
Forex price prediction using
LSTM’s

DA SILVA MOREIRA DYLAN, DIAS TIAGO

Supervisor: George Kerchev

FSTC: Bachelor of Mathematics

Summer semester 2021

Contents

1 Introduction 2

2 Universal approximation theorem 5

3 Building and Testing of the LSTM 10
3.1 Importing the Data . 10
3.2 Transformation of the data . 10
3.3 Building and training the LSTM 12
3.4 Testing and evaluation of the results 13

4 Conclusion 17

1

Abstract

The goal of this project is to to use machine learning, more precisely a
LSTM neural network to try predicting the Forex market. For this project
we will be focusing on the EUR/USD course and use a 60 day time series
to predict the 61st day.

2

1 Introduction

Have you ever wondered how a computer can reproduce the text on a hand-
written document into computer written language? Or while driving, how
voice-to-text recognizes speech and turns it into text? This is all possible
thanks to recurrent neural network’s (RNN), which is a type of artificial neu-
ral network. Like the names implies,a neural network is a circuit of neurons.
Every neuron in our brain is connected through path-wise so that the infor-
mation can get to its destination. Scientists took advantage of that concept
and translated into numerical language, making computers so to speak learn
on their own, that’s what we refer to artificial intelligence. The correspond-
ing networks are called Artificial Neural Network (ANN). An artificial neural
network consists of 3 main layers:

• Input layer

• Hidden layer

• Output layer

The connections between every layer are called edges. Every edge has a
certain weight w, which shows the importance of the edge for every single
information. After the information passes through all of the layers, it reaches
to the output layer which displays the result. This process is used on a variety
of tasks such as speech recognition, stock trading etc. RNN are good at
processing sequence data for predictions. What differentiates recurrent
neural networks from other artificial networks, is that the information passes
through the layers several times. RNN’s have a concept of sequential memory,
it uses previous information to affect later information. It has a looping
mechanism at the hidden state level, where previous information is kept. One
issue is the short-term memory, which is the lack of retaining information
over an extended period of time. A solution to this can be backpropagation.
Backpropagation is an algorithm used to train and optimize a neural network.
Therefore, we first go forwards through the network to estimate an error
value which shows how badly the network processes. Then with the error
value we use backpropagation to calculate the gradients for each node. A
gradient is basically a value used to adjust the internal weights so that the

3

network learns from its mistakes. Gradient descent is used to find the
minimum of the function. At each iteration, we calculate the partial
derivatives of the loss function with respect to the weights hoping to nudge
up or down the weights. Our result should then be closs to zero loss. This is
what basic networks tend to achieve to work properly. But the gradient value
will always shrink or explode exponentially from layer to layer because a
layer calculates its gradient with respect to the effect of the gradients of the
layers before. To get rid of the vanishing / exploding gradient problem and
the short-term-memory one uses different models such as the
Long-Short-Term-Memory model (LSTM) or the Gated Recurrent Unit model
(GRU). But how does a RNN work? The input is first transformed into
readable vectors which the model processes one by one. During the whole
process the hidden state, which holds the information, is passed to the next
sequence. The hidden state is the combination between the new input and the
previous hidden state which forms a new vector. To calculate a value of a
neuron ak of layer k we need to use the values of all neurons a(k−1) of the k − 1
layer, using the formula:

σ (
n∑
i=0

aiwi + b)

where σ is the activation function. There are several activation functions
which can be used :

(a) (b) (c)

Figure 1: (a) σ (x) = 1
1+e−x (b) tanh(x) = ex−e−x

ex+e−x (c) f (x) =max(0,x) (relu)

These are some of the most common activation functions used in machine
learning.

Since LSTM’s are especially useful for time series predictions, we will be using
that type of network. Let us have a quick look at the architecture of an LSTM
layer:

4

As we can see the layer consists of a number of LSTM cells (sometimes ref-
ered to as LSTM blocks) this number usually corresponds to the number of xi
inputs. Each of these cells contain a finite number of LSTM units:

The LSTM unit has a rather complicated architecture, but its main
components are:

• Input gate : manages the cell update state

• Forget gate : manages the cell reset state

• Output gate : manages the cell state added to the hidden gate

5

2 Universal approximation theorem

After seeing how neural networks work and their applications, we need to
prove their correctness. This can be done through the Universal approxima-
tion theorem. Proving this theorem validates the universality and justness of
neural networks.
Since the proof is technical and tedious, we will focus on a more visual ap-
proach of the proof.

Theorem. Let ϕ : R → R be a nonconstant, bounded, and continuous function
(called the activation function. Let Im denoted the m-dimensional unit hypercube
[0,1]m. The space of real-valued continuous functions on Im is denoted by C(Im).
Then given any ε > 0 and any function f ∈ C(I −m), there exists an integer N ,
real constants vi ,bi ∈ R and real vectors wi ∈ Rm for i = 1, . . . ,N , such that we may
define :

F(x) =
N∑
i=1

viϕ(wTi x+ bi)

as an approximate realization of the function f ; that is,

|F(x)− f (x)| < ε

for all x ∈ Im. In other words, functions F(x) are dense in C(Im).

One can see that the formal statement of the theorem is quite complex, let us
have a look at a more informal statement of the theorem:

Theorem (Informal). A neural network with one single hidden layer containing a
finite number of neurons can approximate any continuous function on a compact
subset of Rn

Proof. First we need a random function f we want to approximate:

To keep it simple, we start with a neural network with one hidden layer
containing two neurons, and one input neuron as well as one output neuron.

6

As the activation function we use a sigmoid function σ (z) = 1
1+e−z (although,

one could have used any other activation function). The output from the
hidden neuron will therefore be: σ (wx+ b).

By taking a large enough weight w one can see that the the sigma function
gets approximated to a step function.

The position s of the step function is given by −bw = s.

7

Doing the same for the second hidden neuron one gets the weighted output of
the hidden layer equal to

∑
jwjaj :

If one takes the same value for w1 and w2 such that w1 = −w2 we observe a
’bump’ function with height h = w1 and h = −w2. Furthermore the ’starting
point’ and ’end point’ of the function will depend on s1 respectively s2.

By adding neurons pairwise to the hidden layer, one creates n
2 =N of these

’bump’ functions where n equals to the number of neurons in the hidden
layer. In addition, by choosing sj accordingly one can cover the x-axis with N
equally sized (width) ’bump’ functions. The larger the number of neurons N
is, the finer the coverage will be.

8

Until now we have been focusing on the weighted output of the hidden layer
(
∑
jwjaj), however the output of the output layer is under the form

σ (
∑
jwjaj + b) where b is the bias of the output neuron. To solve this problem

we approximate σ−1◦f (x) instead of f (x) and set the bias of the last neuron to
b = 0.

Since we are able to approximate it by tweaking the weights and biases as
shown in the steps above, we hence can approximate our function f for any
given ε.

9

Remark: The larger the number of neuronsN in the hidden layer the better will
be the approximation.

10

3 Building and Testing of the LSTM

In this section we will focus on building the LSTM, as well as training and
testing of the neural network. For the programming we used Python with the
Anaconda application and Keras library using Tensorflow backend.

Imported libraries :

import numpy as np

import matplotlib.pyplot as plt

import pandas as pd

import yfinance as yf

import math

plt.style.use('seaborn-whitegrid')

3.1 Importing the Data

We get the Forex price of EUR/USD from Yahoo finance website by using the
yfinance.download method:

data=yf.download(tickers='EURUSD=X',start='2011-12-31',end='2019-12-31',interval ='1d')

Figure 2: EUR/USD Forex price

Since we are only interested in the closing price, we will filter out the closing
price and save its values into an array.

data_close = data.filter(['Close'])

dataset = data_close.values

3.2 Transformation of the data

We split the data, 80% for training and the other 20% for testing

defining the number of rows we use for thr training set and testing set

train_len = math.ceil(len(dataset) *.8) # 80% of data round up

11

The data needs to be scaled between 0 and 1 because it is easier for the back
propagation to handle smaller numbers.

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler(feature_range = (0, 1))

training_data = scaler.fit_transform(dataset[:train_len , :]) # importance of fit_transform

Now we create xtrain and ytrain array, each element of xtrain is an array with 60
values since that’s the time series we are using and ytrain contains every
respective 61st day we want to predict.

x_train =[] # independant training variables / training features

y_train =[] # dependant training variables / targat variables

for i in range(60, len(training_data)):

x_train.append(training_data[i-60:i,0])

y_train.append(training_data[i,0])

Figure 3: Input format

Since keras neural networks require the input and output to be a
3-dimensional array, we need to convert the xtrain andytrain into a numpy array
to then reshape it into a 3-dimensional array (which is a numpy method).

x_train,y_train = np.array(x_train), np.array(y_train)

x_train= np.reshape(x_train,(x_train.shape[0] ,x_train.shape[1] ,1))

12

3.3 Building and training the LSTM
from keras.models import Sequential

from keras.layers import Dense

from keras.layers import LSTM

from keras.layers import Dropout

model = Sequential()

model.add(LSTM(50, return_sequences = True, input_shape=(x_train.shape[1], 1)))

model.add(LSTM(50, return_sequences = False))

model.add(Dropout(0.2))

model.add(Dense(25))

model.add(Dense(1))

model.compile(optimizer = 'adam', loss = 'mean_squared_error')

model.save('lstm_model.h5')

The build network will look like this:

Input Layer

 x_2 LSTM LSTM

 x_1 LSTM

x_3 LSTM LSTM

 x_60 LSTM LSTM

LSTM

h_60

Hidden Layer

50 units

50
neurons

25
neuronsreturn_seq =

True
return_seq =

False

Dropout 0.2 Dense

Output Layer

Figure 4: Network architecture

Remark: A dense layer is a layer of simple neurons that connects to the next
layer of neurons. A dropout layer is also a dense layer, with the difference that
it randomly changes the value of neurons to 0 (to a certain percentage), in our
case it’s 20% of the neurons. This prevents the network from overfitting.

After building and defining the LSTM’s parameters we can now train the net-
work. We will use a batch size of 32, this will update the LSTM every 32nd

iteration.

#powers of two are better for computation

model.fit(x_train, y_train, epochs = 100, batch_size = 32)

13

3.4 Testing and evaluation of the results

Before we can test our neural network, we must first transform the remaining
20% of the data, like we did with the training data to feed through our model.

#remaining 20%

test_data = scaler.transform(dataset[train_len - 60: , :])

x_test = []

for i in range(60,len(test_data)):

x_test.append(test_data[i-60:i,0])

x_test = np.array(x_test)

x_test = np.reshape(x_test, (x_test.shape[0],x_test.shape[1],1))

x_test.shape

Now we can finally make our predictions. It’s worth noticing that after getting
the predicted values from the network, one has to inverse transform the data
since it has been scaled before feeding through the network.

predictions = model.predict(x_test)

predictions = scaler.inverse_transform(predictions)# importance of transforme only

predictions.shape

Figure 5: EUR/USD prediction

Overall the network seems to have a pretty good approximation.

14

Testing over a period of 30 days

To further test our network, we are going to test it on a 30 day prediction period
which is not adjacent to the dates we took as our training and test data. Since
we want to predict 30 days, we need to take a 90 day period because we trained
our model on a 60 time series base.

new = yf.download(tickers ='EURUSD=X',start ='2020-01-01',end ='2020-05-05',interval= '1d')

Once again we need to extract the needed values from the data and transform
it so it ends up being a valid input for the network.

new = new.filter(['Close'])

new_dataset = new.values

new_data = scaler.transform(new_dataset)

test = []

for i in range(60,len(new_data)):

test.append(new_data[i-60:i,0])

test = np.array(test)

test = np.reshape(test, (test.shape[0],test.shape[1],1))

new_predictions = model.predict(test)

new_predictions = scaler.inverse_transform(new_predictions)

Figure 6: Predictions

15

When looking at the resulted predictions, the predicted value seems very close
to the actual price from the previous day. It seems that our LSTM network just
takes the closest value to the previous day closing price. Let’s shift the actual
price forward by one day to test this hypothesis:

This confirms our hypotheses.

Gain or Loss

Let us use the predictions and make a simple simulation on the market. We
will put a 100 BC buy or sell order depending on the prediction of our network,
after 29 days we see if we lost or won money. The following code will do exactly
this.

The i+1 predcition determines if we buy or sell on the i day.

def buy_or_sell(close,pred,i):

if pred[i+1] > close[i]:

return True # Buy

else:

return False # Sell

Will determine the loss or gain based on the difference of the closing prices.

def gain_loss(close,pred):

total = []

differ = []

capital = 0

for i in range(0,29): # forcasting 29 days

diff = 100*(close[i+1,0]-close[i,0])

if buy_or_sell(close,pred,i) == False:

diff = -diff

capital = capital + diff

total.append(capital)

16

differ.append(diff)

print(sum(differ), capital)

Plots the daily loss or gain and the total win or gain over time

plt.figure(figsize=(20,15))

plt.plot(differ,color = 'red')

plt.plot(total, color = 'green')

plt.legend([' daily gain or loss' , 'total gain or loss'],fontsize=18)

plt.ylabel('Money in EUR',fontsize=18)

plt.xlabel('Days',fontsize=18)

plt.show

After 29 days we made ≈ +1.95AC

Figure 7: Gain

It’s worth mentioning that every time we retrain the network on the same data
we get slightly better or worse predictions, which will ultimately result in
different outcomes of the simulation:

17

Figure 8: Loss

4 Conclusion

Even if machine learning is very useful in different areas, we weren’t able to
successfully predict the Forex market, at least while using an LSTM model.
The best our model could do is taking a relatively close value of the current
day’s price and base its prediction on it. This is due to the lack of predictive
ability of our model and because we didn’t take social and political factors into
consideration.

18

	Introduction
	Universal approximation theorem
	Building and Testing of the LSTM
	Importing the Data
	Transformation of the data
	Building and training the LSTM
	Testing and evaluation of the results

	Conclusion

