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1 Introduction

1.1 Möbius maps

A transformation of the form f : Ĉ → Ĉ de�ned by f(z) = az+b
cz+d where z ∈ C, a, b, c, d ∈ C and

ad− bc 6= 0 is called a Möbius transformation (or homography) of the complex plane.
Geometrically speaking, a Möbius transformation can be obtained by �rst applying a stereo-
graphic projection1 from the plane to the unit sphere, then rotating the sphere to a new position
and orientation in space and �nally performing another stereographic projection from that new
position of the sphere to the plane.

Figure 1: Stereographic projection from the plane to the unit sphere [2]

The stereographic projections identify Ĉ with a sphere, which is the Riemann sphere, where
Ĉ = C ∪ {∞}, i.e. the complex plane with the additional point at in�nity.

Figure 2: Riemann sphere [3]

For example, one can perform simple translations, dilations, rotations and inversions to a rect-
angular plane of dimension 2. When we take now the same plane in the third dimension, we can
put a Riemann sphere on top of that plane. The plane is then projected onto the sphere. Now by
raising the sphere for instance, the plane dilates, by spinning the sphere, the plane rotates and
by rotating the sphere about a horizontal axis, we obtain an inversion of the plane (the plane is
turned inside out). Shortly, by rotating the sphere and/or repositioning it, the plane that was
projected onto the sphere is then reprojected back to the plane.
Hence, these transformations map the object to itself while preserving the essential structure of
the object. Möbius transformations map straight lines either to a line or circle or map a circle
to a line or a circle and preserve angles, because the essential structure is kept the same.
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Figure 3: Example of a Möbius transformation with stereographic projection [4]

The set of Möbius transformations form the group Aut(C), because every object is mapped to
itself while preserving all of its structure. The group Aut(C), also called 'Möbius group', has
subgroups with a lot of applications in mathematics and physics, for example in image processing
and cryptography.
An important example of such a subgroup is the modular group, which is central to the theory of
many fractals. Actually, the modular group uses the exact same function (only that a, b, c, d ∈ Z)
and has the same properties as de�ned above for the Möbius transformation, except that the
determinant of these functions equals to 1. Thus, the functions of the modular group belong to
SL2(R), which tells us that the images of the function cannot form a spiral twist.

Figure 4: Example of the action of the modular group on the upper half-plane [5]
Note: Here you can also observe that a line is either mapped to another line

or a circle, or that a circle is either mapped to a line or another circle.

In our work, we consider the Möbius transformations as described at the beginning and we take
a look at subgroups of the Möbius group. The only di�erence is that we consider ad − bc = 1.
Thus, if a, b, c, d ∈ R, then the images of the function cannot form a spiral twist.
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1.2 Schottky groups

We then take a look at the Schottky groups: A Schottky group is a subgroup of SL2(C) that
acts on the Riemann sphere by Möbius transformations. Schottky groups basically consist of
Möbius transformations and are constructed by pairing shapes like circles (but not necessary
only circles). Note that for example the circles can touch, but must be disjoint for the other
cases, so as long as the paired shapes are disjoint, any group like this is called a Schottky group.
When we have such a group, there also is an associated subset of the plane, namely its 'limit
set'. These sets have a lot of symmetries related to these Schottky groups and are often beautiful
fractal sets.
Remark: A full understanding of limit sets is beyond the goal of this project.

Figure 5: Example of a fractal set [6]

1.3 Goal of this project

The goal of this project is to acquire an experimental understanding of the concept of Möbius
transformations, Fractal limit sets and Schottky groups and also includes plotting these subsets.

2 Experimentation

As described in the previous section, we will now proceed to take a look at the di�erent types of
Möbius transformations.
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2.1 Observations

2.1.1 Orbits of one homography

At the very beginning we tried to plot a Möbius transformation with random parameters satisfy-
ing the conditions of a Möbius transformation (determinant,...). This means that we repeatedly
applied a Möbius transformation to a speci�c point, thus creating the orbit of a homography.
This means that we try to plot the points with n iterations of the Möbius transformation f and
it's inverse function f−1.

Figure 6: Example of a homography with single orbit

Let's take a �rst look at an example with the matrix

(
2 1
1 1

)
, z = 1 + 0, 5i a complex starting

point and 10 iterations. The �rst thing we can see on the Figure 6 is that after a certain amount
of iterations the limit of lim

n→∞
fn(z) tends to a speci�c point. In this case we have two such

points, one for fn(z) and one for f−n(z). These two points are '�xed points' which we can infer
from the Proposition 12.
Remark: The 'pointc()'-function (Code-Reference: Single orbit for one homography) was used
to create the Figure 6.
Later on we proceeded by superposing multiple orbits using slightly di�erent starting points.
This resulted in interesting �gures depending on the matrix used. As we will see in subsection
3.3 these can be split up in three categories depending on their trace.
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Figure 7: Example of an elliptic map

Figure 7 is an example using the matrix

(
1 −1
0.5 0.5

)
with the complex starting point

z = 1 + i − k · 0, 1i with k ∈ {0, 1, 2, ..., 20} (we consider here 20 di�erent starting points) and
with 900 iterations of f and f−1 for every starting point. This matrix represents an elliptic map.
The di�erent starting points are all on a vertical line. We start with 1+ i and we slowly decrease
the starting points by −k · 0, 1i with k ∈ N. We observe that for each of these points the Möbius
transformation creates circles which at �rst increase in size until we reach the starting point
z = 1 for which we get a straight line. For the lower half of the �gure we get a mirror image of
the upper half.

Figure 8: Example of a parabolic map

Figure 8 is an example using the matrix

(
1 2
−2 −3

)
with the complex starting point

z = 1 + i − k · 0, 1i with k ∈ {0, 1, 2, ..., 4000} (we consider here 4000 di�erent starting points)
and with 10 iterations of f and f−1 for every starting point. This matrix represents a parabolic
map.
We observe two lines, which are actually composed of very small arcs, one that goes to the right
and one that goes to the left and we can see that these arcs seem to get larger as they distance
themselves from these two lines.
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Figure 9: Example of a loxodromic map

Figure 9 is an example using the matrix

(
3 5
1 2

)
with the complex starting point

z = 1+ i−k ·0, 1i with k ∈ {0, 1, 2, ..., 5000} (we consider here 5000 di�erent starting points) and
with 10 iterations of f and f−1 for every starting point. This matrix represents a loxodromic
map.

Figure 10: 3 stages of zoom-in of the Figure 9

As we zoom in further into the Figure 9 we observe that the orbits form circles getting smaller
and smaller as we can see in Figure 10.
In Figure 9 we observe that the starting points form a vertical line. These points are mapped
to two arcs, one on each side of the line. These arcs seem to tend to a �xed point which can
be noticed in �gure 10. Note that to obtain full circles we would need to have a line of starting
points ranging from −∞ to +∞.

Figure 11: Example of a complex/loxodromic map and a zoom of a certain part of the image
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Figure 11 is an example using the matrix

(
i 2i
i i

)
with the complex starting point

z = 1 + i − k · 0, 1i with k ∈ {0, 1, 2, ..., 5000} (we consider here 5000 di�erent starting points)
and with 100 iterations of f and f−1 for every starting point.
While both �gures 10 and 11 are composed of loxodromic maps we can see that Figure 11 has a
spiral twist and Figure 10 doesn't. This di�erence comes from the fact that the matrix used to
get the Figure 10 belongs to SL2(R) and thus can't have a spiral twist as opposed to Figure 11
whose matrix belongs to SL2(C).

Figure 12: Example of a complex/loxodromic map and determinant close to 1

Figure 12 is an example using the matrix(
1.1545423922881868 + 0.1412093367736713i −0.22299086383778546− 0.23952396546400687i
0.13740708608332622 + 0.12010887863498236i 0.8455503609816553− 0.15512213290925111i

)
with the complex starting point z = 1 + i− k · 0, 1i with k ∈ {0, 1, 2, ..., 1000} (we consider here
1000 di�erent starting points) and with 900 iterations of f and f−1 for every starting point. This
matrix represents a loxodromic map. Note that here we can clearly perceive two spiral twists.
Remark:

� The examples shown above are only a few of all the possible �gures one can obtain. We can
obtain other �gures when changing the matrix parameters, verifying that the determinant
equals to 1 and changing the number of iterations of f and f−1 or the number of variations
of i.

� Figures 7-12 were made using the 'lc()'-function (Code-Reference: Superposition of multiple
orbits).

2.1.2 Orbits of subgroups generated by two elements

We will now proceed to showcase �gures of di�erent orbits of subgroups generated by two Möbius
transformations.
In the following part we will refer to the iterations that the Python-code has to process. This
means that for each iteration we calculate the Möbius transformation for the two given elements
for each entry in a speci�c list. The starting list is composed of a single element and after each
iteration we add the resulting points to the list and then we use the new list for the next iteration
and we repeat this process until we reach the desired number of iterations.
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Figure 13: Example of a composition of two parabolic maps

Figure 13 is an example using the matrices

(
1 2
0 1

)
and

(
1 0
2 1

)
with two random starting points

with 10 iterations. We observe that the points tend to the real axis. The matrices used above
were provided to us by our tutor.

Figure 14: Example of a composition of two loxodromic maps

In Figure 14 we use the matrices

(
−3i 1
5 2i

)
and

(
i 1
−3 2i

)
with starting point z = 1 + i with

11 iterations. We observe that the points tend to the imaginary axis. We considered matrices
that we found by chance.
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Figure 15: Example of a composition of two parabolic maps

In Figure 15 we use the matrices

(
1 0
−2i 1

)
and

(
1− i 1
1 1 + i

)
with starting point z = 0+ 0 · i

with 12 iterations. Upon closer inspection we notice that the patterns repeat themselves. In fact
we observe fractal behavior. In other words the patterns repeat themselves on a smaller scale
for each repetition. Hence we can recognize the fractal limit set of the group.

Figure 16: Example of a composition of a loxodromic and a parabolic map

In Figure 16 we use the matrices

(
3 1
5 2

)
and

(
1 0
2i 1

)
with starting point z = 0 + 0 · i with

10 iterations. The matrices used to create the �gure 16 were found by chance. In other words
we just tried random matrices with determinant equal to 1. You can notice that the subset
generated by two elements forms two circles tangent at the starting point z = 0 + 0 · i. You can
also observe that there are multiple curves along the path of the ellipses.
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If we take a closer look at the largest curve on the right side you can clearly notice that it has
the same outline as the right ellipses. This is a perfect example of the fractal behavior of the
fractal limit set. In fact the aforementioned curve also possesses smaller ellipses which are a part
of it.

Figure 17: Another example of a composition of two parabolic maps

In Figure 17 we use the matrices

(
2 −i
−i 0

)
and

(
1 2
0 1

)
with starting point z = 1 + i with 10

iterations. This �gure was created by using a random matrix and a matrix used before in �gure
13 and we notice that the points are going outwards seen from the starting point z = 1 + i and
they seem to form a part of an ellipse.

Figure 18: Left: Example of a composition of two loxodromic maps without conjugation
Right: Example of a composition of two loxodromic maps with conjugation
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In Figure 18 we use the matrices

( √
2 i · ei·π4

−i · e−i·π4
√
2

)
and

(√
2 1

1
√
2

)
with starting point

z = 0+ 0 · i with 12 iterations for the right �gure and the matrices

(√
2 i

−i
√
2

)
and

(√
2 1

1
√
2

)
with 12 iterations for the left �gure. The matrices used are matrices used to get 'Indra's necklace'
as one can read in chapter 6 of the book [15].

Actually we use the matrix

(√
2 1

1
√
2

)
for both �gures, the only di�erence is that we use the

conjugated matrix of

(√
2 i

−i
√
2

)
for the right �gure.

The conjugation is obtained by the following calculation:(
ei·π/8 0
0 e−i·π/8

)
·
(√

2 1

1
√
2

)
·
(
e−i·π/8 0

0 ei·π/8

)
=

( √
2 i · ei·π/4

−i · e−i·π/4
√
2

)
It is actually an anticlockwise rotation by π

4 . We observe that by taking the conjugated matrix,
the circle becomes a closed path and thus has no more holes like on the left �gure.

2.2 Other examples

Figure 19 Figure 20
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Figure 21 Figure 22

Figure 23 Figure 24

Figure List
Figure number Matrix A Matrix B Number of iter-

ations
Starting points

19 0, -1, 1, 1 2i+1, i, 2, 1 13 1+i
20 1, 0, 11, 1 1, 0, 2i, 1 12 0+0i, 1+i, 1+0i,

0+i, -1+i, 1-i
21 2, 4-i, -i, -2i 1

4+i, -1, 1, 0 10 1+i
22 1, 0, 1, 1 2i+1, i, 2, 1 14 0+0i
23 i, 0, 1, -i -i+1, i, -1, 1 14 -3-0.5i
24 1

2 , i,
3
4 ·i,

1
2 -i+1, i, -1, 1 12 0+0i
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Remark:

� The matrix of Figure 15 can be found in the book 'Indra's Pearls: The Vision of Felix
Klein' [15] on page 201.

� The matrix of Figure 18 can be found in the book 'Indra's Pearls: The Vision of Felix
Klein' [15] on page 175.

� The 'fcalc()'-function (Code-Reference: Subgroups generated by two elements) was used
to create the �gures 13-24.

3 Mathematical background

3.1 De�nitions

De�nition 1. Group action:
Let G be a group and A a set with g ∈ G and a ∈ A:

� Left group action: G operates on the left on A if we have the following application

G×A→ A

(G, a)→ g · a

verifying:

� ∀a ∈ A : a · e = a

� ∀g, g′ ∈ G, ∀a ∈ A : g · (g′ · a) = (gg′) · a

So have group action if the function behaves well to the rule of G.
In our case, we only consider the left group action and we have that G = SL2(C) and E = Ĉ
(with G the Möbius group).
So, if G acts on E and a ∈ E, then the orbit of a is the set of points of E of the form g · a where
g ∈ G. The action is by homographies as proved in Proposition 10 and Proposition 11.

De�nition 2. Generated subgroup:
Let (G, ∗) be a group and A a non-empty subset of G and let G′ be the set of all the subgroups
of G with A ∈ G′. We have G′ 6= ∅, because G ∈ G′.
Hence we call generated subgroup by A the subgroup: 〈A〉 :=

⋂
H∈G′

H

Now we take a look at the elements of a generated subgroup:
We consider the same group (G, ∗) with A a non-empty subset of G. Let g ∈ G, so there exists
n ∈ N∗ and the elements xi ∈ A or x−1i ∈ A with i = {1, 2, ..., n} such that x = x1 · x2 · ... · xn,
then x ∈ 〈A〉.
Therefore: 〈A〉 =

{
x1 · x2 · ... · xn : n ∈ N∗ , xi, x−1i ∈ A , ∀i ∈ {1, 2, ..., n}

}
Note that the generated subgroup by the gi ∈ G is the smallest subgroup of G containing all the
gi. In this project we take a look at subgroups of SL(n,C) generated by one or two elements.

De�nition 3. A function f : X → Y is surjective if:

� ∀y ∈ Y ∃x ∈ X f(x) = y.
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De�nition 4. A function f : X → Y is injective if one of these two equivalent conditions is
veri�ed:

� ∀x ∈ X and ∀x′ ∈ X we have: f(x) = f(x′)⇒ x = x′

� ∀x ∈ X and ∀x′ ∈ X we have: x 6= x′ ⇒ f(x) 6= f(x′)

De�nition 5. If a function is injective and surjective, then the function is called bijective.

Proposition 6. Another method to prove bijection

Let f : Ĉ → Ĉ. If we can construct g : Ĉ → Ĉ such that f ◦ g = id and g ◦ f = id, then f is

bijective.

De�nition 7. Fixed point
Let f : X → X be a function.
A �xed point of f is a point z ∈ X that satis�es f(z) = z.

3.2 Homographies

Matrix of a homography

A homography is represented by the function f(z) = az+b
cz+d . Now using simple matrix algebra, we

can de�ne a (2×2)-matrix of f(z) composed by the variables a, b, c and d, namely Mf =

(
a b
c d

)
Proposition 8. Every homography is a holomorphic function:

Proof.

Let f : C→ C with f ↔Mf =

(
a b
c d

)
∈ SL2(C)

z 7→ az + b

cz + d

We need to prove that f is di�erentiable on the complex plane:

We calculate: f ′(z) = lim
h→0

f(z + h)− f(z)

h

= lim
h→0

a(z+h)+b
c(z+h)+d −

az+b
cz+d

h

= lim
h→0

(az + ah+ b)(cz + d)− (az + b)(cz + ch+ d)

(cz + ch+ d)(cz + d)h

= lim
h→0

acz2 + achz + bcz + adz + adh+ bd− (acz2 + bcz + achz + bch+ adz + bd)

(cz + ch+ d)(cz + d)h

= lim
h→0

(ad− bc)h

(cz + ch+ d)(cz + d)h

=
ad− bc

(cz + d)2
∈ C C.E. : cz + d 6= 0⇔ z 6= −d

c

Conclusion: f is complex derivable ∀z ∈ C \ {−dc } and so every homography is a holomorphic
function.
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Proposition 9. Homographies are bijective

Proof. A homography is injective.
Method 1 (De�nition 1,2 and 3):

f(z) = f(z′)

⇔ az + b

cz + d
=

az′ + b

cz′ + d
with z 6= −d

c
and z′ 6= −d

c

⇔ (az + b)(cz′ + d) = (az′ + b)(cz + d)

⇔ aczz′ + adz + bcz′ + bd = aczz′ + adz′ + bcz + bd

⇔ adz − adz′ + bcz′ − bcz = 0

⇔ ad(z − z′)− bc(z − z′) = 0

⇔ (ad− bc)(z − z′) = 0 since ad− bc = 1 (SL2(C))
⇔ z = z′

Thus: A homography is injective

Proof. A homography is surjective.

Let x = g(y) with g(y) =
dy − b

−cy + a

We need to prove that f(x) = y

Thus f(x) = f(g(y)) =
a · g(y) + b

c · g(y) + d
=

a · dy−b
−cy+a + b

c · dy−b
−cy+a + d

=

ady−ab−bcy+ab
−cy+a

cdy−cb−cdy+ad
−cy+a

=
(ad− bc)y

ad− bc
= y

Thus: A homography is surjective

Hence: A homography is injective and surjective, so it is a bijection of Ĉ on Ĉ.

Proof. A homography is a bijection of Ĉ on Ĉ.
Method 2 (De�nition 4):
We construct g(z) = dz−b

−cz+a

Then we see that: f ◦ g(z) = f(g(z)) =
a· dz−b−cz+a+b

c· dz−b−cz+a+d
=

adz−ab−bcz+ab
−cz+a

cdz−cb−cdz+ad
−cz+a

= (ad−bc)z
ad−bc = z

and: g ◦ f(z) = g(f(z)) =
d· az+bcz+d−b
−c· az+bcz+d+a

=
adz+bd−bcz−bd

cz+d
−acz−bc+acz+ad

cz+d

= (ad−bc)z
ad−bc = z

Thus f ◦ g(z) = z and g ◦ f(z) = z and so f is bijective. Note: g(z) is the inverse of f .
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Proposition 10. Mf1◦f2 = Mf1 ·Mf2

Proof.

Note: Mfi is de�ned as the matrix of a function fi with i ∈ N∗ (i could be any number it is only
used to di�erentiate di�erent functions.)

Let f1(z) =
az+b
cz+d and f2(z) =

ez+f
gz+h , so Mf1 =

(
a b
c d

)
∈ SL2(C) and Mf2 =

(
e f
g h

)
∈ SL2(C)

Let's calculate f1 ◦ f2(z):
f1 ◦ f2(z) = f1(f2(z)) =

a·f2(z)+b
c·f2(z)+d =

a· ez+fgz+h+b

c· ez+fgz+h+d
= aez+af+gbz+bh

cez+cf+gdz+dh = (ae+gb)z+(af+bh)
(ce+gd)z+(cf+dh)

⇒Mf1◦f2 =

(
ae+ gb af + bh
ce+ gd cf + dh

)
∈ SL2(C)

Let's calculate Mf1 ·Mf2 : Mf1 ·Mf2 =

(
a b
c d

)
·
(
e f
g h

)
=

(
ae+ gb af + bh
ce+ gd cf + dh

)
∈ SL2(C)

Thus: Mf1◦f2 = Mf1 ·Mf2

Proposition 11. Mf−1 = (Mf )
−1

Proof.

Let's calculate f−1(z) : f(z) = az+b
cz+d with f(z) = y

Let's calculate the inverse of f :

So: z =
ay + b

cy + d

⇔ z(cy + d) = ay + b

⇔ czy + dz = ay + b

⇔ (cz − a)y = b− dz |·(−1) |: (−cz + a) with z 6= a

c

⇔ y =
dz − b

−cz + a

So: f−1(z) = dz−b
−cz+a ⇒Mf−1 =

(
d −b
−c a

)
∈ SL2(C)

Let's calculate (Mf )
−1 :

Mf =

(
a b
c d

)
∈ SL2(C) So(Mf )

−1 = 1
det(Mf )

·
(

d −b
−c a

)
=

(
d −b
−c a

)
Note: detMf = 1 ,because f ∈ SL2(C)
Thus: Mf−1 = (Mf )

−1
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3.3 Dynamics of homographies

Recall that a �xed point is a point z that satis�es f(z) = z.
In our case here, f is a homography and we consider that ad− bc = 1 (SL2(C)), thus:
If z ∈ C:

f(z) = z ⇔ az + b

cz + d
= z

⇔ az + b = z(cz + d)

⇔ az + b = cz2 + dz

⇔ cz2 + dz − az − b = 0

⇔ cz2 + (d− a)z − b = 0

If c 6= 0, then we recover an order 2 equation with discriminant:

4 = (d− a)2 − 4c(−b)
= d2 − 2ad+ a2 + 4bc

= a2 + 2ad+ d2 − 4ad+ 4bc

= (a+ d)2 − 4(ad− bc)

= Tr(Mf )
2 − 4

Hence, we �nd either one �xed point in C for 4 = 0 or two �xed points in C for 4 6= 0. If c = 0,
but a − d 6= 0 , then we have an order 1 equation, leading to a unique �xed point in C and a
�xed point at in�nity. Finally, if c = 0 and a − d = 0, there are no �xed points in C and ∞ is
the only �xed point.
Fixed points of a homography:

We give more details in two particular examples.

First case. 4 = 0
By the de�nition of 4, we know that our solution is given by z = −d+a

2c
We can rewrite z:
z = −d+a

2c = −2d+d+a
2c =

−2d+Tr(Mf )
2c

Hence, we consider two cases:

� Tr(Mf ) = 2 =⇒ z =
−2d+Tr(Mf )

2c = −2d+2
2c = −d+1

c

In this case our solution is of the form −d+1
c and ad− bc = 1 and Tr(Mf ) = a+d = 2 need

to be ful�lled.

� Tr(Mf ) = −2 =⇒ z =
−2d+Tr(Mf )

2c = −2d−2
2c = −d−1

c

In this case our solution is of the form −d−1
c and ad − bc = 1 and Tr(Mf ) = a + d = −2

need to be ful�lled.

Note: If 4 = 0 we get only one �xed point. This is the case when Tr(Mf ) = ±2.
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Example 1. Let us �rst consider the case when Tr(Mf ) = 2:

In this case, the �xed point is a−1
c .

� a− 1 6= 0 and c = 0.
ad − bc = 1 and a + d = 2 need to be ful�lled, thus we �nd that ad = 1 (because c = 0)
and because a 6= 1, then d 6= 1 too.
Then a−1

c = a−1
0 =∞ and z = −d+1

c =∞ So: ∞ is a �xed point.

� a− 1 = 0 and c 6= 0:
ad− bc = 1 and a+ d = 2 need to be ful�lled, thus we �nd that bc = 0 (because if a = 1,
than by a+ d = 2 we get that d = 1) and so b = 0 (because c 6= 0).
Then a−1

c = 0 and z = −d+1
c = 0 So: 0 is a �xed point.

Example 2. Let us then consider the case when Tr(Mf ) = −2:
In this case, the �xed point is a+1

c .

� a+ 1 6= 0 and c = 0:
ad− bc = 1 and a+ d = −2 need to be ful�lled, thus we �nd that ad = 1 (because c = 0)
and because a 6= −1, than d 6= −1 too.
Then a+1

c = a+1
0 =∞ and z = −d−1

c =∞ So: ∞ is a �xed point.

� a+ 1 = 0 and c 6= 0:
ad− bc = 1 and a+d = −2 need to be ful�lled, thus we �nd that bc = 0 (because if a = −1
then by a+ d = −2 we get that d = −1) and so b = 0 (because c 6= 0).
Then a+1

c = 0 and z = −d−1
c = 0 So: 0 is a �xed point.

Second case. 4 6= 0

By the de�nition of 4, we know that our solutions are given by z = −(d−a)±y
2c where y is a square

root of the complex number Tr(Mf )
2 − 4. So, if Tr(Mf )

2 − 4 = r · ei·θ, then y =
√
r · e θ2 i.

The conditions that need to be ful�lled are: a+ d 6= ±2 and ad− bc = 1.

Note: If 4 6= 0 we get two �xed points (z1 = −(d−a)−
√
r·e

θ
2
i

2c and z2 = −(d−a)+
√
r·e

θ
2
i

2c ) This is the
case when Tr(T ) 6= ±2.
Classi�cation of homographies

The trace of Mf also plays a major role when we want to distinguish between di�erent Möbius
transformations. It is calculated like this: Tr(Mf ) = a+ d
We can distinguish the following Möbius maps:

� Loxodromic maps: Tr(Mf ) ∈ C \ [−2, 2]

� Elliptic maps: Tr(Mf ) ∈ ]−2, 2[

� Parabolic maps: Tr(Mf ) = ±2
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Figure 25: Example of an elliptic Möbius transformation with arbitrary �xed points [7]

We saw in this section (3.3) that the trace of Mf determines how many �xed points we have.
Hence, when we have a loxodromic map, then we have exactly 1 �xed point and when we have
an elliptic or a parabolic map, then we have exactly 2 �xed points.

Proposition 12. If lim
n→∞

fn(z) = l, then f(l) = l. (z, l ∈ C)

Proof.

The condition that allows us to go to the limit is that f must be a continuous function.
We know that f is a continuous function, because we proved that f is holomorphic.
We know that:

� f(z) = az+b
cz+d and so f(l) = al+b

cl+d

� If lim
n→∞

fn(z) = l, then it is also true that lim
n→∞

fn+1(z) = l

So: lim
n→∞

fn+1(z) = lim
n→∞

a·fn(z)+b
c·fn(z)+d = al+b

cl+d = f(l)

This �nally implies that f(l) = l.
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4 Python code

Single orbit for one homography:

1 import cmath

2 import numpy as np

3 import matplotlib.pyplot as plt

4

5

6 def determinanttest(a, b, c, d): # Test if the det is 1

7 if a * d - b * c == 1:

8 return True

9 else:

10 return False

11

12

13 def tz(a, b, c, d, z): # main function used for moebius transformations

14 if z == cmath.inf: # check if z is equal to infinity

15 if c != 0: # check if c is different from 0

16 return a / c # the homography is equal to infinity in this case

17 else:

18 return cmath.inf # if c = 0 and z = infinity then the homography is

equal to infinity

19 else:

20 num = (a * z) + b # calculating the numerator of the homography

21 den = (c * z) + d # calculating the denominator of the homography

22 if den == 0: # check if the denominator is 0

23 return cmath.inf # if the previous line is true then the homography

is equal to 0

24 else:

25 return num / den # returning the homography

26

27

28 def tzinv(a, b, c, d, z): # inverse function used for moebius transformations

29 if z == cmath.inf:

30 if c != 0:

31 return d / -c

32 else:

33 return cmath.inf

34 else:

35 num = (d * z) - b

36 den = (-c * z) + a

37 if den == 0:

38 return cmath.inf

39 else:

40 z = num / den

41 return z

42

43

44 def repeat(f, a, b, c, d, n, z): # composite function for T^n

45 if n == 0: # no repetition

46 return z

47 else:

48 if n == 1: # function is called upon once

49 return f(a, b, c, d, z)

50 else:

51 return f(a, b, c, d, (repeat(f, a, b, c, d, n-1, z))) #

recursive part repeating the def with n-1

52

53

54 def vrep(ly): # plots a graph using a list of points
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55 plt.plot(np.real(ly), np.imag(ly), 'ro', markersize =5) #

plotting graph

56 plt.show()

57 return

58

59

60 def pointc(a, b, c, d, z, n, m): # creating a list of points using the

previous functions

61 # if not determinanttest(a, b, c, d):

62 # return "Error"

63 # else:

64 ly = [] # list creation

65 for i in range(n):

66 ly.append(repeat(tz , a, b, c, d, i, z)) # adding points to the list using

the composite function

67 for j in range(m):

68 ly.append(repeat(tzinv , a, b, c, d, j, z))

69 return ly

70

71

72 def final(a, b, c, d, z, n, m): # function combining the other

functions

73 vrep(pointc(a, b, c, d, z, n, m))

74 return

Superposition of multiple orbits:

1 import Math_exp_project as Mp

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import cmath

5

6

7 def sp(ly, q): # plotting a graph with multiple orbits using a

list of lists

8 fig = plt.figure () # creating a graph

9 for i in range(q):

10 rgb = np.random.rand(3, ) # choosing a random colour

11 ax = fig.add_subplot (111) # adding the axis to the graph

12 ax.scatter(np.real(ly[i]), np.imag(ly[i]), 5, color=rgb) # adding the

elements of the list ly to the graph

13 plt.setp(ax.get_xticklabels (), visible=True) # making the the tick

labels visible on the graph

14 plt.setp(ax.get_yticklabels (), visible=True)

15 plt.xlim(-10, 10) # setting the range of the x axis

16 plt.ylim(-10, 10) # setting the range of the y axis

17 plt.gca().set_aspect('equal', adjustable='box') # the x and y dimensions

are set to be

18 plt.show() # of the same length in

data coordinates

19 return

20

21

22 def lc(a, b, c, d, z, n, m, q): # using the previous function and two

matrices to create a graph

23 ly = [] # creating an empty list

24 for i in range(q):

25 ly.append(Mp.pointc(a, b, c, d, z-0.1j*i, n, m)) # adding elements to

the list using

26 return sp(ly, q) # the pointc function

of the previous code

27

22



28

29 def calc(a, b, c, d, e, f): # matrices multiplying different matrices; used

mainly to create matrices for various tests

30 if a*d - b*c == 0: # checking if the determinant is 0

31 return "Error"

32 else:

33 x = np.array ([[a, b], [c, d]]) # defining a matrix

34 y = np.linalg.inv(x) # defining the inverse matrix of y

35 z = np.array ([[ cmath.exp(e), 0], [0, cmath.exp(f)]]) # defining a matrix

36 r = np.dot(np.dot(x, z), y) # multiplying the

three matrices in the order x*y*z

37 return np.ndarray.item(r, 0), np.ndarray.item(r, 1), np.ndarray.item(r, 2), np

.ndarray.item(r, 3) # returning

38 # the elements of the resulting matrix

Subgroups generated by two elements:

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import Math_exp_project as Mp

4 import random

5

6

7 def ttest(x): # using the trace to determine the type of the map for

testing purposes only

8 if np.imag(x) != 0: # if the trace is an imaginary number then we have a

loxodromic map

9 return "Loxodromic map"

10 else:

11 if x > 2 or x < -2: # if the trace is not between 2 and -2 (excluded)

then the map is also loxodromic

12 return "Loxodromic map"

13 else:

14 if x == 2 or x == -2: # if the trace is equal to either 2 or -2

then the map is parabolic

15 return "Parabolic map"

16 else:

17 if x < 2 or x > -2: # if the trace is between 2 and -2 (

excluded) then the map is elliptic

18 return "Elliptic map"

19 return

20

21

22 def trtest(a, d, e, h): # output for the Trace test; likewise only for

testing purposes and not included in the

23 print("La Trace de A est:", a+d, ttest(a+d), "La Trace de B est:", e+h, ttest(

e+h)) # main function

24 return

25

26

27 def mapping(a, b, c, d, e, f, g, h, li): # function calculating the

different points using matrices and a list

28 ly0 = [] # of starting points

29 ly1 = [] # creation of 4 empty lists

30 ly2 = []

31 ly3 = []

32 for i in range(len(li)):

33 ly0.append(Mp.tz(a, b, c, d, li[i])) # using the tz and tzinv function

of the first code with the

34 ly1.append(Mp.tzinv(a, b, c, d, li[i])) # first matrix to add new

elements to the lists

35 ly2.append(Mp.tz(e, f, g, h, li[i])) # using the tz and tzinv function

23



of the first code with the

36 ly3.append(Mp.tzinv(e, f, g, h, li[i])) # second matrix to add new

elements to the lists

37 ly = ly0 + ly1 + ly2 + ly3 # combing all four lists into one list

38 return ly # returning the aforementioned list

39

40

41 def fcalc(a, b, c, d, e, f, g, h, li , n): # iterative function calling upon

the 'mapping ' function

42 lx = [*li] # defining a list with the same

elements as the input list

43 for i in range(n):

44 lx = [*lx, *mapping(a, b, c, d, e, f, g, h, lx)] # adding new elements

to the list using the previous

45 lx = list(set(lx)) # function; the new list only contains the

elements of the other lists and no lists

46 print(len(lx)) # to avoid duplicate elements in the list we

transform the list into a set (which by

47 vrep(lx) # definition does not possess duplicate elements

and then we transform the set back

48 return # into a list; then we call the vrep function to

create a graph

49

50

51 def vrep(ly): # plotting a graph using a list

52 plt.plot(np.real(ly), np.imag(ly), 'ro', markersize =0.1)

53 plt.show()

54 return

55

56

57 def randl(m): # creating a list with random complex numbers for

testing purposes

58 lx = []

59 for i in range(m):

60 for n in range(m):

61 lx.append(random.random ()+random.random ()*1j)

62 return lx

5 Conclusion

At the beginning of this project we created images using a single matrix and proceeded to describe
these while splitting them into di�erent groups depending on their trace. In fact as we've seen
in the mathematical part 3.3 we can have either loxodromic, parabolic or elliptic maps. For each
type of map we got a unique image. Later on we did the same thing only this time we used
two matrices to calculate the orbits of these matrices. Thus we created �gures 13-24 which are
not only quite beautiful but also show us the fractal limit sets. Although we quickly discovered
that by using random matrices we didn't get a lot of nice �gures, mostly random clusters of
points, we still managed to get at least one nice �gure using random matrices. We also managed
to reproduce some interesting examples of fractals from the Book 'Indra's Pearls: The Vision
of Felix Klein' [15]. After delighting in this brief insight about fractal limit sets and Schottky
groups, there's only on thing left to say:

God help us � for art is long, and life so short

-Johann Wolfgang von Goethe, Faust, First Part
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