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1 Introduction

The Secretary Problem is a famous riddle in which an employer wants to hire a secretary but there a certain
rules1:

1. There is a single position to �ll.

2. There are n applicants for the position, and the value of n is known.

3. The applicants, if seen altogether, can be ranked best to worst unambiguously.

4. The applicants are interviewed sequentially in random order, with each order being equally likely.

5. Immediately after an interview, the interviewed applicant is either accepted or rejected, and the decision
is irrevocable.

6. The decision to accept or reject an applicant can be based only on the relative ranks of the applicants
interviewed so far.

7. The objective of the general solution is to have the highest probability of selecting the best applicant
of the whole group. This is the same as maximizing the expected payo�, with payo� de�ned to be one
for the best applicant and zero otherwise

The problem then is to �nd out when the employer should stop interviewing applicants to maximize the
probability of hiring the best candidate. This report is going to show our way to �nding the best possible
strategy to this problem. While this problem has been studied thoroughly already, it is important to note
that we �rst try to �nd solutions by ourselves before relying on past documentations.

First, we will try to �nd a strategy that we will improve until we have the best possible one. We will start
by running some simulations of the problem, applying those strategies, and see how successful they are.
Afterward we will �nd a formula to calculate the probability of success of our strategy depending on the
number of applicants and on the amount of applicants that we "ignore". (This notion of ignoring applicants
will be explained in the �rst section when we present our way of approaching the problem.) Then, we will
approach our formula with a function that we will be able to optimize. This will give us the best possible
probability of reaching our goal.

2 Policies

In this section, we will start by �nding a simple strategy that we will keep on updating to improve, step by
step, the probability of hiring the best applicant for the position. This part will mostly be based on intuition
and experimentation.

2.1 Hiring the �rst candidate

The �rst policy that we considered is somewhat trivial: we hire the �rst applicant interviewed for the
position. While this policy is not expected to deliver particularly interesting results by itself, it o�ers a �ne
introduction to the subject and opportunities for improvement.
In this scenario, we have n applicants for the position. The probability that we hire the best applicant is
the probability that the best applicant is interviewed �rst: that is 1/n. This is also the probability of hiring
a candidate at random.
This has been experimentally con�rmed via Monte Carlo simulations, with one hundread million simulations
for di�erent values of n. In this experiment, we measured the number of times the best candidate was

1 via https://en.wikipedia.org/wiki/Secretary_problem
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recruited over 10,000 simulations. We replicated this experiment 10,000 times for di�erent values of n.
Further details regarding how this simulation was implemented is available in the appendix A.1.1, page 15.
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Figure 1: Boxplots displaying the relative deviation between average success rate of 10,000 simulations.

The relative deviation in the previous �gure is calculated by dividing the recorded number of successes in a
simulation by the expected value 1/n. For example, if n = 100, the expected number of successes for 10,000
simulations is 10000 · 1/100 = 100. If the result of one simulation is 98, we get 98/100 = 0.98. A value close
to 1 means that the result of the simulation is close to the expected value.
The boxplots in the �gure are well centered around 1, showing that there is close to no deviation around
expected value.

2.2 Skipping the �rst applicant

Can we alter this initial policy to increase the probability of hiring the best applicant? We can do so by
"skipping" the �rst candidate, and then continue the interview process, discarding any subsequent applicant
deemed less suitable than the �rst one, and hire the next best candidate.
Intuitively, this is an improvement because the chance that the best applicant is the �rst one interviewed
is low: 1/n. It is therefore unlikely that we would discard the best applicant. Such policy also rids us
of a certain number of applicants, which are by construction less suitable than the �rst applicant and by
extension less suitable than the best applicant.
Simulations for this policy shows a noticeable improvement to the initial policy as shown in the following
graphic:
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Figure 2: Boxplots displaying the relative deviation between average success rate of 10,000 simulations and
1/n.

We see in this graphic that the relative deviation is consistently above 1, indicating that the probability is
greater than for the �rst policy. Moreover, the improvement is even greater as n increases.
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2.3 Skipping the r �rst applicants

We can reiterate the solution previously described in order to ignore the �rst two candidates, rather than the
�rst one only. Indeed, it seems that doing so is still an improvement as the probability of the best candidate
being one of the �rst two interviewed remains low: 2/n. Moreover, should the second candidate be better
than the �rst one, the threshold that we implement will be higher; allowing us to eliminate a greater number
of candidates!
It seems fair to assume that we would continue to improve the probability of hiring the best candidate by
discarding the third candidate, the fourth, and so on. As long as the gain in probability is greater than the
loss caused by the increasing likelihood of ignoring the best candidate, this solution seems applicable.
However, there will be a point at which this gain in probability will not be su�cient to counter the loss
caused by ignoring the next applicant. Can we �nd this?
We want to observe how the number r of ignored applicants changes the probability of hiring the best one.
With this purpose we implemented a function, explained in detail in A.1.3 on page 17, that simulates the
experiment and computes the ratio between successes and the number of simulations.
We made graphs representing the function for n = 50 and n = 100:
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Figure 3: Graph of success_ratio for n = 50
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Figure 4: Graph of success_ratio for n = 100

We can clearly observe that there is a value for r where the ratio is maximal and for both graphs the function
has the same behavior. We compute the maximum for each function: For n = 50 the maximum is reached
at r = 18 and for n = 100 when r = 36. Furthermore the ratio at those maximums is 0, 37439 in both cases.

3 Measuring the probabilities

In this section, we will start by developping an explicit formula to measure the probability of hiring the
best candidate. We will perform some exploratory analysis and issue some observations. After this, we will
analyse the function to con�rm these observations.

3.1 Finding an explicit formula

3.1.1 An explicit formula

Now we will try to �nd an explicit formula to calculate the probability of hiring the best applicant for a
given number of applicants n depending on the amount of ignored candidates r. This will give us a function
of r for a �xed integer n.
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So we have n di�erent applicants, which we can interview in any order. Therefore we can modelize this
scenario as a vector X = (x1, . . . , xn) such that xk ∈ {1, ..., n};∀k ∈ {1, . . . , n} and xi 6= xj ;∀i 6= j. There
are n! such vectors. We consider xi to be a better candidate as xj if xi > xj . So n = max

i∈{1,...,n}
{xi} is the

best candidate. Let p be the position of n (i.e. xp = n) and r be the number of ignored candidates. To
succeed, we need p > r, that is r + 1 ≥ p ≥ n. For any position p of our best candidate, we can extract two
subvectors:

� (x1, . . . , xp−1) =: A

� (xp+1, . . . , xn) =: C

So that we have: (

A︷ ︸︸ ︷
x1, . . . , xp−1,

n︷︸︸︷
xp ,

C︷ ︸︸ ︷
xp+1, . . . , xn) We denote m := max{xi|xi ∈ A} the best candidate

interviewed before xp. Let's then divide A into two di�erent subvectors:

� (x1, . . . , xr) =: I, the ignored candidates

� (xr+1, . . . , xp−1) =: B, the other ones

This gives us the following situation: (x1, . . . , xr︸ ︷︷ ︸
I

, xr+1, . . . , xp−1︸ ︷︷ ︸
B

, xp︸︷︷︸
n

, xp+1, . . . , xn︸ ︷︷ ︸
C

).

To succeed in hiring the best candidate, we need m ∈ I, else we would have xk = m > max{xi|xi ∈ I} for
a ceratin k ∈ {r + 1, . . . , p− 1} and we would thus hire xk 6= xp. This means that m can be in any of the r
�rst positions.
However for any position of m, we can construct a vector Y := (y1, . . . , yr−1) with:

yk =

{
xk+1 if m ∈ {x1, . . . , xk}
xk otherwise.

The bene�t of doing so is that we can de�ne an equivalence relation over the vectors in consideration, by
stating that two vectors of length r are in relation if their associated vectors of length r − 1 are the same.
For example: X1 := (x1, x2,m, x3) ∼ (m,x1, x2, x3) =: X2 because Y1 = (x1, x2, x3) = Y2.

We do not need to worry about the exact position of m in I, but only about the order of the other elements.
Each of those vectors of length r − 1 will account for r di�erent vectors of length r.
There exists P r−1m−1 such vectors of length r − 1 for any given m. (Where P ab = b!

(b−a)! is the number of

permutations of a elements among b elements.) This gives us r · P r−1m−1 di�erent possibilities for I.
Then, for (xr+1, . . . , xp−1), given (x1, . . . , xr), any arrangement of p− r− 1 elements of the remaining m− r
elements will do: Thus giving P p−r−1m−r possibilities for each (x1, . . . , xr).
So for any given m and p we can compute the number of arrangements for (x1, . . . , xp−1) guaranteeing

success by: (r · P r−1m−1 · P
p−r−1
m−r ).

For (xp+1, . . . , xn), given (x1, . . . , xp), any arrangement of (n−p) elements, of the remaining (n−p) elements
will do: So we have Pn−pn−p = (n− p)!
Therefore, the probability of success of hiring the best candidate is given by:

1

n!

n∑
p=r+1

n−1∑
m=p−1

r · P r−1m−1 · P
p−r−1
m−r · (n− p)!

=
r

n

n∑
p=r+1

(n− p)!
(n− 1)!

n−1∑
m=p−1

(m− 1)!

(m− p+ 1)!
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3.1.2 A simpler formula

In the paperWho solved the secretary problem? [1], the simpler formula r
n

∑n
p=r+1

1
p−1 for success probability

is proved.
We will demonstrate that the formula we developed above is equivalent.
We have to prove the following :

r

n

n∑
p=r+1

(n− p)!
(n− 1)!

n−1∑
m=p−1

(m− 1)!

(m− p+ 1)!
=
r

n

n∑
p=r+1

1

p− 1

In order to do that, we will prove, by induction over n, that ∀ n ∈ N,∀ p ∈ N such that 2 ≤ p ≤ n :

(n− p)!
(n− 1)!

n−1∑
m=p−1

(m− 1)!

(m− p+ 1)!
=

1

p− 1
(1)

1. Consider the base case, n = 2. Note that this implies that p = 2 as well. Then, we have:

(n− p)!
(n− 1)!

n−1∑
m=p−1

(m− 1)!

(m− p+ 1)!
=

0!

1!

1∑
m=1

(m− 1)!

(m− p+ 1)!

= 1

=
1

p− 1

2. Now, suppose that for n ∈ N the equation 1 is true and let p ∈ N, p ≤ n. Therefore, we have to prove
that:

(n+ 1− p)!
(n)!

n∑
m=p−1

(m− 1)!

(m− p+ 1)!
=

1

p− 1

⇔ n+ 1− p
n

(
(n− p)!
(n− 1)!

n−1∑
m=p−1

(m− 1)!

(m− p+ 1)!
+

(n− p)!
(n− 1)!

(n− 1)!

(n+ 1− p)!

)
=

1

p− 1

⇔ n+ 1− p
n

(
1

p− 1
+

(n− p)!
(n+ 1− p)!

)
=

1

p− 1

⇔ n+ 1− p
n

(
1

p− 1
+

(n− p)!
(n+ 1− p)(n− p)!

)
=

1

p− 1

⇔ n+ 1− p
n(p− 1)

+
1

n
=

1

p− 1

⇔ n+ 1− p+ p− 1

n(p− 1)
=

1

p− 1

Which proves the claim.

3.2 Analyzing the probability function

We will now perform exploratory analysis to observe the behaviour of the probability function. Let's start
by formalizing some of the notation.
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Let n ∈ N be the number of applicants for the position. Let r ∈ {1, ..., n − 1} be the number of ignored
applicants for the interview. We de�ne as p(n, r) the probability of hiring the best of n candidates, discarding
r of them.
We introduce the following functions:

π(n) := max{p(n, r) | r ∈ {1, ..., n− 1}
β(n) := min{r ∈ {1, ..., n− 1} | p(n, r) = π(n)}

The function π returns, for a given n, the highest probability of hiring the best candidates by discarding
some of them. β returns the number of candidates we should skip in order to maximize this probability.
The decision of using the minimum is driven by the fact that there might be multiple r returning the same
probability. It is therefore safer to consider the min (using max instead of min would have provided similar
results).
We could summarize that by the following equality: π(n) = p(n, β(n)).
Let us start by reviewing the behaviour of the probability π(n) as n increases.
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Figure 5: π(n) for n ∈ {5, ..., 1000}

The graph of π(n) shows that the probability of hiring the best candidate decreases when n increases. It
however appears that this probability may be converging.

Now, let us observe how the optimal number of discarded candidates β(n) evolves with n.
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Figure 6: β(n) for n ∈ {5, ..., 1000}

The graph of β(n) shows that β is an increasing function, and seems linear, which indicates that the optimal
numbers of ignored candidates increases proportionally to the number of candidates n.

The next �gures shows a normalization of β, n 7→ β(n)
n , which represents the ratio of discarded candidates

for a given n (recall that 1 ≤ β(n) < n).
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Figure 7: π(n) (black line) and β(n)/n, n ∈ {5, ..., 1000}

This new �gure shows that the normalized ratio β(n)/n seems to be converging as well. This is an indication

that there may exist an optimal ratio such that when r ≈ limn→∞
β(n)
n , the probability p(n, r) is maximal.

It is also interesting to notice that β(n)
n and π(n) seem to converge towards the same limit.

8



3.3 What the formula tells us

We have seen in the previous section the convergence of the probability function and the ideal ratio. Hence,
in this section, we will optimize the probability function to get the exact value of the convergence.

3.3.1 Approximation of the sum by an integral

Our goal here is to justify that we can approximate the sum r
n

∑n
p=r+1

1
p−1 by the integral r

n

∫ n+1

r+1
1
p−1dp,

when n ∈ N is �big enough�. Indeed, the sum can be considered as a Riemann sum with constant step 1.
We will prove that even if the step of the Riemann sum doesn't get in�nitely closer to 0 as n→∞, we can

always choose n ∈ N such that
∣∣∣ rn∑n

p=r+1
1
p−1 −

r
n

∫ n+1

r+1
1
p−1dp

∣∣∣ < ε , ∀ ε > 0 , ∀ r ∈ {1, . . . , n}.

1. First, we will prove that ∀ n ∈ N, with n > 1,∀ r ∈ {1, . . . , n}:
n∑

p=r+1

1

p− 1
−
∫ n+1

r+1

1

p− 1
dp <

1

r
− 1

n
(2)

Let n ∈ N, with n > 1 then, ∀ r ∈ {1, . . . , n}:

1

r
−
∫ r+2

r+1

1

p− 1
dp =

1

r
− log

(
r + 1

r

)
<

1

r
− 1

r + 1

Let r ∈ {1, . . . , n}. Then:
n∑

p=r+1

1

p− 1
−
∫ n+1

r+1

1

p− 1
dp =

1

r
−
∫ r+2

r+1

1

p− 1
dp+

1

r + 1
−
∫ r+3

r+2

1

p− 1
dp+ . . .

. . .+
1

n− 1
−
∫ n+1

n

1

p− 1
dp

<
1

r
− 1

r + 1
+

1

r + 1
− 1

r + 2
+ . . .+

1

n− 1
− 1

n

=
1

r
− 1

n

2. Furthermore, we will show that r
n

∑n
p=r+1

1
p−1 −

r
n

∫ n+1

r+1
1
p−1dp −−−−→n→∞

0. In fact ∀ r ∈ {1, . . . , n}:

(2)⇒ r

n

n∑
p=r+1

1

p− 1
− r

n

∫ n+1

r+1

1

p− 1
dp <

1

n
− r

n2
≤ 1

n
− 1

n2
(3)

where lim
n→∞

1

n
− 1

n2
= 0.

⇒ lim
n→∞

(
r

n

n∑
p=r+1

1

p− 1
− r

n

∫ n+1

r+1

1

p− 1
dp

)
= 0

⇒ ∃N ∈ N s.t.∀n > N :

∣∣∣∣∣ rn
n∑

p=r+1

1

p− 1
− r

n

∫ n+1

r+1

1

p− 1
dp

∣∣∣∣∣ < ε , ∀ ε > 0

Which proves that we can �nd n ∈ N, su�ciently big, such that:

r

n

n∑
p=r+1

1

p− 1
≈ r

n

∫ n+1

r+1

1

p− 1
dp.
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3.3.2 Optimization of the integral

Now, let n ∈ N and consider a function r 7→ r
n

∫ n+1

r+1
1
p−1dp = − r

n log
(
r
n

)
. We can derivate this function to

�nd its extremums: (
− r
n
log
( r
n

))′

= − 1

n
log
( r
n

)
− 1

n
= − 1

n

(
log
( r
n

)
+ 1
)

To �nd the extremums, we have to solve − 1
n

(
log
(
r
n

)
+ 1
)
= 0.

⇔ log
( r
n

)
+ 1 = 0

⇔ r

n
=

1

e

⇔ r =
n

e

By studying the sign of the derivative, we can conclude that r 7→ r
n

∫ n+1

r+1
1
p−1dp reaches its maximum when

r = n
e . Moreover, the value of the maximum is :

−1

e
log

(
1

e

)
=

1

e

3.3.3 Application to the sum

We can apply the previous results to conclude that the sum r
n

∑n
p=r+1

1
p−1 is maximized when r ≈ n

e , i.e

r =
⌊
n
e

⌋
or r =

⌈
n
e

⌉
and the result of the sum should be approximately 1

e . This is even more precise as
n is big. For example, the inequalities from (3) tell us that, for n = 100, r = 36 (optimal r for n = 100)
the di�erence between the Riemann sum and the integral is smaller than 1

100 −
36

1002 = 0.0064. In fact, the
di�erence is 0.0032. Moreover, when r′ = 37, we have

∣∣ 100
e − r

′
∣∣ < ∣∣ 100

e − r
∣∣, thus the optimal r is not

necessarily the closest to n
e .

Fun fact :

If r ≈ n

e
then

r

n

n∑
p=r+1

1

p− 1
≈ 1

e

⇒ 1

e

n∑
p=r+1

1

p− 1
≈ 1

e

⇒
n∑

p=r+1

1

p− 1
≈ 1

This is well explained by studying, for a given n ∈ N, the sign of p(n, r)− p(n, r + 1).

p(n, r)− p(n, r + 1) =

(
r

n

n∑
p=r+1

1

p− 1

)
−

(
r + 1

n

n∑
p=r+2

1

p− 1

)

=
r

n

(
n∑

p=r+1

1

p− 1
−

n∑
p=r+2

1

p− 1

)
− 1

n

n∑
p=r+1

1

p− 1

=
r

n
· 1
r
− 1

n

n∑
p=r+2

1

p− 1

=
1

n
− 1

n

n∑
p=r+2

1

p− 1
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The sign of this di�erence depends only on the value of r 7→
∑n
p=r+2

1
p−1 , which is strictly decreasing.

The probability increases until
∑n
p=r+2

1
p−1 > 1, and starts to decrease afterwards (con�rming the shape

observed in �gures 3 and 4). The optimal r is min{r |
∑n
p=r+2

1
p−1 ≤ 1}, con�rming the observation.

3.4 The optimal integer

We know that n/e is not an integer, while the number of discarded candidates must be one. This raises the
following question: which r ∈ N gives the actual best probability? Is it the closest integer to n/e? the one
above? the one below? To �gure this out, we will start by plotting r − n/e, and observe how the optimal r
behaves (see �gure 8).
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r is the closest to n/e but does 
not give highest probability

Figure 8: Comparison between the optimal r and n/e

The plot shows that the optimal r is neither the closest integer, the ceiling or the �oor of n/e: it can be
either one of them, and is sometimes not the closest integer. We can identify a threshold, located around
+0.31 after which, even though r is the closest integer, it is not the optimal number of skipped candidates.
Moreover, the concentration of such points does not appear to decrease when n increases.
Let us shade the surfaces in which (1) r maximizes the probability and is the closest integer to n/e, (2) r
maximizes the probability but is not the closest integer to n/e and, (3) r is the closest integer but does not
maximize the probability (see �gure 9).
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Figure 9: Surfaces representing di�erent types of r

Note that available data for 5 ≤ n ≤ 1000 does not show any overlap between those surfaces, nor any
evidence that n has any in�uence on these. Based on this information, the optimal r lays between n/e+0.35
and n/e− 0.684. The blue and light gray surfaces in �gure 9 appear to be the same height, indicating that
we can correct n/e, altering it by subtracting a constant c.
We can try to get an approximation of this constant by computing the average of these errors: c ≈
0.315−0.684

2 = −0.1845. The ratio n/e seems to be around 0.1845 too high compared to the optimal ra-
tio.
We can verify this again by correcting our calculation by computing r − (n/e− 0.1845):
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Figure 10: Correction by comparing optimal r to (n/e− 0.1845)

In this case, we always get that the optimal r is indeed the closest integer to n/e− 0.1845.
Additionally we have found that this is not true for a few n ≥ 1000. (only 3 cases for n ≤ 10000) However
with the same approach it may be possible to �nd a preciser value (close to 0.1845) such that the closest
integer to n/e minus that new value would be the optimal r for n ≤ 10000 for example. Sadly we were not
able to �nd a prove for this working endlessly and neither if there exists one �xed correction to the ratio n/e
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that would work for all n ∈ N.

4 Conclusion

By trying out di�erent policies, we quickly realised that the best strategy would be to ignore a certain
amount of applicants and hire the next best one. This only left the question: What is the ideal amount of
ignored applicants?
To answer this question we started by �nding a formula for the probability of hiring the best candidate
depending on the total of applicants and the number of ignored ones. We then approximated this formula
by a function that can be optimized thus giving us the optimal ratio of ignored candidates. This ratio is
precisely n/e where n is the amount of applicants.
Finally we tried to �nd an ideal integer or at least a value such that the closest integer to that value would
be the optimal number of ignored candidates since this isn't always the case for the ratio n/e. We found that
for n ≤ 1000 the ideal integer is always the one closest to n/e− 0.1845. However we have seen that this does
not work for every n ≥ 1000 and neither were we able to prove if there even exists a universal correction of
the ratio n/e that would work for every n ∈ N, this would be a nice lead for further research on this project.
Nonetheless if somebody would see himself in this exact situation in real life, it is important to note that his
best bet of success would be to just take either one of the two closest integers of n/e since the di�erence of
their probability of success becomes minimal as n increases.
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Appendixes

A Code

A.1 Simulations

A.1.1 Simulation for hiring the �rst candidate

The experience is described as follow: for a given n, we generate a vector of length n obtained as a uniform
permuation of the integers between 1 and n. Taking 1 as the best candidate, we verify if the �rst value of
this vector is 1.
We then compute this simulation 1000 times, and measure the number of success. This measure is taken
1000 times, and the average is reported. The simulation is therefore computed 1,000,000 times for a given n.

../code/HireFirstApplicant.R

1 l i b r a r y ( magr i t t r )
2 l i b r a r y ( dplyr )
3
4 s e t . s e e d (0 .5577001) # ensures t h a t re=run w i l l g enera te same r e s u l t s .
5
6 #Generate an empty CSV to record s imu la t i on s
7 wr i t e . csv ( data . frame (n=in t e g e r ( ) ,
8 s imu la t i on s=in t e g e r ( ) ,
9 p o s i t i v e=in t e g e r ( ) ) ,
10 " . . / data/HireFC2 . csv " , row . names = F)
11
12 #Sing l e s imu la t i on
13 po l i c y <= f unc t i on (k ) {
14 app l i c an t s = sample (k , k , r ep l a c e=F)
15 app l i c an t s [ 1 ] == 1 # re turns t rue i f f i r s t e lement i s 1 , f a l s e o the rw i s e
16 }
17
18 #Generates a s i n g l e output f o r 1000 s i n g l e s imu la t i on s
19 t ryPo l i cy=func t i on (n) {
20 #Generate an output f o r 1000 s imu la t i on s .
21 r e s u l t = r e p l i c a t e (1000 , p o l i c y (n) )
22 t i b b l e (n , s imu la t i on s =1000 , p o s i t i v e=sum( r e su l t , na . rm=T) )
23 }
24
25 #Populate CSV the average o f 1000 s imu la t i on s
26 tryAgain = func t i on (n) {
27 fn = func t i on (n) {
28 t ryPo l i cy (n) %>% wr i t e . t ab l e ( . , " . . / data/HireFC2 . csv " ,
29 row . names = F,
30 sep=" , " ,
31 c o l . names = F,
32 append = T)
33 }
34 r e p l i c a t e (1000 , fn (n) )
35 }
36
37 sapply ( c (5 ,10 ,25 ,50 ,100 ,200 ,500) , tryAgain )
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A.1.2 Simulation for skipping the �rst candidate

We modi�ed the previous program so that we �rst �lter out the �rst candidate and any candidate with a
score lower than the �rst one. We then verify if the �rst value of the �ltered vector is 1.

../code/skip_FC.R

1 l i b r a r y ( magr i t t r )
2 l i b r a r y ( dplyr )
3
4 s e t . s e e d (0 .5577001) # ensures t h a t re=run w i l l g enera te same r e s u l t s .
5
6 #Generate an empty CSV to record s imu la t i on s
7 wr i t e . csv ( data . frame (n=in t e g e r ( ) ,
8 s imu la t i on s=in t e g e r ( ) ,
9 p o s i t i v e=in t e g e r ( ) ) ,
10 " . . / data/Skip_FC2 . csv " , row . names = F)
11
12 #Sing l e s imu la t i on
13 po l i c y <= f unc t i on (k ) {
14 app l i c an t s = sample (k , k , r ep l a c e=F)
15 bar = min ( app l i c an t s [ 1 : 1 ] )
16 remainder= t a i l ( app l i cant s , k=1)
17 remainder [ remainder<bar ] [ 1 ] == 1 # re turns t rue i f f i r s t e lement i s 1 , f a l s e

o the rw i s e
18 }
19
20 #Generates a s i n g l e output f o r 1000 s i n g l e s imu la t i on s
21 t ryPo l i cy=func t i on (n) {
22 #Generate an output f o r 1000 s imu la t i on s .
23 r e s u l t = r e p l i c a t e (1000 , p o l i c y (n) )
24 t i b b l e (n , s imu la t i on s =1000 , p o s i t i v e=sum( r e su l t , na . rm=T) )
25 }
26
27 #Populate CSV the average o f 1000 s imu la t i on s
28 tryAgain = func t i on (n) {
29 fn = func t i on (n) {
30 t ryPo l i cy (n) %>% wr i t e . t ab l e ( . , " . . / data/Skip_FC2 . csv " ,
31 row . names = F,
32 sep=" , " ,
33 c o l . names = F,
34 append = T)
35 }
36 r e p l i c a t e (1000 , fn (n) )
37 }
38
39 sapply ( c (5 ,10 ,25 ,50 ,100 ,200 ,500) , tryAgain )
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A.1.3 Simulation for skipping the �rst r candidates

The function takes r as a parameter which is the number of ignored applicants and the applicants are denoted
by an integer between 1 and n, where n is the total of applicants. The integer assimilated also represents
the value of each applicant, so for example n is the best candidate, 1 the worst, etc.
In each simulation the function creates a list called, candidates, containing every integer from 1 to n, repre-
senting the applicants, then randomly chooses r integers and removes them from the list and stores them in
another list named interviewed, standing for the ignored candidates.
Afterward the function checks if n belongs to the list interviewed, if this is the case the simulation is not
a success. Else the function picks one integer, let's called it x, in the list candidates and compares it with
all the integers from interviewed. If x is greater than all those integers the candidate x is selected, if not,
the same procedure continues until the function �nds an integer greater than all those in interviewed. The
simulation is considered a success if the selected number is n.
Moreover the function runs a su�cient amount of simulations such that the ratio is as close as possible to
the theoretical probability.
In this order the ratio is computed after each simulation and stored in a variable, called intermediate_ratio,
and compare it with the ratio after the next simulation, named ratio. The comparison is done by computing

the following distance : d =
∣∣∣ ratio
intermediate_ratio

− 1
∣∣∣. We suppose that the number of simulations is enough

if d < ε = 10−6.

../code/success_ratio.py

1 import math
2 from random import cho i c e
3 import matp lo t l i b . pyplot as p l t
4
5 N = 50
6 ep s i l o n = 1e=6
7
8 de f succ e s s_ra t i o ( r ) :
9 """We crea t e a l i s t o f N i n t e g e r s from 1 to N
10 r ep r e s en t i n g the l e v e l o f each cand ida te . Then
11 we randomly choose k i n t e g e r s in the l i s t which are
12 removed from the l i s t . Then we randomly choose one
13 i n t e g e r in the l i s t u n t i l we have an i n t e g e r b i g g e r
14 than the f i r s t k i n t e g e r s s e l e c t e d and cons ider i t a succe s s
15 i f t h a t i n t e g e r i s N. The re turned va lue i s the r a t i o o f
16 suc c e s s e s over at l e a s t thousand exper iments . """
17 i f r == N:
18 re turn 0
19 n , succes s , abso lute_err , r a t i o = 0 , 0 , 0 , 1
20 whi l e n < 1000 or math . f abs ( absolute_err =1) > ep s i l o n :
21 in te rmed ia t e_rat i o = r a t i o
22 n += 1
23 cand idate s = [ i f o r i in range (1 , N+1, 1) ]
24 in t e rv i ewed = [ ]
25 f o r i in range ( r ) :
26 r_candidate = cho i c e ( cand idate s )
27 cand idate s . remove ( r_candidate )
28 in t e rv i ewed . append ( r_candidate )
29 i f not (N in in te rv i ewed ) :
30 whi l e l en ( cand idate s ) > 0 :
31 candidate = cho i c e ( cand idate s )
32 cand idate s . remove ( candidate )
33 i f a l l ( [ candidate > i f o r i in in t e rv i ewed ] ) :
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34 i f candidate == N:
35 suc c e s s += 1
36 break
37 r a t i o = suc c e s s /n
38 i f n >= 1000 :
39 abso lute_err = r a t i o / in te rmed ia te_rat i o
40 re turn r a t i o
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A.1.4 First attempt to calculate probability

This program generates a table (csv) computing the probability of hiring the best candidate for every n
between 5 and 1000, and every r between 1 and n− 1.

../code/proba_table.R

1 try_r = func t i on ( r , n ) {
2 # given r and n , computes the b i g sum and ou tpu t s a data . frame row
3 proba = sapply ( seq ( r+1,n) ,FUN=func t i on (p) 1/(p=1) ) %>% sum ( . ) * r /n
4 data . frame (n , r , proba )
5 }
6
7 try_a l l_r = func t i on (n) {
8 # given n , computes the sum fo r a l l r from 1 to n=1, ou tpu t s a data frame row
9 lapp ly ( seq (1 , n=1) ,FUN= func t i on ( r ) t ry_r ( r , n ) ) %>% do . c a l l ( rbind , . )
10 }
11
12 # Generate a t a b l e f o r a l l n between 5 and 1000.
13 tab = lapp ly ( seq (5 ,1000) ,FUN=func t i on (n) t ry_a l l_r (n) ) %>% do . c a l l ( rbind , . )
14 wr i t e . csv ( tab , " . . / data/proba_tab l e . csv " , row . names = F)
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A.2 Visualisations

../code/boxplots.R

1 l i b r a r y ( ggp lot 2)
2 l i b r a r y ( dplyr )
3
4 df_HFC <= read . csv ( " . . / data/HireFC2 . csv " )
5
6 df_HFC %>%
7 mutate ( avg = po s i t i v e / s imulat ions , d ev i a t i on = avg /(1/n) ) %>%
8 ggp lot ( ) + geom_boxplot ( aes (1 , d ev i a t i on ) , width=0.1) +
9 geom_hline ( y i n t e r c ep t=1) +
10 f a c e t_gr id ( c o l s=vars (n) ) +
11 theme ( panel . spac ing . x = uni t (0 , " l i n e s " ) ,
12 ax i s . t ex t . x = element_blank ( ) ,
13 ax i s . l i n e = element_blank ( ) ,
14 ax i s . t i t l e . y = element_text ( s i z e =9) ) +
15 expand_l im i t s ( y = 0)+
16 labs ( x = "n" ,
17 y = " r e l a t i v e dev i a t i on to 1/n" ) +
18 s c a l e_y_cont inuous ( ) +
19 ggsave ( " . . / data/ image/Hire_FC. pdf " , width=12, he ight=4, un i t="cm" )
20
21 df_SFC <= read . csv ( " . . / data/Skip_FC2 . csv " )
22
23 df_SFC %>%
24 mutate ( avg = po s i t i v e / s imulat ions , d ev i a t i on = avg /(1/n) ) %>%
25 ggp lot ( ) + geom_boxplot ( aes (1 , d ev i a t i on ) , width=0.1) +
26 geom_hline ( y i n t e r c ep t=1) +
27 expand_l im i t s ( y = 0)+
28 f a c e t_gr id ( c o l s=vars (n) ) +
29 theme ( panel . spac ing . x = uni t (0 , " l i n e s " ) ,
30 ax i s . t ex t . x = element_blank ( ) ,
31 ax i s . l i n e = element_blank ( ) ,
32 ax i s . t i t l e . y = element_text ( s i z e =9) ) +
33 labs ( x = "n" ,
34 y = " r e l a t i v e dev i a t i on to 1/n" ) +
35 s c a l e_y_cont inuous ( ) +
36 ggsave ( " . . / data/ image/Skip_FC. pdf " , width=12, he ight=4, un i t="cm" )
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../code/Rplots.R

1 l i b r a r y ( magr i t t r )
2 l i b r a r y ( ggp lot 2)
3 l i b r a r y ( dplyr )
4
5 tab <= read . csv ( " . . / data/proba_tab l e . csv " )
6 theme_set ( theme_minimal ( ) )
7 theme_update ( ax i s . t i t l e = element_text ( s i z e =10) ,
8 legend . t i t l e= element_text ( s i z e =10) ,
9 legend . t ex t= element_text ( s i z e =10) )
10
11 tab %>%
12 #Se l e c t h i g h e s t proba f o r each n
13 group_by (n) %>% top_n (1 , proba ) %>%
14 ggp lot ( aes (n , proba , c o l o r=proba ) ) +
15 geom_point ( alpha =.5 , s i z e =.5) +
16 sca l e_co lo r_grad ient ( low="blue " , high=" red " ) +
17 labs ( x="n" ,
18 y=" pi (n) " ,
19 c o l o r=" Probab i l i t y " ) +
20 ylim (0 ,NA) +
21 labs ( c o l o r=" Probab i l i t y " ) +
22 ggsave ( " . . / data/ image/ p i_n . pdf " , he ight=6,width=16, un i t s="cm" )
23
24 tab %>% group_by (n) %>% top_n (1 , proba ) %>%
25 ggp lot ( ) +
26 geom_point ( aes (n , r , c o l o r=proba ) , alpha =.5 , s i z e =.5) +
27 sca l e_co lo r_grad ient ( low="blue " , high=" red " ) +
28 labs ( x = "n" ,
29 y = "beta (n) " ,
30 c o l o r=" Probab i l i t y " )+# sca l e_x_log10 () +
31 ggsave ( " . . / data/ image/beta_n . pdf " , he ight=6,width=16, un i t s="cm" )
32
33 tab %>% #Se l e c t h i g h e s t proba f o r each n
34 group_by (n) %>% top_n (1 , proba ) %>%
35 ggp lot ( aes (n , r /n , c o l o r=proba ) ) +
36 geom_point ( alpha =.5) + sca l e_co lo r_grad ient ( low="blue " , high=" red " ) +
37 labs ( x="Number o f cand idate s (n) " ,
38 y="Highest p r obab i l i t y p i (n) " ,
39 c o l o r=" Probab i l i t y " ) +
40 ggsave ( " . . / data/ image/ p l o t_po int s1 . pdf " )
41
42 tab %>% mutate ( r = r /n) %>%
43 #Se l e c t h i g h e s t proba f o r each n
44 group_by (n) %>% top_n (1 , proba ) %>% #p i v o t_longer (=n) %>%
45 ggp lot ( ) +
46 geom_point ( aes (n , r , co l ou r=proba ) , alpha =.3 , s i z e =.8) +
47 geom_line ( aes (n , proba ) ) +
48 sca l e_co lo r_grad ient ( low="blue " , high=" red " ) +
49 ylab ( " h i ghe s t p r obab i l i t y o f h i r i n g the best candidate , \n sk ipp ing optimal r

cand idate s " ) +
50 xlab ( "n" ) +
51 labs ( c o l o r=" Probab i l i t y " ) +
52 ggsave ( " . . / data/ image/ p l o t_po int s3 . pdf " , he ight=8,width=16, un i t s="cm" )
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../code/Actual_Best_R.R

1 l i b r a r y ( dplyr )
2 l i b r a r y ( ggp lot 2)
3 l i b r a r y ( magr i t t r )
4 l i b r a r y ( readr )
5 l i b r a r y ( t i dy r )
6
7 df <= read_csv ( " . . / data/proba_tab l e . csv " ) #read data from the proba t a b l e
8
9 #Al te r t a b l e
10 df2 <= df %>% group_by (n) %>%
11 mutate ( de l t a= r=n/exp (1 ) , # r = n/e
12 abs_de l t a = abs ( de l t a ) , # ab so l u t e d i f f e r e n c e
13 rk = as . cha rac t e r ( rank(=proba ) ) , # ranks by proba
14 rk2 = as . cha rac t e r ( rank ( abs_de l t a ) ) ) %>% # ranks by d e l t a
15 ungroup ( )
16
17 theme_set ( theme_minimal ( ) )
18 theme_replace ( legend . t i t l e = element_blank ( ) ,
19 legend . p o s i t i o n="top" ,
20 legend . j u s t i f i c a t i o n = " cente r " ,
21 panel . spac ing . x = uni t (=2 ,"cm" ) ,
22 legend . t ex t= element_text ( s i z e =7) )
23 k = 1000 #upperbound o f the p l o t
24 s = 2
25 labs = c ( "1"=" r g i v e s the h i ghe s t p r obab i l i t y \nand i s the c l o s e s t to n/e " ,
26 "2"=" r g i v e s the h i ghe s t p r obab i l i t y \nbut i s not the c l o s e s t to n/e" ,
27 "3"=" r i s the c l o s e s t to n/e but does \nnot g ive h i ghe s t p r obab i l i t y " )
28 c o l = c ( "1"="black " , "2"="blue " , "3" ="gray" )
29
30 ggp lot ( ) +
31 geom_point ( data = f i l t e r ( df2 , rk==1 & n <= k) , aes (n , de l ta , c o l o r=rk2 , shape=rk2 ) ,

s i z e=s ) +
32 geom_line ( data = f i l t e r ( df2 , rk==1 & n <= k) , aes (n , d e l t a ) , alpha =.2) +
33 geom_point ( data = f i l t e r ( df2 , rk2 == 1 & rk != 1 & n <= k) , aes (n , de l ta , c o l o r="3" ,

shape="3" ) , s i z e=s ) +
34 labs ( y="r=n/e" ) +
35 s c a l e_co l o r_manual (name="Points " ,
36 l a b e l s=labs ,
37 va lue s=co l ) +
38 s c a l e_shape_manual (name="Points " ,
39 l a b e l s=labs ,
40 va lue s=c ( "1"=16,"2"=16,"3"=1) ) +
41 ggsave ( " . . / data/ image/ p o i n t l i n e . pdf " , he ight=8,width=15, un i t s="cm" )
42
43 df3 <= rbind (
44 f i l t e r ( df2 , rk == 1 & rk2 == 1) %>%
45 summarize ( c l a s s =1,
46 m= min( de l t a ) ,
47 M = max( de l t a ) ,
48 c o l o r="black " ) ,
49 f i l t e r ( df2 , rk == 1 & rk2 != 1) %>%
50 summarize ( c l a s s =2,
51 m= min( de l t a ) ,
52 M = max( de l t a ) ,
53 c o l o r="blue " ) ,
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54 f i l t e r ( df2 , rk != 1 & rk2 == 1) %>%
55 summarize ( c l a s s =3,
56 m= min( de l t a ) ,
57 M = max( de l t a ) ,
58 c o l o r="gray" )
59 )
60
61 ggp lot ( ) +
62 geom_point ( data = f i l t e r ( df2 , rk==1 & n <= k) , aes (n , de l ta , c o l o r=rk2 , shape=rk2 ) ,

s i z e=s /2) +
63 geom_point ( data = f i l t e r ( df2 , rk2 == 1 & rk != 1 & n <= k) , aes (n , de l ta , c o l o r="3" ,

shape="3" ) , s i z e=s /2) +
64 geom_re c t ( data=df3 , aes ( xmin=0, xmax=k+5,ymin=m, ymax=M, f i l l =as . cha rac t e r ( c l a s s ) ) ,

alpha =.5) +
65 labs ( y="r=n/e" ) +
66 s c a l e_ f i l l _manual (name="Points " ,
67 l a b e l s=labs ,
68 va lue s=co l ) +
69 s c a l e_co l o r_manual (name="Points " ,
70 l a b e l s=labs ,
71 va lue s=co l ) +
72 s c a l e_shape_manual (name="Points " ,
73 l a b e l s=labs ,
74 va lue s=c ( "1"=16,"2"=16,"3"=1) ) +
75 ggsave ( " . . / data/ image/ areas . pdf " , he ight=6,width=15, un i t s="cm" )
76
77 df4 <= df %>% group_by (n) %>%
78 mutate ( de l t a= ( r=(n/exp (1 ) =0.1845) ) , # r = n/e
79 abs_de l t a = abs ( de l t a ) , # ab so l u t e d i f f e r e n c e
80 rk = as . cha rac t e r ( rank(=proba ) ) , # ranks by proba
81 rk2 = as . cha rac t e r ( rank ( abs_de l t a ) ) ) # ranks by d e l t a
82
83 df4
84
85 ggp lot ( ) +
86 geom_point ( data = f i l t e r ( df4 , rk==1 & n <= k) , aes (n , de l ta , c o l o r=rk2 , shape=rk2 ) ,

s i z e=s ) +
87 # geom_line ( data = f i l t e r ( df4 , rk==1 & n <= k ) , aes (n , d e l t a ) , a lpha =.2) +
88 l ab s ( y="r=(n/e = 0 .1845) " ) +
89 s c a l e_co l o r_manual (name="Points " ,
90 l a b e l s=" r g i v e s the h i ghe s t p r obab i l i t y and i s c l o s e s t to n/e =

0 .1845 " ,
91 va lue s=co l ) +
92 s c a l e_shape_manual (name="Points " ,
93 l a b e l s=" r g i v e s the h i ghe s t p r obab i l i t y and i s c l o s e s t to n/e =

0 .1845 " ,
94 va lue s=c ( "1"=16,"2"=16,"3"=1) ) +
95 ggsave ( " . . / data/ image/ po ints01845 . pdf " , he ight=6,width=15, un i t s="cm" )
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