.5 Computing the cell structure in the complex plane

Let us �rst recall the meaning of cell structure:

� 2-cells are hyperbolic polygons, lying on associated hemispheres, which

are projected on Euclidean polygons in C.

� 1-cells are geodesic hyperbolic line segments, lying on vertical semicircles,

which are projected on straight line segments in C.
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� 0-cells are nothing else than intersection points.

Now, in a �rst step, we will compute the image of the cell structure via the

homeomorphism

pr ∶ ∂B(α1, . . . , αn) → C

which is actually the vertical projection. To each 2-cell of this structure, we

can associate a hemisphere Sµ,λ. The interior of this 2-cell consists of the

points z ∈ C where all other hemispheres in our collection are strictly below

Sµ,λ. Swan shows that the interior of this 2-cell is in fact a convex polygon.

Remember that a convex polygon is a polygon for which a line segment between

two points in the interior (i.e. one cannot choose one point inside and one point

outside the polygon) lies completely within the �gure. In Euclidean geometry,

all interior angles in a convex polygon are equal to or less than 180○. Simple

examples for convex polygons are triangles, rectangles, pentagons; in short, all

regular polygons are always convex.

Figure 2.4: Example of a convex polygon

The edges of these polygons lie on real lines in C which were speci�ed in

Notation 6.

Then we actually have that a vertex is an intersection point z of any two of

these lines involving the same hemisphere Sµ,λ, if all other hemispheres in our

collection are strictly below, or agree with, Sµ,λ at this z. See Figure 2.12 to

clarify the ideas.

Lifting the cell structure back to hyperbolic space

Now, using the projection homeomorphism pr onto C, we can lift the cell struc-
ture back to ∂B(α1, . . . , αn):
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The preimages of the convex polygons of the cell structure on C, are totally
geodesic hyperbolic polygons. Each of these hyperbolic polygons lies on one

of the hemispheres in our collection. These are the 2-cells of ∂B(α1, . . . , αn).
The edges of these hyperbolic polygons lie on the intersection arcs between

two hemispheres in our collection.

Notice, if two Euclidean 2-spheres (often simply called sphere) intersect

in a non-trivial way, we obtain a circle. Moreover, the center of this latter

circle lies on the straight line connecting the centers of the two Euclidean

2-spheres. This line is called the connecting line. The plane determined by

this intersection circle is orthogonal to the connecting line. The facts in this

paragraph are illustrated in the following �gure for the real intersection of two

arbitrary Euclidean spheres.

Figure 2.5: Non-trivial intersection of two arbitrary Euclidean spheres (see

[17])

In our situation (in the case of a non-trivial intersection of two hemispheres

in our collection), we have that such an intersection arc (on which lie the edges

of the hyperbolic polygons) lies on a semicircle centered in the complex plane.

The plane which contains this semicircle is orthogonal to the connecting line,

hence we have a vertical plane in H. Alternatively, we can also conclude the

latter facts when we consider the observation that an edge which two totally

geodesic polygons have in common must be a geodesic segment.

Now, it becomes clear from the de�nition of the vertices, what it means to lift

them. This allows us to check Swan's termination criterion.
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We will now give a sketch of the proof of Swan's criterion stated in Theorem

4. The full detailed proof can be found in [2], Proposition 8.4.

Proof. Let P be one of the convex polygons of the cell structure on C. The

preimage of P lies on one hemisphere S(αi) of our collection, for some i ∈
{1, . . . , n}. Now, the points where S(αi) can be strictly below some other

hemisphere in our collection constitute an open half-plane in C (see Observa-

tion 1), and hence cannot lie in the convex hull of the vertices of P , which

is actually P . Thus, the condition stated in Theorem 4, which says that at

the vertices of P , the hemisphere S(αi) cannot be strictly below any other

hemisphere, is ful�lled. Finally, as C is tessellated by these convex polygons,

the statement of Theorem 4 follows immediately.
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2.2 Realization of Swan's algorithm

The aim of this section is to put Swan's concept into practice.

First, we reduce the set of hemispheres on which we realize our computa-

tions, using the following de�nition.

De�nition 15. Let (µ,λ) ∈ O2 and (β,α) ∈ O2 be two unimodular pairs with

µ ≠ 0 and β ≠ 0. Consider a hemisphere Sµ,λ ⊂ H with center λ
µ on C and of

radius 1
∣µ∣ and a hemisphere Sβ,α ⊂ H with center α

β on C and of radius 1
∣β∣ .

Then Sµ,λ is said to be everywhere below Sβ,α when:

λ

µ
− α
β
⩽ 1

∣β∣ −
1

∣µ∣ ,

i.e. the di�erence of the centers is smaller than or equal to the di�erence of

the radiuses.

Note that this is also the case when Sµ,λ = Sβ,α.

Figure 2.6: everywhere below

Example 14. Let us consider again Example 11. Then �rst of all, we see on

Figure 2.2 that there is only a �nite number of hemispheres represented, and

we can see that the blue hemispheres are not everywhere below the violet ones.

Any hemisphere which is everywhere below another one, does not con-

tribute to the Bianchi fundamental polyhedron, in the following sense:

Proposition 3 (See [1]). Consider a �nite selection of n hemispheres. Let

S(αn) be a hemisphere everywhere below some other hemisphere S(αi), where
i ∈ {1, . . . , n − 1}.
Then B(α1, . . . , αn) = B(α1, . . . , αn−1).
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Proof. Write αn = λ
µ and αi = θ

τ with λ,µ, θ, τ ∈ O. We take any point (z, ζ)
strictly below Sµ,λ with center λ

µ on C and we want to show that it is also

strictly below Sτ,θ with center θ
τ on C. In terms of Notation 5, this problem

looks as follows:

We assume that the inequality ∣µz −λ∣2 + ∣µ∣2ζ2 < 1 is satis�ed, and we have to

show that this implies the inequality ∣τz − θ∣2 + ∣τ ∣2ζ2 < 1.

The �rst inequality is equivalent to z − λ
µ

2+ζ2 < 1
∣µ∣2 . Hence,

√
z − λ

µ

2 + ζ2 < 1
∣µ∣ .

We will insert this into the triangle inequality for the Euclidean distance d in

C ×R applied to the three points A = (z, ζ), B = (λµ ,0) and C = ( θτ ,0), which
is

d(A,C) < d(B,C) + d(A,B) .

Thus,

√
z − θ

τ

2

+ ∣ζ − 0∣2 <

¿
ÁÁÀλ

µ
− θ
τ

2

+ ∣0 − 0∣2 +

¿
ÁÁÀz − λ

µ

2

+ ∣ζ − 0∣2 ,

i.e. √
z − θ

τ

2

+ ζ2 < λ

µ
− θ
τ
+

¿
ÁÁÀz − λ

µ

2

+ ζ2 .

So, by assumption, we obtain
√
z − θ

τ

2 + ζ2 < λ
µ − θ

τ + 1
∣µ∣ . Using De�nition 15,

then the expression on the right hand side becomes smaller than or equal to
1
∣τ ∣ . Indeed,

λ

µ
− θ
τ
+ 1

∣µ∣ ⩽ 1

∣τ ∣ −
1

∣µ∣ +
1

∣µ∣ = 1

∣τ ∣ .

Therefore, we take the square and obtain

z − θ
τ

2

+ ζ2 < 1

∣τ ∣2 ,

which is equivalent to the claimed inequality.

The following de�nition is another notion that will be useful for our algo-

rithm.

De�nition 16. Let z ∈ C be a point lying within the vertical projection of

Sµ,λ. We de�ne the lift on the hemisphere Sµ,λ of z as the point (z, ζ) on Sµ,λ
the vertical projection of which is z.
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Figure 2.7: Lift on the hemisphere Sλ,µ of z

Notation 7. Let us denote by the hemisphere list a list into which we will

record a �nite number of hemispheres S(α1),. . . ,S(αn). Its purpose is to de-

termine a set B(α1, . . . , αn) in order to approximate, and �nally obtain, the

Bianchi fundamental polyhedron.

2.2.1 The algorithm computing the Bianchi fundamental

polyhedron (See [1])

Now, using Swan's description, we state the algorithm to compute the Bianchi

fundamental polyhedron.

Initial step. We start with the smallest value which the norm of a non-

zero element µ ∈ O can take, namely 1. Then µ is a unit in O, and for any

λ ∈ O, the pair (µ,λ) is unimodular. And we can rewrite the fraction λ
µ = λ

as µ = 1. We obtain the unit hemispheres of radius 1
∣µ∣ = 1, centered at the

imaginary quadratic integers λ ∈ O. We record into the hemisphere list the

hemispheres which touch the Bianchi fundamental polyhedron, i.e. the ones

whose centers lie in the fundamental rectangle D0 (determined in Notation 4)

for the action of Γ∞ on the complex plane C.

Step A. Now we increase ∣µ∣ to the next higher value which the norm takes

on elements of O and run through all the �nitely many µ which have the same

norm. For each of these µ, we have to run through all the �nitely many λ ∈ O
with λ

µ in the fundamental rectangle D0. Moreover, we have to check that

(µ,λ) are unimodular pairs and, that the hemisphere Sµ,λ is not everywhere
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below another hemisphere Sβ,α in the hemisphere list. If these two checks are

passed, we record Sµ,λ into the hemisphere list.

We repeat step A until ∣µ∣ has reached an expected value. Then we check

if we have found all the hemispheres touching the Bianchi fundamental poly-

hedron, as follows:

Step B. We compute the lines L(αβ , λµ) de�ned in Notation 6, over which

two hemispheres agree, for all pairs Sβ,α, Sµ,λ in the hemisphere list which

touch one another. We add the edges of the fundamental rectangle D0 to

these lines.

Then, for each hemisphere Sβ,α, we compute the intersection points of each

two lines L(αβ , λµ) and L(αβ , θτ ) referring to α
β (i.e. we compute the intersection

points of those two lines involving the same hemisphere Sβ,α).

We drop the intersection points at which Sβ,α is strictly below some hemisphere

in the list.

We erase the hemispheres from our list, for which less than three intersection

points remain. We can do this because a hemisphere which touches the Bianchi

fundamental polyhedron only in two vertices shares only an edge with it but

no 2-cell.

Now, the vertices of B(α1, . . . , αn)∩D∞ are the lifts of the remaining intersec-

tion points. Thus we can check Swan's termination criterion (see Theorem 4)

as follows: We pick the lowest value ζ > 0 for which (z, ζ) ∈ H is the lift inside

the 3-dimensional Hyperbolic Space of a remaining intersection point z.

If ζ ⩾ 1
∣µ∣ , then all (in�nitely many) remaining hemispheres have radius equal or

smaller than ζ, i.e. (z, ζ) cannot be strictly below them. So Swan's termina-

tion criterion is ful�lled, we have found the Bianchi fundamental polyhedron,

and now we can proceed by determining its cell structure.

Else (i.e. if ζ < 1
∣µ∣), then ζ becomes the new expected value for the radius 1

∣µ∣ .

We repeat step A until ∣µ∣ reaches 1
ζ and then proceed again with step B.

2.2.2 Computation of the Bianchi fundamental polyhe-

dron for m = 2

Let us apply the algorithm for m = 2. So we consider K = Q(
√
−2) of discrim-

inant dK = −4 ⋅ 2 = −8 (as −2 ≡ 2 mod 4, see Note 1), and its ring of integers

O−2 = Z⊕
√
−2Z.
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Figure 2.8: O−2

Note that, in terms of Theorem 3, O−2 ⊂ Q(
√
−2) is a principal ideal do-

main. Thus, there are no singular points.

To choose µ ∈ O in a way that the value for ∣µ∣ stays minimal, we have to go

outwards in concentric circles (i.e. they have all the same center, but di�erent

radiuses). These concentric circles are represented in Figure 2.8.

Then we have to choose λ ∈ O such that

i) (µ,λ) ∈ O2 is a unimodular pair,

ii) λ
µ ∈D0, where we denote by D0 the fundamental rectangle.

Here, using Notation 4, the fundamental rectangle D0 for m = 2 ≡ 2 mod 4 is

given by

D0 = {x + y
√
−2 ∈ C ∣ 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1} .

In Figure 2.12 below, the fundamental rectangle is represented by the blue

rectangle.
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Let us start with µ = 1 ∈ O, then ∣µ∣ = 1. So the only values for λ ∈ O
which satisfy both conditions are 0, 1,

√
−2 and 1+

√
−2. Indeed, if we choose

(α,β) = (0,1) ∈ O2, then, in terms of De�nition 6, we have that the pairs

(1,0), (1,
√
−2), (1,1) and (1,1 +

√
−2) are unimodular.

Moreover, as µ = 1, we have that λ
µ = λ and 0, 1,

√
−2, 1 +

√
−2 ∈D0.

So we obtained the four biggest hemispheres of radius 1
∣µ∣ = 1

1 = 1, centered at

the four values of λ ∈ O. Hence, those four hemispheres are recorded in our

hemisphere list.

In the following picture, we have a 3-dimensional representation of these four

hemispheres.

Figure 2.9: S1,0, S1,1, S1,
√
−2 and S1,1+

√
−2

(Note that this �gure is not reduced to the fundamental rectangle D0.)

Now we have to "cut" the hemispheres in semicircles which are vertical to

the boundary. Then via the vertical projection to C, they are projected onto a

line segment (see Figure 2.12, where those vertical projections are represented

by the green line segments).

Now, in terms of Notation 6, let us compute the lines L(αβ , λµ) over which

two hemispheres agree, for all pairs Sβ,α, Sµ,λ in the hemisphere list which

touch one another.
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1. For L(0
1 ,
√
−2
1 ), we have

z − 0

1

2

− 1

∣µ∣2 = z −
√
−2

1

2

− 1

∣µ∣2 ,

i.e.

∣z∣2 = ∣z −
√
−2∣2 ⇔ ∣z∣2 = ∣z − i

√
2∣2 .

Then, by setting z = x + iy, with x, y ∈ R, we get

∣x + iy∣2 = ∣x + i(y −
√

2)∣2 .

Now using the modulus of a complex number ∣z∣ =
√
x2 + y2, we obtain

x2 + y2 = x2 + (y −
√

2)2 ⇔ x2 + y2 = x2 + y2 − 2y
√

2 + 2 ,

i.e.

0 = −2y
√

2 + 2 .

Hence, we obtain for L(0
1 ,
√
−2
1 ) the equation

y = 1√
2
=

√
2

2
.

We obtain the same equation for the line L(1
1 ,

1+
√
−2

1 ).

2. By a similar procedure, we obtain for the lines L(0
1 ,

1
1) and L(

√
−2
1 , 1+

√
−2

1 )
the following equation

x = 1

2
.

3. For L(0
1 ,

1+
√
−2

1 ), we have

∣z − 0∣2 − 1 = z − 1 −
√
−2

2 − 1 , i.e. ∣z∣2 = ∣z − 1 −
√
−2∣2 .

Then, by setting z = x + iy, with x, y ∈ R and using the modulus, we get

∣x + iy∣2 = ∣(x − 1) + i(y −
√

2)∣2 ⇔ x2 + y2 = x2 − 2x + 1 + y2 − 2
√

2y + 2 .

Thus, we have

2y
√

2 = −2x + 3 .

Hence, we obtain for L(0
1 ,

1+
√
−2

1 ) the equation

y = −
√

2

2
x + 3

√
2

4
.
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4. Following the same instructions as above, we obtain for the line L(1
1 ,
√
−2
1 )

the equation

y =
√

2

2
x +

√
2

4
.

As we can see in Figure 2.11, the four lines only intersect in one point. To

compute this intersection point, we need to consider the following sytem of

equations
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x = 1
2

y =
√
2
2

y = −
√
2
2 x +

3
√
2

4

y =
√
2
2 x +

√
2
4

Then the intersection point of these lines has obviously for z-coordinate

z = 1

2
+ i

√
2

2
= 1

2
+ 1

2

√
−2 ∈D0 .

It remains to check Swan's termination criterion (see Theorem 4). For this,

we determine the height ζ of the vertex (1
2 + 1

2

√
−2, ζ) via the Pythagorean

theorem. So consider the following picture (which represents the situation in

a vertical cut) to clarify the ideas:

Consider z = 1
2 +

√
−2
2 as the point (1

2 ,
√
2
2
) in the Euclidean plane R × R,

and the center λ
µ = 0 of the hemisphere S1,0 as the point (0,0) (Note that we

can also use the center of one of the three remaining hemispheres). Then the

distance (represented as the blue dotted line in the picture above) between

these two points is

d((0,0);(1

2
,

√
2

2
)) =

¿
ÁÁÀ(0 − 1

2
)

2

+ (0 −
√

2

2
)

2

=
√

3

2
.
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Using the Pythagorean theorem, we get:

(
√

3

2
)
2

+ ζ2 = ( 1

∣µ∣)
2

⇔ ζ2 = ( 1

∣µ∣)
2

− (
√

3

2
)
2

,

i.e. for µ = 1

ζ2 = 1 − 3

4
= 1

4
.

As ζ is the height of a point (z, ζ) ∈ H, this implies that ζ > 0. Hence, we

�nally have that ζ = 1
2 .

Figure 2.10: Fundamental domain for

m = 2 Figure 2.11: View from above

The next value for µ would be ±
√
−2, thus the radius 1

∣µ∣ would be equal to
1
2 .

But since ζ ⩾ 1
2 , we have that (z, ζ) = (1

2 +
√
−2
2 , 12) ∈ H cannot be strictly below

the remaining hemispheres which have radius equal or smaller than ζ. In other

words, the highest point of any remaining hemisphere cannot lie higher than

(z, ζ), and hence these hemispheres cannot contribute to the structure of B.

Thus, Theorem 4 is ful�lled, and we have computed the Bianchi fundamental

polyhedron.
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Figure 2.12: Bianchi fundamental polyhedron for m = 2

In the following picture, the cell structure of the Bianchi fundamental poly-

hedron is illustrated. This cell structure consists of four 2-cells of the boundary

which are in fact rectangles here:

Figure 2.13: Cell structure for the Bianchi fundamental polyhedron for m = 2
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Remark 9. Note that we also have to add the edges of the fundamental

rectangle D0 to the agreeing lines. For the intersection point between L(0
1 ,

1
1)

and {y = 0}, we obtain as z-coordinate

z = 1

2
+ 0i = 1

2
∈D0 .

It remains to determine the height ζ of (1
2 , ζ). So the distance between the

points (1
2 ,0) and (0,0) is

d((0,0),(1

2
,0)) = 1

2
.

So, via the Pythagorean theorem, we obtain

ζ2 = 12 − (1

2
)
2

= 3

4
.

This implies that ζ =
√
3
2 . But, as

√
3
2 > 1

2 , we have that the height of the point

(1
2 ,
√
3
2 ) is not minimal. Hence, it is not considered as a relevant vertex on

which to check Swan's termination criterion.

We draw the same conclusion for the intersection points of L(
√
−2
1 , 1+

√
−2

1 ) and
{y =

√
2}; of L(0

1 ,
√
−2
1 ) and {x = 0}; of L(1

1 ,
1+
√
−2

1 ) and {x = 1}; of L(0
1 ,

1
√
−2
1 ),

{x = 0} and {x = 1}; and of L(1
1 ,
√
−2
1 ), {x = 0} and {x = 1}.

2.2.3 Computation of the Bianchi fundamental polyhe-

dron for m = 5

Let us apply the algorithm for m = 5. Thus, we consider K = Q(
√
−5) of

discriminant dK = −4 ⋅ 5 = −20 (as −5 ≡ 3 mod 4, see Note 1), and its ring of

integers O = Z⊕
√
−5Z.
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Figure 2.14: O−5

Using Notation 4, the fundamental rectangle D0 for m = 5 ≡ 1 mod 4 is

given by

D0 = {x + y
√
−5 ∈ C ∣ 0 ⩽ x ⩽ 1, 0 ⩽ y ⩽ 1} .

In Figure 2.25 below, the fundamental rectangle is represented by the blue

rectangle.

Let us start with µ = 1 ∈ O, then ∣µ∣ = 1. The only values for λ ∈ O, such
that

� (µ,λ) ∈ O2 is a unimodular pair, and

� the center λ
µ lies in the fundamental rectangle D0 for the action of Γ∞

on the complex plane C,

are 0, 1,
√
−5, 1 +

√
−5.

Indeed, by choosing (α,β) = (0,1) ∈ O2, then, in terms of De�nition 6, we

have that the pairs (1,0), (1,
√
−5), (1,1) and (1,1 +

√
−5) are unimodular.

Furthermore, as µ = 1, we have that λ
µ = λ and 0, 1,

√
−5, 1 +

√
−5 ∈D0.

So we obtained the four biggest hemispheres of radius 1
∣µ∣ = 1

1 = 1, centered
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at the values of λ ∈ O. Hence, those four hemispheres are recorded in our

hemisphere list.

In the following picture, we see a 3-dimensional representation of these four

hemispheres.

Figure 2.15: S1,0, S1,1, S1,
√
−5 and S1,1+

√
−5

(Note that this �gure is not reduced to the fundamental rectangle D0.)

As the radius of these four hemispheres is equal to 1, we have that S1,0 can-

not touch S1,
√
−5 and S1,1+

√
−5; it only touches the hemisphere S1,1. The same,

S1,
√
−5 only touches the hemisphere S1,1+

√
−5. So we don't need to compute the

lines L(0
1 ,
√
−5
1 ), L(0

1 ,
1+
√
−5

1 ), L(1
1 ,
√
−5
1 ) and L(1

1 ,
1+
√
−5

1 ).
We can also see this in the picture above.

Thus, let us compute the line L(0
1 ,

1
1) in terms of Notation 6.

z − 0

1

2

− 1 = z − 1

1

2

− 1 ,

i.e.

∣z∣2 = ∣z − 1∣2 .
Then, by setting z = x+ iy, with x, y ∈ R, and using the modulus of a complex

number ∣z∣ =
√
x2 + y2, we get

∣x + iy∣2 = ∣(x − 1) + iy∣2 ⇔ x2 + y2 = x2 − 2x + 1 + y2 .
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Hence, we obtain for L(0
1 ,

1
1) the equation

x = 1

2
.

We obtain the same equation for L(
√
−5
1 , 1+

√
−5

1 ).
Consequently, there does not exist a relevant intersection point.

It remains to add the edges of the fundamental rectangle D0 to the agreeing

lines. For the intersection point between L(0
1 ,

1
1) and {y = 0}, we obviously

obtain as z-coordinate

z = 1

2
+ 0i = 1

2
∈D0 .

It remains to determine the height ζ of the lift (1
2 , ζ) of this intersection point

via the Pythagorean theorem. For this, we consider z = 1
2 as the point (1

2 ,0) in
the Euclidean plane R ×R, and the center λ

µ = 0 of the hemisphere S1,0 as the

point (0,0) (Note that we can also use the center 1 of the hemisphere S1,1).

Then the distance between the points (1
2 ,0) and (0,0) is

d((0,0),(1

2
,0)) =

¿
ÁÁÀ(0 − 1

2
)
2

+ (0 − 0)2 = 1

2
.

So, via the Pythagorean theorem, we obtain

(1

2
)
2

+ ζ2 = ( 1

∣µ∣)
2

⇔ ζ2 = 12 − (1

2
)
2

,

i.e. ζ2 = 3
4 . As ζ is the height of the point (z, ζ) ∈ H, this implies that ζ > 0.

Hence, we have that ζ =
√
3
2 . Later in this computation, we will �nd out that

the height of the point (1
2 ,
√
3
2 ) is not minimal. Hence, it is not considered as

a relevant vertex to check Swan's termination criterion on it.

We draw the same conclusion for the intersection point between L(
√
−5
1 , 1+

√
−5

1 )
and {y =

√
5}.

By considering Figure 2.14, we increase µ to the next value ±2 ∈ O; i.e.
∣µ∣ =

√
02 + (±2)2 = 2. Let us take µ = 2. Then the only values for λ ∈ O which

satisfy all the conditions, described in Step A in the algorithm computing

the Bianchi fundamental polyhedron (see Subsection 2.2.1), are λ =
√
−5 and

λ = 2 +
√
−5. Indeed,
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◇ 1. for λ =
√
−5, we have λ

µ = 1
2

√
−5 ∈D0 ; and

2. for λ = 2 +
√
−5, we have λ

µ = 1 + 1
2

√
−5 ∈D0.

Moreover, note that, in view of Lemma 5, that both centers 1
2

√
−5 and

1 + 1
2

√
−5 are no singular points:

1. For 1
2

√
−5 =

√
−5
2 , we have that the condition s ∣ r2 +m does not hold

for s = 2, r = 0 and m = 5.

2. For 1 + 1
2

√
−5 = 2+

√
−5

2 , we have that the condition −s
2 < r ⩽ s

2 does

not hold for s = 2 = r.

◇ In terms of De�nition 6, we have

1. by choosing (α,β) = (
√
−5,3) ∈ O2, that the pair (µ,λ) = (2,

√
−5) ∈

O2 is unimodular as
√
−5 ⋅

√
−5 + 2 ⋅ 3 = 1 ∈ 2O +

√
−5O; and

2. by choosing (α,β) = (2 −
√
−5,−4) ∈ O2, that the pair (µ,λ) =

(2,2+
√
−5) ∈ O2 is unimodular as (2+

√
−5) ⋅ (2−

√
−5) + 2 ⋅ (−4) =

1 ∈ 2O + (2 +
√
−5)O.

◇ In terms of De�nition 15, the hemispheres S2,
√
−5 and S2,2+

√
−5 are not

everywhere below a hemisphere of radius 1 in the hemisphere list. For

example:

� S2,
√
−5 is not everywhere below S1,0:

1

2

√
−5 − 0

1
= i

2

√
5 =

¿
ÁÁÀ(1

2

√
5)

2

=
√

5

4
=

√
5

2
≅ 1,12

≰ 1

1
− 1

2
= 1

2
= 0,5 .

� S2,2+
√
−5 is not everywhere below S1,1:

1 + 1

2

√
−5 − 1

1
= i

2

√
5 =

√
5

2
≅ 1,12

≰ 1 − 1

2
= 0,5 .

Doing the same computation for the remaining hemispheres in the list,

we can draw the same conclusion.
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Hence, the hemispheres S2,
√
−5 and S2,2+

√
−5 are recorded into the hemisphere

list.

In the following picture, we see a 3-dimensional representation of the six hemi-

spheres in list.

Figure 2.16: S1,0, S1,1, S1,
√
−5, S1,1+

√
−5, S2,

√
−5 and S2,2+

√
−5

(Note that this �gure is not reduced to the fundamental rectangle D0.)

Now, using Notation 6, let us compute the agreeing lines over which two

hemispheres in the list touch one another.

1. For L(
√
−5
2 , 2+

√
−5

2 ), we obtain

z −
√
−5

2

2

− 1

4
= z − 2 +

√
−5

2

2

− 1

4
,

i.e.

z −
√
−5

2

2

= z − 2 +
√
−5

2

2

.

Then, by setting z = x + iy, with x, y ∈ R, and using the modulus ∣z∣ =√
x2 + y2, we get

x + i(y −
√

5

2
)

2

= (x − 1) + i(y −
√

5

2
)

2

⇔ x2+(y−
√

5

2
)
2

= (x−1)2+(y−
√

5

2
)
2

.

Thus, we get

x2 = x2 − 2x + 1 ⇔ 0 = −2x + 1 .
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Hence, we obtain the equation

x = 1

2
.

But actually the hemispheres S2,
√
−5 and S2,2+

√
−5 only touch one another

in one point of z-coordinate

z = 1

2
+ 1

2

√
−5 ∈D0 .

But it is in fact a singular point in the fundamental polyhedron (see

Example 12.1). So we don't need to consider it in Swan's termination

criterion as it cannot be strictly below any hemisphere recorded in the

list.

2. For L(0
1 ,
√
−5
2 ), we get

z − 0

1

2

− 1 = z −
√
−5

2

2

− 1

4
, i.e. ∣z∣2 − 1 = z −

√
−5

2

2

− 1

4
.

Then, by setting z = x + iy, with x, y ∈ R, we get

∣x + iy∣2 − 1 = x + i(y −
√

5

2
)

2

− 1

4
.

Using the modulus ∣z∣ =
√
x2 + y2, we obtain

x2 + y2 − 1 = x2 + y2 − y
√

5 + 5

4
− 1

4
.

Hence, we obtain the equation

y = 2
√

5

5
.

We obtain the same equation for the line L(1
1 ,

2+
√
−5

2 ).

3. By a similar procedure, we obtain for the lines L(
√
−5
1 ,

√
−5
2 ) and L(1+

√
−5

1 , 2+
√
−5

2 )
the following equation

y = 3
√

5

5
.
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Note that the hemisphere S2,
√
−5 doesn't touch the hemispheres S1,1 and

S1,1+
√
−5. So we don't need to compute the lines L(1

1 ,
√
−5
2 ) and L(1+

√
−5

1 ,
√
−5
2 ).

Similarly, the hemisphere S2,2+
√
−5 doesn't touch the hemisphere S1,0 and S1,

√
−5.

So we don't need to compute the lines L(0
1 ,

2+
√
−5

2 ) and L(
√
−5
1 , 2+

√
−5

2 ).

Then, to compute the intersection point of L(0
1 ,

1
1) and L(0

1 ,
√
−5
2 ), we need

to consider the following system of equations

{ x = 1
2

y = 2
√
5

5

.

Thus, the intersection point of these two lines has for z-coordinate

z = 1

2
+ i2

5

√
5 = 1

2
+ 2

5

√
−5 ∈D0 .

But there is no point (z, ζ) on the hemispheres S1,0, S1,1, S2,
√
−5 and S2,2+

√
−5

which has this z-coordinate. So we can assume that the height ζ ⩽ 0.

We can verify that by using the equation ∣µz − λ∣2 + ∣µ∣2ζ2 = 1 of a hemisphere

Sµ,λ for a given unimodular pair (µ,λ) ∈ O2 (see Notation 3). We will do it

only for the hemisphere S1,0:

1 ⋅ (1

2
+ i2

5

√
5) − 0

2

+ 12 ⋅ ζ2 = 1 ⇔ 21

20
+ ζ2 = 1 .

So we obtain that ζ2 = 1− 21
20 = − 1

20 , which is impossible as ζ denotes the height

for a point in H (i.e. 0 < ζ ∈ R).

We can draw the same conclusion (that the height ζ ⩽ 0) for the intersection

point between L(
√
−5
1 , 1+

√
−5

1 ) and L(
√
−5
1 ,

√
−5
2 ) which has

z = 1

2
+ 3

5

√
−5 ∈D0

as z-coordinate.

It remains to add the edges of the fundamental rectangle D0 to the agreeing

lines. For the intersection point between L(0
1 ,
√
−5
2 ) and {x = 0}, we obtain as

z-coordinate

z = 0 + i2
√

5

5
= 2

5

√
−5 ∈D0 .
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Let us determine, via the Pythagorean theorem, the height ζ of the lift (2
5

√
−5, ζ)

of this intersection point. For this, we consider this z-coordinate as the point

(0, 2
√
5

5
) in R × R, and the center of the hemisphere S1,0 as the point (0,0).

Then the distance between these two points is

d((0,0),(0,
2
√

5

5
)) = 2

√
5

5
.

So, via the Pythagorean theorem, we obtain

(2
√

5

5
)
2

+ ζ2 = 12 ⇔ ζ2 = 12 − (2
√

5

5
)
2

,

i.e. ζ2 = 1
5 . As ζ denotes the height of the point (z, ζ) ∈ H, this implies that

ζ > 0. Hence, we have that ζ = 1√
5
=
√
5
5 . Later in this computation, we will

�nd another value for the height of a point in H, which is minimal. Hence,

the point (2
5

√
−5,

√
5
5 ) is not considered as a relevant vertex to check Swan's

termination criterion.

We can draw the same conclusion for the intersection points between L(
√
−5
1 ,

√
−5
2 )

and {x = 0}; between L(1
1 ,

2+
√
−5

2 ) and {x = 1}; and between L(1+
√
−5

1 , 2+
√
−5

2 )
and {x = 1}.

Figure 2.17: View from above

As we have points (z, ζ) with height ζ = 0, Swan's termination criterion is

not ful�lled. So we have to add more hemispheres to our hemisphere list.
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Moreover, in the picture above, we can see that the fundamental domain D0

for ( 1 OK
0 1

) in C is not completely covered by hemispheres yet.

Let us increase µ to the next higher value; i.e. µ = ±
√
−5 ∈ O. Let us take

µ =
√
−5 (= i

√
5 ∈ C) and, hence, ∣µ∣ =

√
(
√

5)2 =
√

5.

Then the �nitely many values for λ ∈ O, such that λ
µ ∈D0, are

0, −1, −2, −3, −4, −5,
√
−5, −1+

√
−5, −2+

√
−5, −3+

√
−5, −4+

√
−5, −5+

√
−5 .

Indeed, for λ = −2 for example, we have that

λ

µ
= −2√

−5
⋅
√
−5√
−5

= −2
√
−5

−5
= 2

5

√
−5 ∈D0 .

Or, for λ = −5 +
√
−5, we have

λ

µ
= −5 +

√
−5√

−5
= −5

√
−5 − 5

−5
= 1 +

√
−5 ∈D0 .

Note that for λ = a+ b
√
−5 ∈ O, with a ∈ N and b ∈ Z, or with a ∈ Z− and b ⩾ 2,

then λ
µ ∉D0.

But, in terms of height, every hemisphere S√−5,λ, with the corresponding

center λ√
−5 , and of radius 1

∣µ∣ = 1√
5
≅ 0,45 is covered by one or two of the six

hemispheres, which are already recorded in the list.

For example, if λ = −5 +
√
−5, then S√−5,−5+

√
−5 is everywhere below S1,1+

√
−5.

Indeed, using De�nition 15, we have

0 = 1 +
√
−5 − 1 −

√
−5

!
⩽ 1 − 1√

5
≅ 0,55 .
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Figure 2.18: S√−5,−5+
√
−5 everywhere below S1,1+

√
−5

Figure 2.19: S√−5,−2+
√
−5 covered by S1,1 and S2,2+

√
−5

We can make the same observation for µ = −
√
−5.

Hence, there is no hemisphere of radius 1
∣µ∣ = 1√

5
recorded in the hemisphere

list.

By considering Figure 2.14, we increase µ to the next value ±1 ±
√
−5 ∈ O;

i.e. µ = ±1 ± i
√

5 ∈ C. Moreover, we have ∣µ∣ =
√

(±1)2 + (±
√

5)2 =
√

6. Let us

take µ = 1 +
√
−5.

Then the �nitely many values for λ ∈ O, such that λ
µ ∈D0, are

0,
√
−5, −1+

√
−5, −2+

√
−5, −3+

√
−5, −5+

√
−5, −5+

√
−5, 1+

√
−5, −4+2

√
−5 .



2.2. REALIZATION OF SWAN'S ALGORITHM 54

For instance, if λ =
√
−5, then we have

λ

µ
=

√
−5

1 +
√
−5

⋅ 1 −
√
−5

1 −
√
−5

=
√
−5 − (−5)
1 − (−5) =

√
−5 + 5

6
= 5

6
+ 1

6

√
−5 ∈D0 .

But, in terms of height, every hemisphere S1+
√
−5,λ, with the correspond-

ing center λ
1+
√
−5 (except for the center with λ = −2 +

√
−5), and of radius

1
∣µ∣ = 1√

6
≅ 0,41 is covered by at least one of the six hemispheres in the list.

For example, if λ = 0, λ = 1 +
√
−5, λ = −5 +

√
−5 or if λ = −4 + 2

√
−5, then the

centers of the associated hemispheres are 0, 1,
√
−5 and 1 +

√
−5 respectively.

But these are also the centers of the four biggest hemispheres of radius 1,

which are recorded in our list. Hence, the four hemispheres of radius 1
∣µ∣ = 1√

6

are obviously everywhere below the corresponding hemispheres of radius 1.

If λ = −2 +
√
−5, then S1+

√
−5,−2+

√
−5 would be the only hemisphere of ra-

dius 1√
6
which would cover D0 (see Figure 2.20). But its center equals to

λ
µ = 1

2 + 1
2

√
−5 ∈ D0, which is the singular point we already mentioned. Con-

sequently, S1+
√
−5,−2+

√
−5 is not recorded in the hemisphere list as (µ,λ) =

(1 +
√
−5,−2 +

√
−5) is not a unimodular pair.

Figure 2.20: S1+
√
−5,−2+

√
−5
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We can make the same observation for µ = 1 −
√
−5, µ = −1 +

√
−5 and for

µ = −1 −
√
−5.

Hence, there is no hemisphere of radius 1
∣µ∣ = 1√

6
recorded in the hemisphere

list.

Remark 10. In general, note that a singular point cannot be strictly below

any hemisphere Sµ,λ, with (µ,λ) a unimodular pair.

Let us increase µ to the next higher value; i.e. µ = ±3 ∈ O or µ = ±2±
√
−5 ∈

O, such that ∣µ∣ =
√

(±3)2 =
√

(±2)2 + (±
√

5)2 = 3. Let us take µ = 3.

Then the �nitely many values for λ ∈ O, such that λ
µ ∈D0, are

0, 1, 2, 3,
√
−5, 1 +

√
−5, 2 +

√
−5, 3 +

√
−5, 2

√
−5, 1 + 2

√
−5,

2 + 2
√
−5, 3 + 2

√
−5, 3

√
−5, 1 + 3

√
−5, 2 + 3

√
−5, 3 + 3

√
−5 .

Note that for λ = a + b
√
−5 ∈ O, with a ∈ Z− and b ∈ Z, or with a ∈ N⩾4 and

b ∈ {0,1,2,3}, or with a ∈ {0,1,2,3} and b ∈ N⩾4, then λ
µ ∉D0.

For example, if λ = −3 + 4
√
−5, then

λ

µ
= −3 + 4

√
−5

3
= −1 + 4

3

√
−5 ∉D0 .

But, in terms of height, every hemisphere S3,λ, with the corresponding

center λ
3 , and of radius 1

∣µ∣ = 1
3 ≅ 0,33 is covered by the hemispheres, which are

already recorded in the list.

For example, if λ = 2 + 3
√
−5, then S3,2+3

√
−5 of center λ

µ = 2
3 +

√
−5 ∈ D0 is

everywhere below S1,1+
√
−5. Indeed, using De�nition 15, we have

2

3
+
√
−5 − 1 −

√
−5 = −1

3
=

¿
ÁÁÀ(− 1

3
)
2

= 1

3

!
⩽ 1 − 1

3
= 2

3
.

We can make the same observation for µ = −3, µ = ±2 ±
√
−5.

Hence, there is no hemisphere of radius 1
∣µ∣ = 1

3 recorded in the hemisphere list.

By considering Figure 2.14, we increase µ to the next value ±3 ±
√
−5 ∈ O;

i.e. µ = ±3± i
√

5 ∈ C. Moreover, we have ∣µ∣ =
√

(±3)2 + (±
√

5)2 =
√

14. Let us
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take µ = 3 +
√
−5.

Then the �nitely many values for λ ∈ O, such that λ
µ ∈D0, are

0,
√
−5, −1 +

√
−5, 3 +

√
−5, 2 +

√
−5, 1 +

√
−5, 2

√
−5, 1 + 2

√
−5,

− 1 + 2
√
−5, −2 + 2

√
−5, −3 + 2

√
−5, −1 + 3

√
−5, −2 + 3

√
−5, −3 + 3

√
−5,

− 4 + 3
√
−5, −5 + 3

√
−5, −2 + 4

√
−5 .

For instance, if λ =
√
−5, then we have

λ

µ
=

√
−5

3 +
√
−5

⋅ 3 −
√
−5

3 −
√
−5

= 3
√
−5 − (−5)

9 − (−5) = 3
√
−5 + 5

14
= 5

14
+ 3

14

√
−5 ∈D0 .

But, in terms of height, every hemisphere S3+
√
−5,λ, with the correspond-

ing center λ
3+
√
−5 (except for the center with λ = −1 + 2

√
−5), and of radius

1
∣µ∣ = 1√

14
≅ 0,27 is covered by at least one of the six hemispheres in the list.

Note that, if λ = −1 + 2
√
−5 ∈ O, then λ

µ = 1
2 + 1

2

√
−5 ∈ D0, which is again

the singular point we already mentioned. Consequently, S3+
√
−5,−1+2

√
−5 is not

recorded in the hemisphere list as (µ,λ) = (3 +
√
−5,−1 + 2

√
−5) is not a uni-

modular pair.

We can make the same observation for µ = 3 −
√
−5, µ = −3 +

√
−5 and for

µ = −3 −
√
−5.

Hence, there is no hemisphere of radius 1
∣µ∣ = 1√

14
recorded in the hemisphere

list.

Let us increase µ to the next higher value; i.e. µ = ±4 ∈ O and ∣µ∣ =√
(±4)2 = 4. Let us take µ = 4.

Then the �nitely many values for λ ∈ O, such that λ
µ ∈D0, are

0, 1, 2, 3, 4,
√
−5, 1 +

√
−5, 2 +

√
−5, 3 +

√
−5, 4 +

√
−5, 2

√
−5, 1 + 2

√
−5,

3 + 2
√
−5, 4 + 2

√
−5, 3

√
−5, 1 + 3

√
−5, 2 + 3

√
−5, 3 + 3

√
−5, 4 + 3

√
−5,

4
√
−5, 1 + 4

√
−5, 2 + 4

√
−5, 3 + 4

√
−5, 4 + 4

√
−5 .

But, in terms of height, every hemisphere S4,λ, with the corresponding

center λ
4 , and of radius 1

∣µ∣ = 1
4 = 0,25 is covered by hemispheres, which are

already recorded in the list.
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For example, if λ = 1 + 2
√
−5, then S4,1+2

√
−5 of center λ

µ = 1
4 + 1

2

√
−5 ∈ D0 is

everywhere below S2,
√
−5. Indeed, using De�nition 15, we have

1

4
+ 1

2

√
−5 − 1

2

√
−5 = 1

4
=

¿
ÁÁÀ(1

4
)
2

= 1

4

!
⩽ 1

2
− 1

4
= 1

4
.

Note that for λ = 2 + 2
√
−5 ∈ O, we have that λ

µ = 1
2 + 1

2

√
−5 ∈ D0,

which is again the singular point we already mentioned. Consequently, the

hemisphere S4,2+2
√
−5 of radius 1

4 is not recorded in the hemisphere list as

(µ,λ) = (4,2 + 2
√
−5) is not a unimodular pair.

We can make the same observation for µ = −4.

Hence, there is no hemisphere of radius 1
∣µ∣ = 1

4 recorded in the hemisphere list.

The next value for µ is ±2
√
−5 ∈ O; i.e. µ = ±2i

√
5 ∈ C. Let us take

µ = 2
√
−5 = 2i

√
5. Thus, we have that ∣µ∣ =

√
02 + (2

√
5)2 =

√
4 ⋅ 5 =

√
20.

Then the only values for λ ∈ O, which satisfy all the conditions described in

Step A in the algorithm computing the Bianchi fundamental polyhedron (see

Subsection 2.2.1), are λ = −4 +
√
−5 and λ = −6 +

√
−5. Indeed,

◇ 1. for λ = −4+
√
−5, we have λ

µ =
−4+
√
−5

2
√
−5 ⋅

√
−5√
−5 =

−4
√
−5−5

−10 = 1
2+ 2

5

√
−5 ∈D0;

and

2. for λ = −6 +
√
−5, we have λ

µ =
−6+
√
−5

2
√
−5 = −6

√
−5−5

−10 = 1
2 + 3

5

√
−5 ∈D0.

Moreover, note that, in view of Lemma 5, that both centers 1
2 + 2

5

√
−5

and 1
2 + 3

5

√
−5 are no singular points:

1. For 1
2 + 2

5

√
−5 = 5+4

√
−5

10 = 4( 5
4
+
√
−5)

10 , we have that the condition r ∈ Z
does not hold as r = 5

4 .

2. For 1
2 + 3

5

√
−5 = 5+6

√
−5

10 = 6( 5
6
+
√
−5)

10 , we have that the condition r ∈ Z
does not hold as r = 5

6 .

◇ In terms of De�nition 6, we have,

1. by choosing (α,β) = (−4 −
√
−5,2

√
−5) ∈ O2, that the pair (µ,λ) =

(2
√
−5,−4 +

√
−5) ∈ O2 is unimodular as

(−4+
√
−5) ⋅(−4−

√
−5)+(2

√
−5) ⋅(2

√
−5) = 21−20 = 1 ∈ (2

√
−5)O+

(−4 +
√
−5)O; and
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2. by choosing (α,β) = (−6 −
√
−5,4

√
−5) ∈ O2, that the pair (µ,λ) =

(2
√
−5,−6 +

√
−5) ∈ O2 is unimodular as

(−6+
√
−5) ⋅(−6−

√
−5)+(2

√
−5) ⋅(4

√
−5) = 41−40 = 1 ∈ (2

√
−5)O+

(−6 +
√
−5)O.

◇ In view of De�nition 15, the hemispheres S2
√
−5,−4+

√
−5 and S2

√
−5,−6+

√
−5

are not everywhere below a hemisphere, which is already recorded in the

hemisphere list. For example:

� S2
√
−5,−4+

√
−5 is not everywhere below S2,

√
−5:

1

2
+ 2

5

√
−5 − 1

2

√
−5 = 1

2
− i 1

10

√
5 =

¿
ÁÁÀ(1

2
)
2

+ (−
√

5

10
)
2

=
√

3

10
≅ 0,548

≰ 1

2
− 1√

20
≅ 0,276 .

� S2
√
−5,−6+

√
−5 is not everywhere below S1,

√
−5:

1

2
+ 3

5

√
−5 −

√
−5 = 1

2
− 2i

5

√
5 =

¿
ÁÁÀ(1

2
)
2

+ (−2
√

5

5
)
2

=
√

21

20
≅ 1,025

≰ 1 − 1√
20

≅ 0,776 .

Doing the same computation for the remaining hemispheres in the list,

we can draw the same conclusion.

Finally, we have that the hemispheres S2
√
−5,−4+

√
−5 and S2

√
−5,−6+

√
−5 of ra-

dius 1
∣µ∣ = 1√

20
are recorded into the hemisphere list.

In the following picture, we have a 3-dimensional representation of the eight

hemispheres in the list.
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Figure 2.21: S1,0, S1,1, S1,
√
−5, S1,1+

√
−5, S2,

√
−5, S2,2+

√
−5, S2

√
−5,−4+

√
−5 and

S2
√
−5,−6+

√
−5

(Note that this �gure is not reduced to the fundamental rectangle D0.)

Now, using Notation 6, let us compute the agreeing lines over which two

hemispheres in the list touch one another.

1. For L(0
1 ,

−4+
√
−5

2
√
−5 ), we get

z − 0

1

2

− 1 = z − 1

2
− 2

5

√
−5

2

− 1

20
,

i.e.

∣z∣2 − 1 = z − 1

2
− 2

5

√
−5

2

− 1

20
.

Then, by setting z = x + iy, with x, y ∈ R, we get

∣x + iy∣2 − 1 = (x − 1

2
) + i(y − 2

5

√
5)

2

− 1

20
.

Using the modulus of a complex number ∣z∣ =
√
x2 + y2, we obtain

x2+y2−1 = (x−1

2
)
2

+(y−2

5

√
5)

2

− 1

20
⇔ x2+y2−1 = x2−x+1

4
+y2−y4

5

√
5+4

5
− 1

20
.

Thus, we have

−1 = −x − y4

5

√
5 + 1 ,
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i.e.

y
4

5

√
5 = −x + 2 .

Hence, we obtain for L(0
1 ,

−4+
√
−5

2
√
−5 ) the equation

y = −
√

5

4
x +

√
5

2
.

2. For L(1
1 ,

−4+
√
−5

2
√
−5 ), we have

z − 1

1

2

− 1 = z − 1

2
− 2

5

√
−5

2

− 1

20
.

Then, by following the same instructions as above, we obtain the equation

of the line L(1
1 ,

−4+
√
−5

2
√
−5 ):

y =
√

5

4
x +

√
5

4
.

3. For L(
√
−5
2 , −4+

√
−5

2
√
−5 ), we get

z −
√
−5

2

2

− 1

4
= z − 1

2
− 2

5

√
−5

2

− 1

20
.

Then, by following the same instructions as previously, we obtain the

line equation

y =
√

5x .

4. Using the same procedure, we obtain for the line L(2+
√
−5

2 , −4+
√
−5

2
√
−5 ) the

following equation

y = −
√

5x +
√

5 .

5. For the line L(−4+
√
−5

2
√
−5 ,

−6+
√
−5

2
√
−5 ), we get

z − 1

2
− 2

5

√
−5

2

− 1

20
= z − 1

2
− 3

5

√
−5

2

− 1

20
.

Then, by setting z = x + iy, with x, y ∈ R, we get

(x − 1

2
) + i(y − 2

5

√
5)

2

= (x − 1

2
) + i(y − 3

5

√
5)

2

.
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By using the modulus ∣z∣ =
√
x2 + y2, we obtain

x2 − x + 1

4
+ y2 − y4

5

√
5 + 4

5
= x2 − x + 1

4
+ y2 − y6

5

√
5 + 9

5
,

i.e.

−y4

5

√
5 + 4

5
= −y6

5

√
5 + 9

5
.

Hence, for L(−4+
√
−5

2
√
−5 ,

−6+
√
−5

2
√
−5 ), we obtain the equation

y =
√

5

2
.

But actually the hemispheres S2
√
−5,−4+

√
−5 and S2

√
−5,−6+

√
−5 only touch

one another in one point, which has as z-coordinate

z = 1

2
+ 1

2

√
−5 ∈D0 .

But this point is in fact the singular point, which we already mentioned.

So we don't need to consider it in Swan's termination criterion as it

cannot be strictly below any hemisphere recorded in the list.

6. For L(
√
−5
1 , −6+

√
−5

2
√
−5 ), we get

z −
√
−5

1

2

− 1 = z − 1

2
− 3

5

√
−5

2

− 1

20
.

Then, by setting z = x + iy, with x, y ∈ R, we get

∣x + i(y −
√

5)∣2 − 1 = (x − 1

2
) + i(y − 3

5

√
5)

2

− 1

20
.

By using the modulus ∣z∣ =
√
x2 + y2, we obtain

x2 + y2 − y2
√

5 + 5 − 1 = x2 − x + 1

4
+ y2 − y6

5

√
5 + 9

5
− 1

20
.

Thus, we have

−y2
√

5 + 4 = −x − y6

5

√
5 + 2 ,

i.e.

−y4

5

√
5 = −x − 2 .

We �nally obtain for L(
√
−5
1 , −6+

√
−5

2
√
−5 ) the equation

y =
√

5

4
x +

√
5

2
.
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7. For the line L(1+
√
5

1 , −6+
√
−5

2
√
−5 ), we get

∣z − 1 −
√
−5∣2 − 1 = z − 1

2
− 3

5

√
−5

2

− 1

20
.

Then, by following the same instructions as above, we obtain the equation

of the line

y = −
√

5

4
x + 3

√
5

4
.

8. Using the same procedure, we obtain for the line L(
√
−5
2 , −6+

√
−5

2
√
−5 ) the

following equation

y = −
√

5x +
√

5 .

This is actually the same equation as for the line L(2+
√
−5

2 , −4+
√
−5

2
√
−5 ).

9. For L(2+
√
−5

2 , −6+
√
−5

2
√
−5 ), we get

z − 1 −
√
−5

2

2

− 1

4
= z − 1

2
− 3

5

√
−5

2

− 1

20
.

Then, using a similar procedure as previously, we obtain the equation of

the line L(2+
√
−5

2 , −6+
√
−5

2
√
−5 )

y =
√

5x .

This is actually the same equation as for the line L(
√
−5
2 , −4+

√
−5

2
√
−5 ).

Note that the hemisphere S2
√
−5,−4+

√
−5 doesn't touch the hemispheres S1,

√
−5

and S1,1+
√
−5. So we don't need to compute the lines L(

√
−5
1 , −4+

√
−5

2
√
−5 ) and

L(1+
√
−5

1 , −4+
√
−5

2
√
−5 ).

Similarly, the hemisphere S2
√
−5,−6+

√
−5 doesn't touch the hemispheres S1,0 and

S1,1. Consequently, we don't need to compute the lines L(0
1 ,

−6+
√
−5

2
√
−5 ) and

L(1
1 ,

−6+
√
−5

2
√
−5 ).
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Figure 2.22: View from above to S1,0, S1,1, S1,
√
−5, S1,1+

√
−5, S2,

√
−5, S2,2+

√
−5,

S2
√
−5,−4+

√
−5 and S2

√
−5,−6+

√
−5, and all the agreeing lines

Let us now compute all the possible intersection points of the agreeing lines

referring to the same center:

1. Recall that we previously computed the z-coordinate

z = 1

2
+ 2

5

√
−5 ∈D0

of the intersection point of L(0
1 ,

1
1) and L(0

1 ,
√
−5
2 ). We concluded there

that ζ ⩽ 0. Now, we have that the point (z, ζ) with this latter z-

coordinate lies on the hemisphere S2
√
−5,−4+

√
−5. Actually, this z-coordinate

is the center of this hemisphere. So we can conclude that the height cor-

responds to the radius of this hemisphere, i.e. ζ = 1√
20
≅ 0,22.

We can verify that by using the equation of the hemisphere S2
√
−5,−4+

√
−5

(see Notation 3):

2
√
−5(1

2
+ 2

5

√
−5) + 4 −

√
−5

2

+∣2
√
−5∣2⋅ 1

√
20

2 =
√
−5 − 4 + 4 −

√
−5

2+20⋅ 1

20
!= 1 .
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But, as the value for ζ is not minimal (we will see this at the end of this

computation), (1
2 + 2

5

√
−5, 1√

20
) is not considered as a relevant vertex on

which to check Theorem 4.

Similarly, for the intersection point of L(
√
−5
1 , 1+

√
−5

1 ) and L(
√
−5
1 ,

√
−5
2 ),

we determined the z-coordinate

z = 1

2
+ 3

5

√
−5 ∈D0 .

Now, we have that this z-coordinate corresponds to the center (on the

complex plane C) of the hemisphere S2
√
−5,−6+

√
−5. Thus, we can conclude

that the height of the lift (1
2+ 3

5

√
−5, ζ), which lies on S2

√
−5,−6+

√
−5, equals

to the radius of this hemisphere, i.e. ζ = 1√
20
≅ 0,22.

Again, as ζ is not minimal, it is not considered as a relevant vertex.

2. We need to add the edges of the fundamental rectangleD0 to the agreeing

lines. Among all the edges of D0, it remains to compute the intersection

points of L(
√
−5
2 , −4+

√
−5

2
√
−5 ) and {y = 0}; of L(2+

√
−5

2 , −4+
√
−5

2
√
−5 ) and {y = 0};

of L(
√
−5
2 , −6+

√
−5

2
√
−5 ) and {y =

√
5}; and of L(2+

√
−5

2 , −6+
√
−5

2
√
−5 ) and {y =

√
5}.

We can easily see in Figure 2.22, that these four intersection points are

the lifts of the centers of the hemispheres of radius 1. Hence, the heights

of these four vertices are equal to 1. But, as the heights of all those

points (which are lifts on the edges of the rectangle D0) are not minimal,

they are not considered as relevant vertices on which to check Swan's

termination criterion.

3. The intersection point of the lines L(
√
−5
2 , −4+

√
−5

2
√
−5 ), L(2+

√
−5

2 , −4+
√
−5

2
√
−5 ), L(−4+

√
−5

2
√
−5 ,

−6+
√
−5

2
√
−5 )

and L(
√
−5
2 , 2+

√
−5

2 ) has for z-coordinate

z = 1

2
+ 1

2

√
−5 ∈D0 ,

which is again the singular point.

4. Let us compute the intersection point of L(0
1 ,

−4+
√
−5

2
√
−5 ) and L(2+

√
−5

2 , −4+
√
−5

2
√
−5 );

i.e. we have to solve the following system of equations:

{ y = −
√
5
4 x +

√
5
2

y = −
√

5x +
√

5
.
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This implies that

−
√

5

4
x +

√
5

2
= −

√
5x +

√
5 .

Thus, we get x = 2
3 .

Hence, if we insert x = 2
3 in one of the equations of the system above, we

get y =
√
5
3 .

So the intersection point of these two lines has for z-coordinate

z = 2

3
+ i

√
5

3
= 2

3
+ 1

3

√
−5 ∈D0 .

But we have that the hemispheres S1,0, S2,2+
√
−5 and S2

√
−5,−4+

√
−5 are

strictly below the hemisphere S1,1 at this point z ∈ C. Indeed, in terms

of De�nition 10, we obtain for the left hand side

z − 1

1

2

− 1 = 2

3
+ i

√
5

3
− 1

2

− 1 = −1

3
+ i

√
5

3

2

− 1 = −1

3
,

and for the right hand side

z − 1

2
− 2

5

√
−5

2

− 1

20
= 2

3
+ i

√
5

3
− 1

2
− i2

√
5

5

2

− 1

20
= 1

6
− i

√
5

15

2

− 1

20
= 0 .

Thus, as we clearly have that −1
3 < 0, we can conclude that S2

√
−5,−4+

√
−5

is strictly below S1,1 at this z ∈ C.
We can draw the same conclusion if we do the same computations for

S2,2+
√
−5 and S1,0.

Hence, we drop this intersection point.

5. Let us compute the intersection point of L(1
1 ,

−4+
√
−5

2
√
−5 ) and L(

√
−5
2 , −4+

√
−5

2
√
−5 );

i.e. we have to solve the following system

{ y =
√
5
4 x +

√
5
4

y =
√

5x +
√

5
.

Then, by proceeding in the same way as in the previous computation,

we get

x = 1

3
and y =

√
5

3
.

So the intersection point of these two lines has the following z-coordinate

z = 1

3
+ i

√
5

3
= 1

3
+ 1

3

√
−5 ∈D0 .
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But we have that the hemispheres S1,1, S2,
√
−5 and S2

√
−5,−4+

√
−5 are

strictly below the hemisphere S1,0 at this point z ∈ C. Indeed, in terms

of De�nition 10, we obtain for the left hand side

∣z − 0∣2 − 1 = 1

3
+ i

√
5

3

2

− 1 = −1

3
,

and for the right hand side

∣z − 1∣2 − 1 = 1

3
+ i

√
5

3
− 1

2

− 1 = −2

3
+ i

√
5

3

2

− 1 = 0 .

Thus, as we clearly have that −1
3 < 0, we can conclude that S1,1 is strictly

below S1,0 at this z ∈ C.
We can draw the same conclusion if we do the same computations for

S2,
√
−5 and S2

√
−5,−4+

√
−5.

Hence, we drop this intersection point.

6. Now we compute the intersection point of L(
√
−5
1 , −6+

√
−5

2
√
−5 ) and L(2+

√
−5

2 , −6+
√
−5

2
√
−5 );

i.e. we have to solve the following system:

{ y =
√
5
4 x +

√
5
2

y =
√

5x
.

Then, by proceeding in the same way as previously, we get

x = 2

3
and y = 2

√
5

3
.

So the intersection point of these two lines has for z-coordinate

z = 2

3
+ i2

√
5

3
= 2

3
+ 2

3

√
−5 ∈D0 .

But we have that the hemispheres S1,
√
−5, S2,2+

√
−5 and S2

√
−5,−6+

√
−5 are

strictly below the hemisphere S1,1+
√
−5 at this z ∈ C. Indeed, in terms of

De�nition 10, we obtain for the left hand side

∣z − 1 −
√
−5∣2 − 1 = 2

3
+ i2

√
5

3
− 1 −

√
−5

2

− 1 = −1

3
− i

√
5

3

2

− 1 = −1

3
,

and for the right hand side

z − 1

2
− 3

5

√
−5

2

− 1

20
= 2

3
+ i2

√
5

3
− 1

2
− i3

√
5

5

2

− 1

20
= 1

6
+ i

√
5

15

2

− 1

20
= 0 .
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Thus, as we clearly have that −1
3 < 0, we can conclude that S2

√
−5,−6+

√
−5

is strictly below S1,1+
√
−5 at this z ∈ C.

We can draw the same conclusion if we do the same computations for

S2,2+
√
−5 and S1,

√
−5.

Hence, we drop this intersection point.

7. For the computation of the intersection point of L(1+
√
−5

1 , −6+
√
−5

2
√
−5 ) and

L(
√
−5
2 , −6+

√
−5

2
√
−5 ), we have to solve the following system of equations:

{ y = −
√
5
4 x +

3
√
5

4

y = −
√

5x +
√

5
.

Then we obtain

x = 1

3
and y = 2

√
5

3
.

So the intersection point of these two lines has for z-coordinate

z = 1

3
+ i2

√
5

3
= 1

3
+ 2

3

√
−5 ∈D0 .

But we have again that the hemispheres S1,1+
√
−5, S2,

√
−5 and S2

√
−5,−6+

√
−5

are strictly below the hemisphere S1,
√
−5 at this z ∈ C. Indeed, in terms

of De�nition 10, we obtain for the left hand side

∣z −
√
−5∣2 − 1 = 1

3
+ i2

√
5

3
− i

√
5

2

− 1 = 1

3
− i

√
5

3

2

− 1 = −1

3
,

and for the right hand side

∣z − 1 −
√
−5∣2 − 1 = 1

3
+ i2

√
5

3
− 1 − i

√
5

2

− 1 = −2

3
− i

√
5

3

2

− 1 = 0 .

Finally, as we have that −1
3 < 0, we can conclude that S1,1+

√
−5 is strictly

below S1,
√
−5 at this z ∈ C.

We can draw the same conclusion if we do the same computations for

S2,
√
−5 and S2

√
−5,−6+

√
−5.

Hence, we drop this intersection point.

Remark 11. Note that, we do not need to check Swan's termination

criterion on the corresponding vertices of the last four intersection points,

which have height ζ = 0, because they lie strictly below one of the unit

hemispheres (each of the four unit hemispheres occurs once here).
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8. Let us compute the intersection point of L(0
1 ,

−4+
√
−5

2
√
−5 ), L(1

1 ,
−4+
√
−5

2
√
−5 ) and

L(0
1 ,

1
1). Thus, we have to solve the system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = −
√
5
4 x +

√
5
2

y =
√
5
4 x +

√
5
4

x = 1
2

Let us insert x = 1
2 in the �rst equation of the system. Then we obtain

y = −
√

5

4
⋅ 1

2
+

√
5

2
= 3

√
5

8
.

We can use the second equation of the system as a veri�cation:

3
√

5

8
!=
√

5

4
⋅ 1

2
+

√
5

4
.

Hence, the intersection point of these three lines has as z-coordinate

z = 1

2
+ i3

√
5

8
= 1

2
+ 3

8

√
−5 ∈D0 .

It remains to check Swan's termination criterion (see Theorem 4). For

this, we need to determine the height ζ of the vertex (1
2+ 3

8

√
−5, ζ), which

is the lift of the intersection point above. So we consider z = 1
2 + 3

8

√
−5

as the point (1
2 ,

3
√
5

8
) in the Euclidean plane R ×R, and the center λ

µ = 0

of the hemisphere S1,0 (of radius 1
∣1∣ = 1) as the point (0,0). Then the

distance between these two points is

d((0,0);(1

2
,
3
√

5

8
)) =

¿
ÁÁÀ(0 − 1

2
)

2

+ (0 − 3
√

5

8
)

2

=
√

61

8
.

Using the Pythagorean theorem, we get

(
√

61

8
)
2

+ ζ2 = ( 1

∣µ∣)
2

⇔ ζ2 = ( 1

∣µ∣)
2

− (
√

61

8
)
2

,

i.e. we have for µ = 1

ζ2 = 12 − (
√

61

8
)
2

= 1 − 61

64
= 3

64
.
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As ζ denotes the height of a point (z, ζ) in H, this implies that ζ > 0.

Hence,

ζ =
√

3

64
=

√
3

8
≅ 0,217 .

The next value for µ would be ±5, thus the radius 1
∣µ∣ would be equal

to 1
5 . As ζ ⩾ 1

∣µ∣ for µ = 5, we have that (z, ζ) = (1
2 + 3

8

√
−5,

√
3
8 ) ∈

H cannot be strictly below the remaining hemispheres, as they have

radius smaller than ζ. In other words, the highest point of any remaining

hemisphere cannot lie higher than (z, ζ), and hence these hemispheres

cannot contribute to the structure of B. So Theorem 4 is ful�lled.

9. Let us compute the intersection point of L(
√
−5
1 , −6+

√
−5

2
√
−5 ), L(1+

√
−5

1 , −6+
√
−5

2
√
−5 )

and L(
√
−5
1 , 1+

√
−5

1 ). Thus, we have to solve the system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y =
√
5
4 x +

√
5
2

y = −
√
5
4 x +

3
√
5

4

x = 1
2

.

If we insert x = 1
2 in the �rst equation of the system, then we obtain

y =
√

5

4
⋅ 1

2
+

√
5

2
= 5

√
5

8
.

We can use the second equation of the system as a veri�cation:

5
√

5

8
!= −

√
5

4
⋅ 1

2
+ 3

√
5

4
.

Hence, the intersection point of these three lines has as z-coordinate

z = 1

2
+ i5

√
5

8
= 1

2
+ 5

8

√
−5 ∈D0 .

It remains to check Swan's termination criterion. For this, we determine

the height of the lift (1
2 + 5

8

√
−5, ζ) of the intersection point above. So we

consider z = 1
2 + 5

8

√
−5 as the point (1

2 ,
5
√
5

8
) in the Euclidean plane R×R

and the center λ
µ =

√
−5 of the hemisphere S1,

√
−5 as the point (0,

√
5).

Then the distance between these two points is

d((0,
√

5);(1

2
,
5
√

5

8
)) =

¿
ÁÁÀ(0 − 1

2
)

2

+ (
√

5 − 5
√

5

8
)

2

=
√

61

8
.
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Thus, using the Pythagorean theorem, we �nd the same value for ζ as

in the previous bullet point, namely ζ =
√
3
8 ≅ 0,217.

Again, as ζ =
√
3
8 ⩾ 1

5 , we have that Swan's termination criterion is ful-

�lled.

10. Let us compute the intersection point of L(1
1 ,

−4+
√
−5

2
√
−5 ), L(2+

√
−5

2 , −4+
√
−5

2
√
−5 )

and L(1
1 ,

2+
√
−5

2 ). Thus, we have to solve the following system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y =
√
5
4 x +

√
5
4

y = −
√

5x +
√

5

y = 2
√
5

5

.

If we insert y = 2
√
5

5 in one of the equations of the system, then we obtain

x = 3
5 .

Hence, the intersection point of these three lines has for z-coordinate

z = 3

5
+ i2

√
5

5
= 3

5
+ 2

5

√
−5 ∈D0 .

It remains to check Swan's termination criterion (see Theorem 4). For

this, we need to determine the height ζ of the point (3
5 + 2

5

√
−5, ζ), which

is the lift of this intersection point. So let us consider z = 3
5 + 2

5

√
−5 as

the point (3
5 ,

2
√
5

5
) in the Euclidean plane R ×R and the center λ

µ = 1 of

the hemisphere S1,1 as the point (1,0). Then the distance between these

two points is

d((1,0);(3

5
,
2
√

5

5
)) =

¿
ÁÁÀ(1 − 3

5
)

2

+ (0 − 2
√

5

5
)

2

= 2
√

6

5
.

Using the Pythagorean theorem, we get

(2
√

6

5
)
2

+ ζ2 = ( 1

∣µ∣)
2

⇔ ζ2 = ( 1

∣µ∣)
2

− (2
√

6

5
)
2

i.e. for µ = 1 we obtain

ζ2 = 12 − (2
√

6

5
)
2

= 1 − 24

25
= 1

25
.
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Hence, as ζ is the height of a point (z, ζ) in H, i.e. ζ > 0, this implies

that

ζ =
√

1

25
= 1

5
= 0,2 .

The next value for µ would be ±5, i.e. the radius would be equal to
1
5 . Since ζ ⩾ 1

∣µ∣ for µ = 5, we have that all remaining hemispheres have

radius equal or smaller than 1
5 , so (z, ζ) = (3

5 + 2
5

√
−5, 15) ∈ H cannot be

strictly below them. So Theorem 4 is ful�lled.

11. For the computation for the intersection point of L(
√
−5
2 , −4+

√
−5

2
√
−5 ), L(0

1 ,
−4+
√
−5

2
√
−5 )

and L(0
1 ,
√
−5
2 ), we have to solve the system of equations

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y =
√

5x

y = −
√
5
4 x +

√
5
2

y = 2
√
5

5

.

Let us insert y = 2
√
5

5 in the �rst equation of the system above. Then we

obtain
2
√

5

5
=
√

5x ⇔ x = 2

5
.

Hence, the intersection point of these three lines has for z-coordinate

z = 2

5
+ i2

√
5

5
= 2

5
+ 2

5

√
−5 ∈D0 .

It remains to determine the height ζ of the lift (2
5 + 2

5

√
−5, ζ) of this

intersection point. For this, we consider z = 2
5+ 2

5

√
−5 as the point (2

5 ,
2
√
5

5
)

in the Euclidean plane R×R, and the center λ
µ = 0 of the hemisphere S1,0

as the point (0,0). Then the distance between these two points is

d((0,0);(2

5
,
2
√

5

5
)) =

¿
ÁÁÀ(0 − 2

5
)

2

+ (0 − 2
√

5

5
)

2

= 2
√

6

5
.

Thus, using the Pythagorean theorem, we get the same value for ζ as in

the previous bullet point, namely ζ = 1
5 .

Again, as ζ = 1
5 ⩾ 1

∣µ∣ = 1
5 for µ = 5, we have that Theorem 4 is ful�lled.
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12. For the computation for the intersection point of L(
√
−5
2 , −6+

√
−5

2
√
−5 ), L(

√
−5
1 , −6+

√
−5

2
√
−5 )

and L(
√
−5
1 ,

√
−5
2 ), we have to solve the following system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y = −
√

5x +
√

5

y =
√
5
4 x +

√
5
2

y = 3
√
5

5

.

Following the same procedure as previously, then we obtain x = 2
5 . Hence,

the intersection point of these three lines has for z-coordinate

z = 2

5
+ i3

√
5

5
= 2

5
+ 3

5

√
−5 ∈D0 .

It remains to determine the height ζ of (2
5 + 3

5

√
−5, ζ). For this, we

consider z = 2
5 + 3

5

√
−5 as the point (2

5 ,
3
√
5

5
) in R × R, and the center

λ
µ =

√
−5 of the hemisphere S1,

√
−5 as the point (0,

√
5). Then the distance

between these two points is

d((0,
√

5);(2

5
,
3
√

5

5
)) =

¿
ÁÁÀ(0 − 2

5
)

2

+ (
√

5 − 3
√

5

5
)

2

= 2
√

6

5
.

Thus, we get the same value for ζ as previously, namely ζ = 1
5 .

Again, as ζ = 1
5 ⩾ 1

∣µ∣ = 1
5 for µ = 5, we have that Theorem 4 is ful�lled.

13. We compute the intersection point of L(2+
√
−5

2 , −6+
√
−5

2
√
−5 ), L(1+

√
−5

1 , −6+
√
−5

2
√
−5 )

and L(1+
√
−5

1 , 2+
√
−5

2 ), i.e we have to solve the following system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

y =
√

5x

y = −
√
5
4 x +

3
√
5

4

y = 3
√
5

5

⇔ x = 3

5
.

Hence, the intersection point of these three lines has for z-coordinate

z = 3

5
+ i3

√
5

5
= 3

5
+ 3

5

√
−5 ∈D0 .

It remains to check Swan's termination criterion. For this, we determine

the height ζ of the point (3
5 + 3

5

√
−5, ζ). So let us consider z = 3

5 + 3
5

√
−5 as

the point (3
5 ,

3
√
5

5
) in R×R, and the center λ

µ = 1+
√
−5 of the hemisphere
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S1,1+
√
−5 as the point (1,

√
5). Then the distance between these two points

is

d((1,
√

5);(3

5
,
3
√

5

5
)) =

¿
ÁÁÀ(1 − 3

5
)

2

+ (
√

5 − 3
√

5

5
)

2

= 2
√

6

5
.

So we obtain again the same value for ζ as previously, namely ζ = 1
5 .

Finally, as ζ = 1
5 ⩾ 1

∣µ∣ = 1
5 for µ = 5, we have that Theorem 4 is ful�lled.

Remark 12. In terms of Lemma 5, we can easily check that none of these

intersection points are singular points.

Comparing the values of the heights for the last six points in H, we notice
that

√
3
8 > 1

5 . But, as we have to pick the lowest value for ζ > 0, we can

conclude that the points (1
2 + 3

8

√
−5,

√
3
8 ) and (1

2 + 5
8

√
−5,

√
3
8 ) are not considered

as relevant vertices. Hence, there are four points left which can be considered

as relevant vertices for Swan's termination criterion:

(z, ζ) = (3

5
+ 2

5

√
−5,

1

5
)

(z, ζ) = (2

5
+ 2

5

√
−5,

1

5
)

(z, ζ) = (2

5
+ 3

5

√
−5,

1

5
)

(z, ζ) = (3

5
+ 3

5

√
−5,

1

5
)

Moreover, in the next picture, we can see that the fundamental domain is

now completely covered by hemispheres.

Figure 2.23: Fundamental domain for m = 5

Figure 2.24: View from

above
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Remark 13. Note that in the �gures 2.23 and 2.24, there have been marked

precisely those vertices which are relevant for checking Swan's criterion (i.e.

minimal height amongst non-singular vertices).

Thus, Theorem 4 is ful�lled, and we have computed the Bianchi fundamen-

tal polyhedron.

Figure 2.25: Bianchi fundamental polyhedron for m = 5

In the following picture, the cell structure of the Bianchi fundamental poly-

hedron is illustrated.
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Figure 2.26: Cell structure for the Bianchi fundamental polyhedron for m = 5

Remark 14. � We obtain the cell structure while using only those line

segments which are projections of arcs on the surface.

If we compare Figure 2.22 and Figure 2.25, then it becomes more clear

how we obtain Figure 2.26.

� I established an animated "GIF"-�le of the fundamental domain, which

you can �nd either on the website "Experimental Mathematics Lab"

under the category "Image gallery": http://math.uni.lu/eml/,

or on my Dropbox via the following QR-Code:

http://math.uni.lu/eml/


Appendix

Another part of my Master thesis was to collect screenshots of the fundamen-

tal polyhedron for the Bianchi group of discriminant −427, computed with

Bianchi.gp and visualized with the program "Geomview". Then using these

screenshots, I established an animated "GIF"-�le, which you can �nd on the

website "Experimental Mathematics Lab" under the category "Image gallery":

http://math.uni.lu/eml/

This video is also accessible on my Dropbox via the following QR-Code:

Here are the collected screenshots:

76

http://math.uni.lu/eml/
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