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1 Introduction

The stock market is one of the main tools for industries to expand and thus plays an important
role in the world of economy. In fact companies listed in the stock market can issue stocks of
their company to raise funds from the public and invest these funds in their growth. If the
company manages to raise it's worth, the stocks also increase in value which is the main goal of
the investors. Since this is not always the case, investors have to be careful when choosing to
buy stocks and consider the future development of the stock's value.

To make these decisions, researchers have spent years on constructing economical models which
can be used to analyse speci�c data sets to predict their evolution. Although these models are
not only meant for economical applications, we're going to focus solely on stocks for this project.

We're going to talk about machine learning models and use these to make predictions regarding
the value of certain stocks. These models can be seen as an application of arti�cial intelligence
which provides systems that improve by analysing data sets and not by getting further input
from the user.
These models access parts of a data set and use the provided information to �nd patterns in the
data to make predictions.
Then by analysing the next batch data, the program tries to improve the predictions it has made
using the �rst batch. This process is repeated with the goal being that the program can make
precise predictions.

To analyse these models we chose to take the stocks of AMD (Advanced Micro Devices) as
an example. The AMD stock values were particularly interesting as AMD has managed to catch
up to its competitors which translates to a drastic increase in its stock values over the last 5
years.
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2 Regression line

2.1 Relation between variables

The covariance and the linear correlation coe�cient are measurement instruments that are used
to determine the existence of a certain linear relation between variables x and y.
Note that these instruments only describe a relation between variables where we can suppose
that they are somehow linked. They don't prove the existence of a relation.

2.2 Covariance

The covariance measures the joint variation of the modalities of two variables. It describes the
common variation of the modalities of two variables around their respective average.

ρxy = 1
N

N∑
i=1

(xi − x̄) · (yi − ȳ) = (
1

N

N∑
i=1

xi · yi)− xy

x̄ = 1
N

N∑
i=1

xi same for ȳ

(N observations ; x̄ and ȳ are the arithmetic average of the xi's and yi's ; xi are the real values
; yi are the observed values)

A positive covariance indicates that the variation of the modalities of the two variables is done
in the same direction.
In this case we talk about a 'positive linear dependence'.
On the other hand, if they evolve in an opposite way, we talk about a 'negative linear dependence'.
A covariance close to 0 allows us to conclude that there is no linear independence.

2.3 The linear correlation coe�cient

The linear correlation coe�cient allows us to draw the same conclusion as with the covariance
considering the linear dependence of the modalities of two variables. The advantage of the linear
correlation coe�cient is that it is normalized and takes values between −1 and 1.

ρxy =
σxy

σx·σy

σx =

√√√√( 1
N

N∑
i=1

x2i )− x̄2 same for σy

Note: σ represents the standard deviation.

The order of magnitude of ρxy gives us indications on the intensity of the linear dependence
between the modalities of two variables.
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Linear correlation coe�cient Intensity of the linear correlation
|ρxy|≤ 0.2 very weak correlation (nearly inexistent)
0.2 < |ρxy|≤ 0.5 weak correlation
0.5 < |ρxy|≤ 0.7 average correlation
0.7 < |ρxy|≤ 0.9 higher correlation
0.9 < |ρxy|≤ 1 very high correlation

Remark:

Later on we will see that the relation described by the equation of the regression line isn't
exact but only approximated.
To see how precise the estimated equation is we can calculate the determination coe�cient
R2 = ρ2xy ∈ ]0, 1[).
A low value of R2 suggests that the estimated relation doesn't adjust very well to the observed
data. A high value of R2 suggests that the estimated relation is adequate.

2.4 Cloud of points

It is useful to graphically represent the point couples (xi, yi). Using the graph one can observe
if there exists a linear relation.
The equation that describes such a relation between two variables is of the form y = α · x+ β.
Note that the points of the cloud can be found above the straight line and under it and not
necessarily on the straight line.
Therefore there exists a di�erence for all estimated values ŷi (= α · xi + β) and for all observed
values yi such that ei = yi − ŷi.
In order to decrease the distance between these estimated values ŷi and the real observed values
yi, the parameters alpha and beta need to be determined in a way such that the sum of the

square of the di�erences is minimal (S =

N∑
i=1

e2i ).

2.5 Mathematical development

We rewrite S:

S =

N∑
i=1

e2i =

N∑
i=1

(yi − ŷi)2 =

N∑
i=1

(yi − α · xi − β)2

In order to �nd the values of α and β that minimize the expression S, we �rst calculate the
partial derivatives of α and β respectively.

{
S′α = 0

S′β = 0
⇐⇒


S′α = −2

N∑
i=1

(xiyi − αx2i − βxi) = 0

S′β = −2

N∑
i=1

(yi − αxi − β) = 0
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This gives us the following system of equations:


N∑
i=1

(xiyi − αx2i − βxi) = 0

N∑
i=1

(yi − αxi − β) = 0

⇐⇒


N∑
i=1

xiyi − α
N∑
i=1

x2i − β
N∑
i=1

xi = 0 (1)

N∑
i=1

yi − α
N∑
i=1

xi −Nβ = 0 (2)

Now we transform (2) to express the parameter β with α:

β =

N∑
i=1

yi − α
N∑
i=1

xi

N = ȳ − αx̄

We observe that the regression line passes through the point with coordinates (x̄, ȳ).
We now replace β in (1):

N∑
i=1

xiyi − α
N∑
i=1

x2i − (ȳ − αx̄)

N∑
i=1

xi = 0

By isolating α we get the following expression:

α =

N∑
i=1

xiyi − ȳ
N∑
i=1

xi

N∑
i=1

x2i − x̄
N∑
i=1

xi

In order to be able to simplify this expression later on we will multiply the nominator and de-
nominator with 1

N , hence we get:

α =

1
N (

N∑
i=1

xiyi − ȳ
N∑
i=1

xi)

1
N (

N∑
i=1

x2i − x̄
N∑
i=1

xi)

=

1
N

N∑
i=1

xiyi − ȳ
1

N

N∑
i=1

xi

1
N

N∑
i=1

x2i − x̄
1

N

N∑
i=1

xi

2.6 Regression line equation

The equation of the regression line is given by y = α · x+ β.

Note that

α =

( 1
N

N∑
i=1

xi · yi)− xy

( 1
N

N∑
i=1

x2i )− x̄2
and β = ȳ − α · x̄ .
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2.7 Program Output

Figure 1: Regression line

Figure 2: Regression line with error bars

2.7.1 Observations

We observed that by considering a too large time period the R2 coe�cient indicates that the
estimated relation doesn't adjust well to the data.
In Figure 1 we used the time period of the stock values of AMD from 01.01.2019 to 10.11.2020
and we got R2 = 0.8633751494889846. Hence 86% of the variation of stocks are due to time and
14% are related to other factors.
In Figure 2 we also included the error bars ei. The error bars are vertical lines going from the
regression line to the yis and the length is mirrored in the opposite direction, i.e. they represent
twice the di�erence between the real values and the estimated value.
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2.7.2 Other example

There is a relation between the price of a product and the demand of that product:

We consider the following statistical informations:

Product price ine (xi) Annual demand (yi)
5 9
4 10
3 12
2 15
1 20

Graphical representation of the cloud of points with the regression line and error bars:

yi

xi

20

16

12

8

4

1 2 3 4 5

O

(x5, y5)

(x4, y4)

(x3, y3)

(x2, y2)

(x1, y1)

Calculation of the regression line:

We need to determine the following:

y = α · x+ β

α =

( 1
N

N∑
i=1

xi · yi)− xy

( 1
N

N∑
i=1

x2i )− x̄2
and β = ȳ − α · x̄
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x̄ = 1
N

∑
xi and ȳ = 1

N

∑
yi

Here N = 5
N∑
i=1

xi · yi = 5 · 9 + 4 · 10 + 3 · 12 + 2 · 15 + 1 · 20 = 171

N∑
i=1

x2i = 52 + 42 + 32 + 22 + 12 = 55

x̄ = 1
N

∑
xi =

1

5
· (1 + 2 + 3 + 4 + 5) = 3

ȳ = 1
N

∑
yi =

1

5
· (9 + 10 + 12 + 15 + 20) =

66

5
Hence:

α =
1
5 ·171−3·

66
5

1
5 ·55−32

= −27
10 = −2.7

β = 66
5 − (−2.7) · 3 = 213

10 = 21.3

Hence the regression line is given by: y = −2.7x+ 21.3

Prediction using the regression line:

If the price of a product were 6 e (x6 = 6), what would be the demand?
Answer: y6 = −2.7 · 6 + 21.3 = 5.1 ≈ 5

By considering the errors:
e1 = y1 − ŷ1 = 20− (α · x1 + β) = 20− (−2.7 · 1 + 21.3) = 1.4
e2 = y2 − ŷ2 = 15− (α · x2 + β) = 15− (−2.7 · 2 + 21.3) = −0.9
e3 = y3 − ŷ3 = 12− (α · x3 + β) = 12− (−2.7 · 3 + 21.3) = −1.2
e4 = y4 − ŷ4 = 10− (α · x4 + β) = 10− (−2.7 · 4 + 21.3) = −0.5
e5 = y5 − ŷ5 = 9− (α · x5 + β) = 9− (−2.7 · 5 + 21.3) = 1.2

Hence for 6 e the estimated demand of the product at that price
is 5.1 + error | −1.2 ≤ error ≤ 1.4 for the given statistical information.

R2-coe�cient:

R2 = ρ2xy = (
σxy

σxσy
)2 = (

( 1
N

N∑
i=1

xi · yi)− xy
√√√√√√( 1

N

N∑
i=1

x2i )− x̄2·

√√√√√√( 1
N

N∑
i=1

y2i )− ȳ2
)2 = ( −5.4√

2·
√

394
5

)2 ≈ (−0.96)2 = 0.9216

Hence: ≈ 92% of the variation of the demand is due to the price.

(Note: σxy = −5.4, thus we have a negative linear dependence and |ρxy|≈ |−0.96|= 0.96 in-
dicates that we have a very high correlation)
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3 Brief introduction to �nite Markov decision processes (MDP)

In mathematics, a Markov decision process (MDP) is a discrete-time randomly determined con-
trol process. 'Discrete time' means that the values of variables are viewed as occurring at distinct,
separate 'points in time'. The MDP makes it possible to model decision making in situations
where the outcomes are partly random and partly under the control of a decision maker (agent).
MDPs are used to study optimization problems that are solvable with dynamic programming
and reinforcement learning. They are applied in disciplines like robotics, automatic control, eco-
nomics and manufacturing.

MDPs solve a problem by learning from interactions. We have an 'Agent' that is basically a
learner and decision maker. The agent interacts continually with its environment. The agent
selects actions and the environment responds to them by presenting new situations to the agent.
Apart from providing new situations the environment also gives rise to rewards that the agent
wants to maximize by taking corresponding actions.

AGENT

ENVIRONMENT

State St Reward Rt

Rt+1

St+1

Action At

The agent and environment interact with time steps t (= 0, 1, 2, 3, ...). At each step, the agent
receives a representation of the environment's state (St) and based on the state chooses an action
At. This way we get a state-action pair (St, At). Based on the action At taken by the agent
from the state St it then receives a numerical reward Rt+1 ∈ R and therefore �nds itself in a
new state St+1.
One can think of this process as a function that maps state-action pairs to rewards.
Hence at each time t, we have: f(St, At) = Rt+1.
The MDP gives rise to a sequence like: S0, A0, R1, S1, A1, R2, S2, A2, R3, ...
In the case of a �nite MDP the sets of states, actions, and rewards (S, A, and R) all have a �nite
number of elements.
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Then the random variables Rt and St have well de�ned discrete probability distributions where
the only dependencies are the preceding state and action. Hence: All possible values that one
could assign to St and Rt have a certain associated probability. Thus for some random variables
s′ ∈ S and r ∈ R there is a probability that St = s′ and Rt = r if certain preceding values of
state (s ∈ S) and action (a ∈ A) are given.
The probability of the transition to state s′ and reward r from taking action a in state s is then:

p(s′, r|s, a) = P{St = s′, Rt = r|St−1 = s,At−1 = a} ∀s′, s ∈ S, r ∈ R and a ∈ A

(p de�nes the dynamics of the MDP and p : S×R× S×A −→ [0, 1] is a deterministic function)
where | tells us that p speci�es a probability distribution for each choice of s and a:∑

s′∈S

∑
r∈R

p(s′, r|s, a) = 1 ∀s ∈ S and a ∈ A

The probability described by p completely characterizes the environment's dynamics. Hence the
probability of each possible value for St and Rt depends on the immediately preceding state and
action St−1 and At−1, but it depends not on all earlier states and actions. This is best shown by a
restriction on the state. The state needs to include all the information about every aspect of the
past agent-environment interactions that will make a di�erence in the future. If this condition
is ful�lled the state is said to have the Markov property.

Lastly note that one can also compute the expected rewards for state�action pairs as a two-
argument function r : S × A −→ R (1) or the expected rewards for state�action�next-state
triples as a three-argument function r : S×A× S −→ R (2), given by the following calculations:

� (1) r(s, a) = E[Rt|St−1 = s,At−1 = a] =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a)

� (2) r(s, a, s′) = E[Rt|St−1 = s,At−1 = a, St = s′] =
∑
r∈R

r · p(s
′, r|s, a)

p(s′|s, a)

Remark: MDPs are a stepping stone towards RNN and LSTM so we won't go into more details. For more

details or examples of application, take a look at the reference [18].

4 Recurrent neural network

4.1 De�nitions

4.1.1 Machine learning

The term Machine learning is used to describe computer systems that learn from data, i.e.
algorithms that are programmed to recognize patterns in data and use these to make predictions
once they are fed new data.

4.1.2 Deep learning

Deep learning is often used interchangeably with machine learning but it is important to note
that they do not mean the same thing. The term deep learning describes algorithms with a
layered structure which are denoted as arti�cial neural network. The goal of deep learning is
to get to the point where the algorithms analyse data and draw conclusions similar to how the
human brain does.
Hence deep learning is in fact a sub-category of machine learning.
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4.1.3 Arti�cial intelligence

The previously explained concepts belong to what we call 'Arti�cial Intelligence'. Arti�cial
intelligence is a branch of Informatics with the aim to develop computer systems that are able
to perform complicated tasks that usually require human intelligence.

4.1.4 Neural Networks

A neural network is a computer system that mimics the human brain to process data. As
mentioned above 4.1.2 a neural network is a network with a layered structure where each node
is referred to as neuron.

4.2 RNN architecture

Recurrent Neural networks are a type of deep learning algorithms which were initially created in
1980's. They are in fact based on the work of David Rumelhart (1942-2011) who was employed
as a Professor of Psychology by the Stanford University, University of California and University

of San Diego.

y1 y2 y3 yt

A A A A

x1 x2 x3 xt

a0
at−1

Recurrent neural networks use aspects of previous outputs when analysing new data inputs to
create precise predictions. We're mainly talking about the analysis of �nancial data but RNNs are
used for sequential data like time series, audio, speech, text, weather and many more. Sequential
data is ordered data where the order of the data is important since the individual information
are related.
Each neuron in the neural network is equipped with a so called activation function that determines
the output of the RNN. The activation function decides if a neuron is activated or not while the
RNN is running. Depending on whether the neuron's input is relevant to the prediction the
activation of the neuron ensues.
The choice of the activation function is fundamental to the accuracy and e�ciency of the network.
( Should we add the di�erent types and explain them?)

11



at−1 at

Waa

Wax

by g2

g1

ba

Wya

xt

yt

The graph above depicts the architecture of a traditional RNN. For each time step/unit we
have the following activation at and output yt:

at = g1(Waaat−1 +Waxat + ba)

yt = g2(Wyaat + by)

with Wax, Waa, Wya, ba, by being temporarily shared coe�cients and g1 and g2 being the
activation functions.

4.3 Types of RNN

One-to-one Tx = Ty = 1

ŷ

x

a0

This is the standard neural network where we have one input and one output.

12



One-to-many Tx = 1, Ty > 1

ŷ1

x

a0

ŷ2 ŷTy

On the diagram above we can see that for a one to many RNN, we use one input at the start and
then proceed to use the outputs as the inputs for the following inputs. Hence we get multiple
outputs using a single input at the beginning. This type of RNN is used for music generation
for example.

Many-to-one Tx > 1, Ty = 1

x1

a0

ŷ

x2 xTx

Here we have multiple inputs that are processed by the neural network which yields a single
output. An example for this is sentiment classi�cation which is a process that identi�es opinions
in text and then classi�es those. A tangible example would be a set of reviews for a movie that
are processed by the neural network which returns the overall rating for the movie.

13



Many-to-many Tx = Ty

x1

a0

ŷTy

x2 xTx

ŷ2ŷ1

The input sequence has the same length as the output sequence. For instance imagine that we
have an algorithm that recognizes names in a text and then marks these in the output. The
output is essentially the same as the input with the only di�erence being that the algorithm has
marked the names in the next.

Many-to-many Tx 6= Ty

a0

x1 xTx

ŷ1 ŷTy

This time the sequence length of the inputs does not have to be the same as the length of the
output sequence. In fact by looking at the diagram above we can see that the output sequence
starts after the inputs have already been processed by the neural network. An example for this
type of RNN would be machine translation. In essence we have a sentence that is split up into
multiple inputs and then after processing the whole sentence the neural networks starts returning
chunks of the sentence in another language. The output sentence does not necessarily have the
same amount of words as the input sentence.

14



4.4 LSTM

A Long Short-Term Memory network is a type of recurrent neural network.
The traditional RNN layer tends to overwrite a part of its internal memory which is why the
neural network is not able to access events further in the past.
Unlike the RNN cell, the LSTM cell doesn't overwrite its internal memory at each step but rather
decides depending on the new information if the internal memory is overwritten.
This feature is due to a memory cell that is added in the LSTM architecture. This is also why
the LSTM cell architecture is more commonly used compared to the RNN layer architecture.

xt

yt

tanh

tanhσ σ σ

Taking a look at the LSTM layer diagram, the �rst thing we see is that instead of having one
layer like a RNN cell, there are four layers.
These layers are represented by orange boxes in the lower half of the diagram. The arrows
represent vector transfers and the circles and boxes marked in red are point wise operations.
When to arrows come together they represent a concatenation of vectors and if a arrow is divided
into two arrows we create a copy of the vector.
The upper line in the diagram is the cell state which is the main current of data. The cell state
is then accessed by gates that regulate the addition or removal of data from the cell state.
The gates are structures composed of a sigmoid layer and a point wise operation. The output
of the sigmoid layer is between 0 and 1 included. The exact number denotes the amount of
information that passes the gate.
It ranges from 0 which means that no information passes, to 1 which means that all the infor-
mation passes. There are 3 gates in total that regulate the data exchange of the cell state.

4.5 Types of activation functions

Let us take a closer look at some activation functions.
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4.5.1 Binary Step Function

The Binary Step function is fairly simple. The function chooses a threshold and if the input is
above the threshold then the function output is 1 which activates the neuron and if it is below
the threshold then the output is 0 and the neuron doesn't �re o� a signal. While the function is
simple it also has a fair bit of problems that other functions can handle. For example the Binary
step function does not support outputs with multiple values.

4.5.2 Linear Activation Function

The linear activation function creates outputs that are proportional to the inputs. The inputs are
multiplied by the weight of the neuron and as a consequence can handle outputs with multiple
values unlike the binary step function.
Backward propagation of errors or �Back propagation� is an algorithm that calculates the gradient
of the error function while considering the weights of the neural network.
The algorithm starts by calculating the gradient of the last layer before going backwards to the
�rst layer.
The gradient is a vector which tells us in which direction the loss function has the steepest
ascent. Ideally the model moves in the opposite direction to decrease the loss function as much
as possible. This process is called Gradient Descent. The following activation functions will be
non-linear which allows them to use back propagation and stacking multiple layers of neurons to
create neural networks. In other words, these will be the functions that we're mainly going to
use and compare later on.

4.5.3 Sigmoid

The sigmoid function will be used a later on for the description of the LSTM architecture. The
outputs of the sigmoid function lie between 0 and 1 so we have a normalized output. Another
advantage is that the output values are smooth in the sense that there is no jump between
di�erent values.

4.5.4 Hyperbolic Tangent

The tanh function is similar to the sigmoid function with the only di�erence being that it is zero
centred.
This means that the tanh function handles inputs that are comprised of strongly negative, neutral
and strongly positive values better by normalizing the values in a range around 0.

4.5.5 Recti�ed Linear Unit (ReLU)

The recti�ed linear unit may seem linear at �rst look but it is actually non-linear which gives rise
to advantages that linear functions do not possess. For example by having a derivative function
the ReLU allows back propagation. The disadvantage to using ReLu is that the network has
trouble handling values that are close to zero or negative.
In fact by learning a large negative bias for the neuron weights the ReLu is rendered useless
because the outputs will always be 0 if the ReLU ends up in this state. This disadvantage is
referred to as the Dying ReLU Problem.
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4.5.6 Table of activation functions

Type of activation function Associated graph Associated function

Binary step function
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Linear activation function
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Sigmoid activation function
f(x) = 1
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Hyperbolic tangent acti-
vation function
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ReLU (Recti�ed Linear
Unit) Activation Function

−5 −4 −3 −2 −1 1 2 3 4 5

−5

−4

−3

−2

−1

1

2

3

4

5

f(x) =

{
0 for x < 0

x for x ≥ 0

17



5 Experimentation

5.1 Regression line

The observations and experimentation are being treated in section 2 and 6.1.

5.2 Simpli�ed RNN

This simpli�ed code uses a built-in function to split the data set into training and test data.
This function also randomizes the data which shouldn't be a problem since we're interested in
the precision of the model and not the actual prediction of the stock price.
This code allows us to change the parameters of the model which includes number of layers, type
of cells, activation functions,...
Thus we can easier play around with the parameters to see how they a�ect the model.

Figure 3 Figure 4

For Figure 3 and Figure 4 we used models composed of two LSTM layers with 200 neurons for
each of them and one dense layer. Both LSTM layers use ReLU as activation function. The
models are trained for 50 epochs with the only di�erence being that the model for the Figure 3

uses a batch size of 20 and the model for Figure 4 uses a batch size of 50. The resulting di�erence
in the two �gures is not big but we can see that the model that used a batch size of 60 is not as
precise as the model that used a batch size of 20.

Figure 5 Figure 6

The model for Figure 5 uses a single LSTM layer with only 50 neurons and as we can see the
prediction is already o�. For Figure 6 we go back to using two LSTM layers with 200 neurons.
This time we reduced the amount of epochs to 5. As we can see on the Figure 6 5 epochs are
not enough to train the model and the predicted values are on a straight line.
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Figure 7 Figure 8

The model used for Figure 7 is composed of 2 LSTM layers, each having 50 neurons. Once again
we use ReLU activation functions, but this time we have a batch size of 50 and we train the
model for 200 epochs. Then for Figure 8 we switched to using a single LSTM layer with 50
neurons followed by a dense layer. The activation function used for the LSTM layer was tanh
while the batch size was set to 20 and the model was trained for 50 epochs. So we have a model
comparable to that of Figure 5 with the di�erence being that we used tanh as activation function.
This resulted in a slightly worse prediction.

Figure 9 Figure 10

For the �gure Figure 9 we switched the activation function to sigmoid. This shifted the predicted
values upwards.
Then for the next model we switched back to using two LSTM layers with 200 neurons each. The
model was trained for 100 epochs which strangely enough resulted in a less precise prediction
even though we increased the amount of layers and neurons.
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Figure 11

Hence we tried to increase the amount of neurons to 400 for both layers of the model for Figure
11. The model was trained for 500 epochs to ensure a precise prediction. In fact we've observed
that the loss function has reached an optimal value after 200 epochs and stayed around that
value for the remaining 300 epochs.

5.3 Standard RNN and LSTM

Remark : The following table of parameters will be used to plot the �gures for the standard RNN and LSTM.
Also note that the �gures on the left side are created with a RNN model and the �gures on the right side are
created with a LSTM model.
The �rst line of the table shows the standard parameters of the program.

�gure valid set size percentage test set size percentage seq len neurons layers learningrate batchsize epochs activation
12,13 10 10 20 200 2 0.001 50 100 ReLU
14,15 10 10 20 200 2 0.001 50 100 tanh
16,17 10 10 20 200 2 0.001 50 100 sigmoid
18,19 50 10 20 200 2 0.001 50 100 ReLU
20,21 10 50 20 200 2 0.001 50 100 ReLU
22,23 10 10 50 200 2 0.001 50 100 ReLU
24,25 10 10 20 50 2 0.001 50 100 ReLU
26,27 10 10 20 200 1 0.001 50 100 ReLU
28,29 10 10 20 200 2 0.001 20 100 ReLU
30,31 10 10 20 200 2 0.001 100 100 ReLU

Figure 12: Standard parameters Figure 13: Standard parameters
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Figure 14: tanh instead of ReLU Figure 15: tanh instead of ReLU

Figure 16: sigmoid instead of ReLU Figure 17: sigmoid instead of ReLU

Figure 18: increased valid set size percentage Figure 19: increased valid set size percentage
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Figure 20: increased test set size percentage Figure 21: increased test set size percentage

Figure 22: increased sequence length Figure 23: increased sequence length

Figure 24: 50 instead of 200 neurons Figure 25: 50 instead of 200 neurons
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Figure 26: 1 instead of 2 layers Figure 27: 1 instead of 2 layers

Figure 28: batchsize 20 instead of 50 Figure 29: batchsize 20 instead of 50

Figure 30: batchsize 100 instead of 50 Figure 31: batchsize 100 instead of 50

6 Python code

6.1 Regression line with error-bars and R2-coe�cient

1 # Imports that we need for this program

2

3 import matplotlib.pyplot

4 from matplotlib import style

5 import pandas_datareader.data as pdt

6 import datetime as dt

7 import math
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8 import numpy as np

9

10 # Getting the data we need

11

12 tst = dt.datetime (2019, 1, 1)

13 ted = dt.datetime (2019, 12, 31)

14

15 data1 = pdt.DataReader('AMD', 'yahoo', tst , ted)

16

17 closelist = data1['Close']. tolist ()

18

19 # Method of linear regression

20

21 N = len(closelist)

22

23 days = []

24 for i in range(len(closelist)):

25 days.append(i)

26

27 Xbar = sum(days)/N

28

29 Ybar = sum(closelist)/N

30

31 Znum = []

32 for i in range(len(closelist)):

33 Znum.append(days[i]* closelist[i])

34 o = sum(Znum)

35

36 Zden = []

37 for i in range(len(closelist)):

38 Zden.append(days[i] * days[i])

39 p = sum(Zden)

40

41 alpha = ((o / N) - (Xbar * Ybar)) / ((p/N) - (Xbar * Xbar))

42 beta = Ybar - alpha * Xbar

43

44 regline = []

45 for i in range(len(closelist)):

46 regline.append(alpha * i + beta)

47

48 # R^2 coefficient

49

50 y_isqr = []

51 for i in range(len(closelist)):

52 y_isqr.append(closelist[i] * closelist[i])

53 yy = sum(y_isqr)

54

55 sigma_xy = (((o/N) - (Xbar * Ybar)) / (math.sqrt((p/N) - (Xbar * Xbar)) * math.

sqrt((yy/N) - (Ybar * Ybar))))**2

56

57 # Error -bars for linear regression

58

59 y_hat_i = []

60 for i in range(len(days)):

61 y_hat_i.append(alpha * i + beta)

62

63 e_i = []

64 for i, j in zip(y_hat_i , closelist):

65 e_i.append(j - i)

66

67 # Plotting the data and return the R^2 coefficient

68
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69 print('R^2=', sigma_xy)

70

71 style.use('seaborn ')

72 matplotlib.pyplot.plot(regline)

73 matplotlib.pyplot.errorbar(days , closelist , yerr=e_i , fmt='k')

74 matplotlib.pyplot.show()

6.1.1 Explanation of the code

� Line 3-8 : Here we simply import the libraries we need for the program

� Line 12-17 :

� For 'tst' and 'ted' one can choose the time period for the linear regression

� 'data1' gives the data of AMD from the yahoo �nance database

� We create a list called 'closelist' containing the closing price of the AMD stock

� Line 21-46 :

� In line 21 we de�ne 'N' as the length of the closelist and in lines 23-25 we create a list containing
integers from 1 to n, where n is the length of the closelist (the length of the list is not equal to the
length of the time period we de�ned for 'tst' and 'ted', because of weekends and holidays)

� In line 27 and line 29, 'Xbar' respectively 'Ybar' represent the formula seen for x̄ and ȳ in section 2.2

� In lines 31-34 we determine

max{N}∑
i=min{N}

xiyi and in lines 36-39

max{N}∑
i=min{N}

x2i (see section 2)

� In line 41 we calculate α (see section 2.6) and in line 42 β (see section 2.6)

� In line 44-46 we calculate the regression line (see section 2.6)

� Line 50-55 :

� In lines 50-53, we determine

max{N}∑
i=min{N}

y2i

� In line 55, we calculate σxy seen in section 2.2 (Note: R2 = ρ2xy)

� Line 59-65 :

� In lines 59-61 we determine ŷi (see section 2.4)

� In lines 63-65 we determine the ei (see section 2.4)

� Lines 71-74 :

� In line 71 we choose a certain style for the output

� In line 72 we plot the regression line calculated in the 'Method of linear regression'

� In line 73 we plot the error-bars (ei) for every point (xi, yi) in the cloud of points

� In line 74 we lastly give the command to show the plot

6.2 Simpli�ed RNN

1 # import libraries needed for the program

2

3 import pandas

4 import matplotlib.pyplot as plt

5 from sklearn.preprocessing import MinMaxScaler

6 import numpy as np

7 from keras.models import Sequential

8 from keras.layers import Dense , LSTM , Dropout

9 from sklearn.model_selection import train_test_split

10
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11

12 # load data

13

14 data = pandas.read_csv('AMD.csv')

15

16 # dropping date column and changing order of the columns

17

18 data = data[['close ', 'volume ', 'open', 'high', 'low']]

19

20 # iloc uses the index to choose columns

21

22 data_train = data.iloc[:, 1:]

23 target_values = data.iloc[:, 0]

24

25 # return data frame as numpy array

26

27 data_train = data_train.values

28

29 # Normalizing data set

30

31 scaler = MinMaxScaler(feature_range =(0, 1))

32 data_train = scaler.fit_transform(data_train)

33 target_values = target_values.values

34

35 # splitting data set in train and test data

36

37 X_train , X_test , y_train , y_test = train_test_split(data_train , target_values ,

test_size =0.33, random_state =42)

38

39 # changing the input shape for the model

40

41 X_train = np.reshape(X_train , (X_train.shape[0], 1, X_train.shape [1]))

42 X_test = np.reshape(X_test , (X_test.shape [0], 1, X_test.shape [1]))

43

44 # creating model and adding the different layers

45

46 layers = Sequential ()

47

48 layers.add(LSTM (200, activation='relu', return_sequences=True))

49 layers.add(Dropout (0.2))

50

51 layers.add(LSTM (200, activation='relu'))

52 layers.add(Dropout (0.2))

53

54 layers.add(Dense (1))

55

56 # Compiling the model

57

58 layers.compile(loss='mean_squared_error ', optimizer='adam')

59

60 # training the model using the training data

61

62 layers.fit(X_train , y_train , epochs =50, batch_size =20, verbose =1)

63

64 # predicting the stock value

65

66 out_predict = layers.predict(X_test)

67

68 # Visualisation of the stock prices and estimated values

69

70 plt.style.use('dark_background ')

71 plt.figure(figsize =(10, 5))
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72 plt.plot(y_test , color='orange ', label='Real Stock Price')

73 plt.plot(out_predict , color='green ', label='Predicted Stock Price')

74 plt.ylabel('Stock Price ')

75 plt.legend ()

76 plt.show()

6.2.1 Explanation of the code

� Line 3-8 : We start by importing the libraries needed for the code

� Line 14 : We use pandas to create a data frame by loading a data set from a .csv �le In our case we use a
.csv �le containing the stock of AMD from 2019-05-02 to 2020-09-23

� Line 18 : We proceed by dropping the date line and rearranging the data set

� Line 22-23 :

� Line 22 : We take every column except the 'close' column

� Line 23 : We de�ne target_place as the 'close' column

� Line 27 : The data frame is converted into a numpy array

� Line 31-33 :

� Line 31 : The scaler is de�ned as MinMaxScaler; MinMaxScaler is a function imported from the
sklearn.preprocessing library that allows us to normalize the data set with values between 0 and 1.
In fact the function compares the greatest element in the data with the smallest to create a scale.

� Line 32 : MinMaxScaler is applied to our data set

� Line 33 : The list with close values is converted into a numpy array

� Line 37 :

* The data set is split into train and test data using the imported function train_test_split()

* The function input corresponds to our data set which is split into data_train and target_values

* test_size de�nes the portion of data that is taken as test data

* The data is randomized by the function and we use random_state to choose how the data
is randomized. In other words we can achieve the same random data set by using the same
random_state. This allows us to test di�erent parameters of our model without getting di�erent
results due to the randomization

� Line 41-42 : The x_train and x_test data which is in the form of a numpy array is converted to a form
that the model can use

� Line 46-54 :

� The model is chosen as a Sequential model using the Sequential() function from the Keras.models
library

� Line 48 : We add a LSTM layer with 200 neurons and choose an activation functions

� Line 49 : The dropout layer prevents over �tting of the model by setting random neuron values to 0
The dropout is only applied during the training. Otherwise we would have a loss of information
concerning our prediction

� Line 58 : The model is compiled and we choose the loss function and optimizer

� Line 62 :

� The model is trained using the training data and the following parameters as input:

* epochs de�nes the amount of iterations for the training data

* batch_size corresponds to the size of data the model uses at each step for �nding patterns

* verbose de�nes the program output;
If it is 0 we don't see the training procedure in our output
For verbose=1 we get a beam showing the progress
verbose=2 only shows the amount of epochs

� Line 70-76 : The matplotlib library allows us to represent the test values compared to the estimated values
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6.3 Standard RNN and LSTM

1 # import all libraries

2

3 import numpy as np

4 import pandas as pd

5 import sklearn

6 import sklearn.preprocessing

7 import datetime

8 import matplotlib.pyplot as plt

9 import tensorflow as tf

10 from tensorflow.python.framework import ops

11 import pandas_datareader.data as pdt

12

13 # Time frame

14

15 tst = datetime.datetime (2010, 1, 1)

16 ted = datetime.datetime (2020, 11, 18)

17

18 # import dataset

19

20 dataset = pdt.DataReader('AMD', 'yahoo', tst , ted)

21 df_stock = dataset.copy()

22 df_stock = df_stock.dropna ()

23 df_stock = df_stock [['Open', 'High', 'Low', 'Close']]

24

25 # data scaling (normalizing)

26

27 def normalize_data(df):

28 min_max_scaler = sklearn.preprocessing.MinMaxScaler ()

29 df['Open'] = min_max_scaler.fit_transform(df.Open.values.reshape(-1, 1))

30 df['High'] = min_max_scaler.fit_transform(df.High.values.reshape(-1, 1))

31 df['Low'] = min_max_scaler.fit_transform(df.Low.values.reshape(-1, 1))

32 df['Close '] = min_max_scaler.fit_transform(df['Close']. values.reshape(-1, 1))

33 return df

34

35 df_stock_norm = df_stock.copy()

36 df_stock_norm = normalize_data(df_stock_norm)

37

38 # Splitting the dataset into Train , Valid & test data

39

40 valid_set_size_percentage = 75

41 test_set_size_percentage = 10

42 seq_len = 20 # taken sequence length as 20

43

44 def load_data(stock , seq_leng):

45 data_raw = stock.to_numpy () # stock.as_matrix ()

46 data = []

47 for index in range(len(data_raw) - seq_leng):

48 data.append(data_raw[index: index + seq_leng ])

49 data = np.array(data)

50 valid_set_size = int(np.round(valid_set_size_percentage / 100 * data.shape [0])

)

51 testt_set_size = int(np.round(test_set_size_percentage / 100 * data.shape [0]))

52 ttrain_set_size = int(data.shape [0] - (valid_set_size + testt_set_size))

53 x_ttrain = data[: ttrain_set_size , :-1, :]

54 y_ttrain = data[: ttrain_set_size , -1, :]

55 x_validt = data[ttrain_set_size:ttrain_set_size + valid_set_size , :-1, :]

56 y_validt = data[ttrain_set_size:ttrain_set_size + valid_set_size , -1, :]

57 x_ttest = data[ttrain_set_size + valid_set_size:, :-1, :]

58 y_ttest = data[ttrain_set_size + valid_set_size:, -1, :]

59 return [x_ttrain , y_ttrain , x_validt , y_validt , x_ttest , y_ttest]
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60

61 x_train , y_train , x_valid , y_valid , x_test , y_test = load_data(df_stock_norm ,

seq_len)

62

63 """ Building the Model """

64

65 # parameters & Placeholders

66

67 n_steps = seq_len - 1

68 n_inputs = 4

69 n_neurons = 200

70 n_outputs = 4

71 n_layers = 2

72 learning_rate = 0.001

73 batch_size = 50

74 n_epochs = 50

75 train_set_size = x_train.shape [0]

76 test_set_size = x_test.shape [0]

77 ops.reset_default_graph ()

78 X = tf.placeholder(tf.float32 , [None , n_steps , n_inputs ])

79 y = tf.placeholder(tf.float32 , [None , n_outputs ])

80

81 # function to get the next batch

82

83 index_in_epoch = 0

84 perm_array = np.arange(x_train.shape [0])

85 np.random.shuffle(perm_array)

86

87 def get_next_batch(batch_sizee):

88 global index_in_epoch , x_train , perm_array

89 start = index_in_epoch

90 index_in_epoch += batch_sizee

91 if index_in_epoch > x_train.shape [0]:

92 np.random.shuffle(perm_array) # shuffle permutation array

93 start = 0 # start next epoch

94 index_in_epoch = batch_sizee

95 end = index_in_epoch

96 return x_train[perm_array[start:end]], y_train[perm_array[start:end]]

97

98 # RNN

99 layers = [tf.contrib.rnn.BasicRNNCell(num_units=n_neurons , activation=tf.nn.relu)

100 for layer in range(n_layers)]

101 # LSTM

102 # layers = [tf.contrib.rnn.BasicLSTMCell(num_units=n_neurons , activation=tf.nn.

relu)

103 # for layer in range(n_layers)]

104

105 multi_layer_cell = tf.contrib.rnn.MultiRNNCell(layers)

106 rnn_outputs , states = tf.nn.dynamic_rnn(multi_layer_cell , X, dtype=tf.float32)

107 stacked_rnn_outputs = tf.reshape(rnn_outputs , [-1, n_neurons ])

108 stacked_outputs = tf.layers.dense(stacked_rnn_outputs , n_outputs)

109 outputs = tf.reshape(stacked_outputs , [-1, n_steps , n_outputs ])

110 outputs = outputs[:, n_steps - 1, :] # keep only last output of sequence

111

112 # Cost function

113

114 loss = tf.reduce_mean(tf.square(outputs - y))

115

116 # optimizer

117

118 optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)

119 training_op = optimizer.minimize(loss)
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120

121 # Fitting the model

122

123 with tf.Session () as sess:

124 sess.run(tf.global_variables_initializer ())

125 for iteration in range(int(n_epochs * train_set_size / batch_size)):

126 x_batch , y_batch = get_next_batch(batch_size) # fetch the next training

batch

127 sess.run(training_op , feed_dict ={X: x_batch , y: y_batch })

128 if iteration % int(5 * train_set_size / batch_size) == 0:

129 mse_train = loss.eval(feed_dict ={X: x_train , y: y_train })

130 mse_valid = loss.eval(feed_dict ={X: x_valid , y: y_valid })

131 print('%.2f epochs: MSE train/valid = %.6f/%.6f' % (

132 iteration * batch_size / train_set_size , mse_train , mse_valid))

133 # Predictions

134 y_test_pred = sess.run(outputs , feed_dict ={X: x_test })

135

136 # plotting the graph

137

138 comp = pd.DataFrame ({'Column1 ': y_test[:, 3], 'Column2 ': y_test_pred [:, 3]})

139 plt.figure(figsize =(10, 5))

140 plt.plot(comp['Column1 '], color='blue', label='Target ')

141 plt.plot(comp['Column2 '], color='black', label='Prediction ')

142 plt.tick_params(left=False , bottom=False , labelleft=False , labelbottom=False)

143 plt.legend ()

144 plt.show()

Remark: Program by Umesh Palai (Reference: [9])

6.3.1 Explanation of the code

� Lines 3-11 : We import the libraries that we will use for this program

� Lines 15-16 : We determine the time period for which we want to consider data

� Lines 20-23 :

� Line 20 : We import the data set of AMD for the given time period

� Lines 21-22 : We use the dropna() function to exclude the missing data values

� Line 23 : We consider the OHLC columns of the data set

� Lines 27-36 : We use sklearn`s 
MinMaxScaler` to normalize the data set to turn the mean of all the input
features to 0 and their variance to 1. This is necessary to avoid di�erent scales while training the model.
Examples: 
tanh` is de�ned on the [−1, 1] interval ; 
sigmoid` is de�ned on the [0, 1] interval
Usually we use the 
ReLu` (recti�ed linear unit) activation and this activation function is unbounded on
the axis of possible activation values.

� Lines 40-61 : The data set is split into train, valid and test data and we chose sequences of length 20.
So we can build xtrain, ytrain, xvalid, yvalid, xtest, ytest.

� Lines 67-79 : Here we �x the parameters, placeholders and variables to build the models.
The model is �t by setting placeholders. X contains the networks input (OHLC at time T = t) and Y the
network`s output (price of the stock at time T + 1)

� Lines 83-110 :

� Lines 83-96 : We de�ne a function that runs the next batch for every model.

� Lines 99-110 : We de�ne layers for 2 di�erent models (RNN, LSTM) Note: Only one can run at the
same time

� Line 114 : The loss function is used to optimize the model. It measures the deviation between the network`s
predictions and the observed training targets.
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� Lines 118-119 : The optimizer calculates gradients that indicate the direction in which the prediction has
to be changed during the training in order to minimize the loss function.
We use Adam (Adaptive Moment estimation) here. It is one of the default optimizers in deep learning
development.

� Lines 123-134 : Here we �t the model to our training data set. We train the model using batches, where
data samples of n = batch_size are fed into the network. The training data set is divided into n/batch_size
batches that are sequentially fed into the network. Here the placeholders X and Y play a role, as they store
the input and target data and present these to the network.
The grouped data of X �ows through the system until it reaches the output layer. Then tensor�ow compares
the predictions of the model to the targets Y for the current batch.
Then after this step, it optimizes and updates the parameters of the network. After the optimization
process it considers the next batch and repeats the same process until all the batches have been processed.
(One iteration through all the batches is called an epoch. The program stops when the chosen amount of
epochs has been reached)

� Lines 138-144 : Here we simply plot the prediction and the target. Note that the target (y_test) and the
predicted closing prices (y_test_pred) are put into one data frame called 
comp`.

7 Conclusion
First we could observe that the linear regression is not the best method to make a prediction as it is obvious that
the main factor for variation in a stock is time. In our case it is useful to show a general trend of the stock but it
is not a precise prediction tool.

The simpli�ed RNN we described in section 5.2 has the goal of playing around with parameters and to opti-
mize the model to give more precise predictions. As the stock values are chosen at random, it isn't useful to make
predictions for investment or to analyse future stock values.

Then for the stock prediction using machine learning we've seen that by taking a look at Figures 12 - 31 that the
ReLU activation function leads to a more precise prediction compared to tanh and sigmoid. While the choice of
the activation function didn't in�uence the speed of the prediction, we've observed that the LSTM architecture
was slightly slower than the RNN architecture.
From the experimentation we can derive that an increase in the valid set size percentage and the test set size
percentage result in a faster output, whereas the increased test set size percentage also increases the range of the
output data (Reference: Figures 20 and 21).
An increase of the sequence length (seqlen) reduces the speed of the output generation. The decrease of the
number of neurons and layers accelerates the rate at which the output is generated but results in a less precise
prediction. As for the batch size we found out that a lower batch size improves the precision of the prediction
but also increases the time needed to train the model. An increase in the batch size leads to the exact opposite.
Last but not least we could observe that the LSTM model has a much bigger deviation from the target compared
to the RNN model.
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