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1 Linear Regression Model

1.1 What Is Linear Regression ?

Linear regression is a statistic model used to find a linear relationship be-
tween a dependent and an independent variable. The independent variable
is on the x axis and the dependent variable is on the y axis. What we try to
understand is what happens to the dependent variable, as the independent
variable changes.

1.2 Relationship and Slope

1. If both the independent and the dependent variables increase, we say
that there is a positive relationship.

2. If on the other hand, as the independent variable increases, the depen-
dent variable decreases, we say there is a negative relationship.

We take several observations and try to find a line that will “fit” through
all these different points. The line we obtain is called a regression line.
In reality, “fit” means that we have minimized the difference between the
estimated value (the point in the regression line) and the actual value (the
point representing the original observation.) In order to find the regression
line, we use a method called the "least squares method." The regression line
is of the form y = b0 ± b1x, where b0 represents the y-intercept and b1 is its
slope. The + or − that precedes b1 depends upon the kind of relationship
there is between the two variables.

1. For a positive relationship between the two variables, we obtain a
positive slope.

2. For a negative relationship, we obtain a negative slope.

1.3 Example

Before we begin, we need to choose of an example, which we will try to model
with a regression line.

The following table shows the evolution of the number of members of a
rugby club from 2001 to 2006 :

Year 2001 2002 2003 2004 2005 2006
Rank xi 1 2 3 4 5 6

Number of members yi 70 90 115 140 170 220
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2 How to trace a regression line ?

2.1 Axes and Means

It has been proved that the regression line has to pass by intersection of the
axes of the means of its two variables. In order to find out where we need to
trace the two axes, we calculate the mean for each column x and y, where
(x; y) represent some given observations. For the example that precedes, we
have :

mean(x) = x̄ =
1 + 2 + 3 + 4 + 5 + 6

6
=

21

6
= 3.5

and

mean(y) = ȳ =
70 + 90 + 115 + 140 + 170 + 220

6
=

805

6
= 134.2

The first thing we need to do is trace the vertical axis, x̄ = 3.5 and the
horizontal axis, ȳ = 134.2. We have to keep in mind that the intersection
will be one of the two points through which our regression line will pass.
After that, we also have to calculate the values, shown in the following table
:

x y x− x̄ y − ȳ (x− x̄)2 (x− x̄)(y − ȳ)

1 70 -2.5 -64.2 6.3 160.5
2 90 -1.5 -44.2 2.3 66.3
3 115 -0.5 -19.2 0.3 9.6
4 140 0.5 5.8 0.3 2.9
5 170 1.5 35.8 2.3 53.7
6 220 2.5 85.8 6.3 214.5

2.2 Slope and y-intercept

To determine the slope b1 of our regression line we add up the sixth and fifth
column separately and then divide the former by the latter. Basically,

b1 =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
.

In our example,

b1 =

∑
(x− x̄)(y − ȳ)∑

(x− x̄)2
=

160.5 + 66.3 + 9.6 + 2.9 + 53.7 + 214.5

6.3 + 2.3 + 0.3 + 0.3 + 2.3 + 6.3
=

507.5

17.8
= 28.5

For now, we have that : ŷ = b0 + 28.5x.
Finally, to determine the y-intercept b0 we need to remember of some-

thing we have already mentioned. The regression line has to pass from the
intersection of the axes x̄ and ȳ. Hence, we have :

134.2 = b0+3.5b1 ⇐⇒ b0 = 134.2−3.5b1 ⇐⇒ b0 = 134.2−3.5·28.5 = 34.5
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2.3 The Regression Line and its Representation

So, our regression line is : ŷ = 34.5 + 28.5x.

3 Correlation and Standard Error of the Estimate

3.1 The Coefficient of Correlation - R

In statistics, we have defined a coefficient R (denoted sometimes as r) as
the correlation coefficient. From the correlation coefficient, we can derive
two basic pieces of information concerning our two values x, y : the strength
and the direction of their linear relationship. The value of the correlation
coefficient R has one fundamental property to its interpretation : It’s always
between -1 and 1. Its interpretation is fairly easy. When the value of R ap-
proaches either -1 or 1 then we say that we have a strong linear relationship.
Otherwise, if R’s value is closer to 0 then the relationship is weak. In other
words, the more |R| gets closer to 1, the more the relationship between the
two variables becomes stronger. For a more detailed explanation look at the
following examples :

If r is :

• Exactly -1. A perfect downhill (negative) linear relationship;

• -0.7. A strong downhill (negative) linear relationship;

• -0.5. A moderate downhill (negative) linear relationship;
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• -0.3 A weak downhill (negative) linear relationship;

• 0 No linear relationship

• 0.3 A weak uphill (positive) linear relationship;

• 0.5 A moderate uphill (positive) linear relationship;

• 0.7 A strong uphill (positive) linear relationship;

• Exactly +1. A perfect uphill (positive) linear relationship

Depending on the sign of R, one can derive, as mentioned before, the direc-
tion of the linear relationship of the two variables.

In this paper, we will not be particularly interested in calculating the
correlation coefficient R, as much as the determination coefficient R2. There
are several reasons why, but they all break down to the fact that R2 is easier
to interpret.

3.2 The Coefficient of Determination - R2

The coefficient of determination, denoted R2 (or r2), is a measure of a quality
of a prediction of a regression line. In simple terms, R2 ( pronounced "R-
squared") tells us how accurately a regression line estimates actual values.

In reference to the previous example, in order to calculate R2, we need
to, first of all, calculate the following table. As you can see we have already
calculated the third column (the distance between the actual values and the
mean ȳ.) The fifth column represents the estimated values. We will denote
the estimated values by ŷ.To calculate the estimated values we take the
expression of our regression line ŷ = 34.5 + 28.5x and calculate the different
ŷ values, ∀x. Finally, the last column is the distance between these estimated
values and the mean ȳ.

x y y − ȳ (y − ȳ)2 ŷ ŷ − ȳ (ŷ − ȳ)2

1 70 -64.2 4121.6 63 -71.2 5069.4
2 90 -44.2 1953.6 91.5 -42.7 1823.3
3 115 -19.2 368.6 120 -14.2 201.6
4 140 5.8 33.6 148.5 14.3 204.5
5 170 35.8 1281.6 177 42.8 1831.8
6 220 85.8 7361.6 205.5 71.3 5083.7

The coefficient of determination R2 is calculated with the help of the
following formula :

R2 =

∑
(ŷ − ȳ)2∑
(y − ȳ)2
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In our case we have :

R2 =

∑
(ŷ − ȳ)2∑
(y − ȳ)2

=
5069.4 + 1823.3 + 201.6 + 204.5 + 1831.8 + 5083.7

4121.6 + 1953.6 + 368.6 + 33.6 + 1281.6 + 7361.6
=

14214.3

15120.6
= 0.94

R2 = 0.94 is a very good fit. If the actual values and estimated values
where not as close, then we would probably get something like R2 = 0.6 in-
stead. In fact, if we obtain R2 = 1, then we say we have a perfect fit between
actual and estimated values. In other words, as the value of R2 approaches
1, we say there’s a better fit and we mean that we have a better estimation.
Another way to measure goodness of fit is the "Standard Error of the Esti-
mate". In that case we are interested in the distance between the estimated
and the actual values.

3.3 The Standard Error of the Estimate

The standard error of the estimate is a measure of the accuracy of predictions.
You can interpret the Standard Error of the Estimate (denoted Se) as a
standard deviation in the sense that, if you have a normal distribution for
the prediction errors, then you will expect about two-thirds of the data points
to fall within a distance Se either above or below the regression line. Also,
about 95% of the data values should fall within 2Se, and so forth.

To calculate the standard error of the estimate, we have to compare
estimated values, calculated before, and the actual values. The distance
between the estimated values and their respective actual values is called the
error. In the following table, we’ve placed the estimated values denoted ŷ,
the difference between ŷ and y, and finally the square of this difference.

x y ŷ ŷ − y (ŷ − y)2

1 70 63 -7 49
2 90 91.5 1.5 2.3
3 115 120 5 25
4 140 148.5 8.5 72.3
5 170 177 7 49
6 220 205.5 -14.5 210.3

Now, we do the sum of the terms of the last column which is :

49 + 2.3 + 25 + 72.3 + 49 + 210.3 = 407.9.

Finally, to find the standard error we have to apply the following formula :

Se =

√∑
(ŷ − y)2

n− 2
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with n, the number of values. In our case, we obtain :

Se =
√

407.9
4 =

√
102 = 10.1. Therefore, the standard error of the esti-

mate is 10.1.

The coefficient of determination R2 compares the distance between ac-
tual values to the mean, whereas the standard error of the estimate compares
the actual values with the estimate values.

Difference between the coefficient of determination and the standard error of the estimate

4 An Exponential Model

4.1 How to Find the Exponential Model

We will use the same example as before. For our exponential model we will
have to set zi = ln(yi). The process to determine an exponential equation
that well interprets our observations is going to be very similar to the one
we already completed to determine our regression line. As we did before we
have to make a table for our observations :

Year 2001 2002 2003 2004 2005 2006
Rank xi 1 2 3 4 5 6

Number of members yi 70 90 115 140 170 220
zi ln(70) = 4.2 ln(90) = 4.5 4.7 4.9 5.1 5.4

We will then quickly calculate, a regression line formula for x and z,
following the aforementioned process. The regression line we obtain, is of
the form z = 4.1+0.2x. After having determined the regression line we only
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have to solve z = ln(y).

z = ln(y)
⇐⇒ ln(y) = 4.1 + 0.2x

⇐⇒ eln(y) = e4.1+0.2x

⇐⇒ y = e4.1+0.2x

⇐⇒ y = e4.1 · e0.2x
⇐⇒ y = 60.3e0.2x.

The exponential model’s equation is ye = 60.3 · e0.2x.

4.2 Regression vs Exponential Model

Since we don’t really have a quality indicator for the exponential model,
as we do for the linear regression one (R, R2, Standard error of estimate,
etc.), we have to find another way to decide which of the two models is best
suitable for our example. A solid way to do that is by observing the two
graphs we were able to obtain by our python project. Even by just watching
the scatter plot, we can make out that the points follow a more curve-like
trail (and not a linear one). As a result, we can understand with absolute
certainty that the exponential model is more adequate for this example than
the linear one.
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5 Representing Stock Data

5.1 Some Beginner’s Notions...

A (capital) stock of a corporation, is the total of the shares into which the
ownership of the corporation is divided. Yahoo Finance is an easy tool, with
which one can obtain historical data for a grand variety of stocks of different
corporations.

In Yahoo Finance we can also find a chart were the historical data are
graphically represented. As we will do later on, while the x-axis represents
the days of the year, the y-axis represents the adjusted close of the stock.
The close of the stock is the cash value of the last transacted price before the
market closes for the day. The adjusted close is nothing else than the closing
price, but having factored in anything that might affect the stock price after
the market closes. The adjusted closing price might be a little different from
the closing price, but most of the times the two prices are equal.

5.2 Choosing a Stock, Representing Its Data

In this part, we will choose a stock of a certain corporation and use the two
models (a regression line and the exponential model) to represent its data.
We have chosen to work with the Tesla, Inc. stock (TSLA).

The idea is that we are going to choose a certain period of time, let’s say
January 14th to February 26th 2020. We will make a table containing all the
data we will have gathered, as we did before. As we mentioned before, the
x-axis will represent the days of the year between January 14th and February
26th, while the y-axis will represent the adjusted close of the stock.

Finally, when we will have determined a regression line formula and an
exponential expression, we will calculate -using both formulas- two predic-
tions for a future date. We will choose for example April 14th. That day
the adjusted close of the stock was equal to USD 709.89, according to the
historical data of Yahoo Finance. Whichever of the two predictions is closer
to the real adjusted closing price will determine, which of the aforementioned
models is the most precise and reliable.

For the chosen time period, we have the following observations 1 :

1Every observation is rounded to the second decimal place.
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Date x : Rank of The Day y : Adjusted Close
2020-01-14 1 537.92
2020-01-15 2 518.50
2020-01-16 3 513.49
2020-01-17 4 510.50
2020-01-21 8 547.20
2020-01-22 9 569.56
2020-01-23 10 572.20
2020-01-24 11 564.82
2020-01-27 14 558.02
2020-01-28 15 566.90
2020-01-29 16 580.99
2020-01-30 17 640.81
2020-01-31 18 650.57
2020-02-03 21 780.00
2020-02-04 22 887.06
2020-02-05 25 734.70
2020-02-06 26 748.96
2020-02-07 27 748.07
2020-02-10 30 771.28
2020-02-11 31 774.38
2020-02-12 32 767.29
2020-02-13 33 804
2020-02-14 34 800.03
2020-02-18 38 858.4
2020-02-19 39 917.42
2020-02-20 40 899.41
2020-02-21 41 901
2020-02-24 44 833.79
2020-02-25 45 799.91
2020-02-26 46 778.78

In order to avoid having to enter one value at a time in the Python pro-
gram we have created the following lists. Tesla’s stock from 14/01 to 26/02

Days :1 2 3 4 8 9 10 11 14 15 16 17 18 21 22 25 26 27 30 31 32 33 34 38
39 40 41 44 45 46

Corresponding values : 537.92 518.5 513.49 510.5 547.2 569.56 572.2
564.82 558.02 566.9 580.99 640.81 650.57 780 887.06 734.7 748.96 748.07
771.28 774.38 767.29 804 800.03 858.4 917.42 899.41 901 833.79 799.81 778.8
All we have to do is to copy-paste the lists in the program.

We will now use our python program 2 to rapidly calculate the formulas
for the two models.

2You can find its algorithm in the next section of this paper.

11



So our regression line is :

yl = 8.71989836250706x + 500.48704498400133

and our exponential model is

ye = e6.238959285254934 · e0.01282372248954822x

= 512.3250492 · e0.01282372248954822x.

As we said before, we will use each model to make a prediction for April
14th. The date corresponds to an x equal to 61. And so we have :

512.3250492 · e0.01282372248954822·61 = ye(61)

8.71989836250706 · 61 + 500.48704498400133 = yl(61)

512.3250492 · e0.7822470719 = ye(61) 531.9138001 + 500.48704498400133 = yl(61)

512.3250492 · 2.186379702 = ye(61) 531.9138001 + 500.48704498400133 = yl(61)

1120.14 = ye(61) 1032.40 = yl(61)

As we can see the values that we have obtained are not really close to
the actual value of the stock. Nevertheless, this is quite normal. Finding
a model that accurately predicts a stock’s future is really difficult and a
much more complicated work than those two models. The reason for that, is
that only one parameter (the evolution of the stock’s value) is taken under
consideration, whereas the stock’s value depends on many factors such as
risks,customer request, geopolitical situation and so on. Even though the
models are not that close to reality, we can see that ye(61) > yl(61) > 709.89,
so the linear regression’s prediction is closer to reality than the exponential
one. A stock’s evolution doesn’t follow a strict mathematical model but is
highly unpredictable.3

3That does not, of course, mean that this kind of data cannot be modeled
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6 The Algorithm

6.1 The code

1 import numpy as np
2 import matplotlib.pyplot as plt
3 import math
4 plt.clf() #to clear the graph of any functions we could have

traced before
5

6 I_v= input(’Please enter your list of independent values
separated by spaces.’)

7 Dv= input(’Please enter your list of dependent values separated
by spaces.’)

8 absc= int(input(’Please enter the greatest value you want to
have on the X axis.’)) #
horizontal scale

9

10 # vertical scale
11

12 Ivd=[] # It’s the same list as below but we need to keep the
values we entered.

13 Iv=[] # It’s the list corresponding to the independent values.
14 Dvy=[] # It’s the list corresponding to the dependent values y.
15 Dvz=[] # It’s the list corresponding to the dependent values z

(y-values to which we apply the
ln -map).
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16

17

18 for e in I_v.split():
19 f = float(e)
20 Iv.append(f)
21 Ivd.append(f)
22

23 for g in Dv.split():
24 h = float(g)
25 Dvy.append(h)
26 Dvz.append(h)
27

28 for i in range(len(Dvz)):
29 Dvz[i]=math.log(Dvz[i])
30

31 def scatterplot(x,y,xtitle ,ytitle ,title):
32 """
33 Function generating the scatter plot y depending on x
34 Inputs : coordonates of x, coordonnates of y, abscissis

title , Y title , graph title
35 Output : scatter plot y depending on x
36 """
37 plt.plot(x, y, linestyle="none" ,marker="x" ,color="red",

markersize="10", label="
actual values")

38 plt.xlabel(xtitle) #legend on the absciss axis
39 plt.ylabel(ytitle) # legend on the ordinate axis
40 plt.title(title) # display a title
41

42 scatterplot(Iv , Dvy , "Independant value", "Dependant value","
Actual values")

43

44 # We calculate x-x_bar :
45 c=sum(Iv)
46 mx=c/len(Iv) # It’s the mean of x.
47 for i in range(len(Iv)):
48 Iv[i]=Iv[i]-mx # We subtract the mean to each element of

the list containing the x-
values.

49

50 # We calculate y-y_bar :
51 ay=sum(Dvy)
52 my=ay/len(Dvy) # It’s the mean of y.
53 for i in range(len(Dvy)):
54 Dvy[i]=Dvy[i]-my # We subtract the mean to each element of

the list containing the y-
values.

55

56 # We calculate z-z_bar :
57 az=sum(Dvz)
58 mz=az/len(Dvz) # It’s the mean of z.
59 for i in range(len(Dvz)):
60 Dvz[i]=Dvz[i]-mz # We subtract the mean to each element of

the list containing the z-
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values.
61

62 # We calculate the product between (x-x_bar) and (y-y_bar) :
63 pIv_Dvy= [Iv[i]*Dvy[i] for i in range(min(len(Iv),len(Iv)))]+

max(Iv,Dvy ,key=len)[min(len(Iv)
,len(Dvy)):]

64 # We calculate the square of (x-x_bar) :
65 pIv_Iv= [Iv[i]*Iv[i] for i in range(min(len(Iv),len(Iv)))]+max(

Iv ,Iv ,key=len)[min(len(Iv),len(
Iv)):]

66 # We calculate the product between (x-x_bar) and (z-z_bar) :
67 pIv_Dvz= [Iv[i]*Dvz[i] for i in range(min(len(Iv),len(Iv)))]+

max(Iv,Dvz ,key=len)[min(len(Iv)
,len(Dvz)):]

68 # We calculate the square of (y-y_bar) :
69 pDvy_Dvy= [Dvy[i]*Dvy[i] for i in range(min(len(Dvy),len(Dvy)))

]+max(Dvy ,Dvy ,key=len)[min(len(
Dvy),len(Dvy)):]

70

71 s_xx=sum(pIv_Iv) # It’s the sum of the elements of the square
of (x-x_bar).

72 s_yy=sum(pDvy_Dvy) # It’s the sum of the elements of the square
of (y-y_bar).

73

74 s_xz=sum(pIv_Dvz) # It’s the sum of the elements of the product
between (x-x_bar) & (z-z_bar).

75 c_xz= s_xz/s_xx # It corresponds to the coefficient of the
regression line slope for x and
z.

76 y_iz= mz- c_xz*mx # It corresponds to the y-intercept of the
regression line for x and z.

77

78 s_xy=sum(pIv_Dvy) # It’s the sum of the elements of the product
between (x-x_bar) & (y-y_bar).

79 c_xy= s_xy/s_xx # It corresponds to the coefficient of the
regression line slope for x and
y.

80 y_iy= my- c_xy*mx # It corresponds to the y-intercept of the
regression line for x and y.

81

82 y_hat=[c_xy*l+y_iy for l in Ivd] # It’s the list containing the
y--hat value for all the

independant values.
83 for i in range(len(y_hat)):
84 y_hat[i]=y_hat[i]-my # We subtract the mean to each

element of the list
containing the y_hat -values
.

85

86 # We calculate the square of (y_hat -y_bar) :
87 py_hat= [y_hat[i]*y_hat[i] for i in range(min(len(y_hat),len(

y_hat)))]+max(y_hat ,y_hat ,key=
len)[min(len(y_hat),len(y_hat))
:]
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88 s_py_hat= sum(py_hat) # It’s the sum of the elements of the
square of (y_hat -y_bar).

89 rr= math.sqrt(s_py_hat/((s_yy))) # It corresponds to the
coefficient of determination R^
2.

90

91 print("The coefficient of determination R^2 is", rr ,".")
92 print("The regression line formula is",c_xy ,"x+",y_iy ,".")
93 print("The exponential model ’s equation is exp(",c_xz ,"x)*exp("

,y_iz ,".")
94

95 plt.title("Regression line and exponential model compared to
the actual values ")

96 x= np.linspace(0,absc)
97 y=[c_xy*t+y_iy for t in x] # regression line
98 z=[math.exp((c_xz)*t)*math.exp(y_iz) for t in x] # exponential

model
99

100 plt.xlim(0,absc)
101 plt.ylim(int(min(y)-min(y)/2) ,(max(y)*1.25))
102 plt.plot(x,z,label="Exponential model")
103 plt.plot(x,y,label="Regression line")
104 plt.legend(["Actual values","Exponential model","Regression

line"])
105 plt.show()

6.2 Its Functioning

First of all, the program is going to ask you to enter two lists of values :

1. the independent values (X-axis values)

2. the dependent values corresponding to the independent values (Y-axis
values).
The only condition of the algorithm is that we must enter two lists of
the same length containing only floats. For example, if we enter a first
list (independent values) with six values and a second one (dependent
values) with five values, it will return a dimension error.

If all conditions are satisfied, the program will return a graph of both
the linear regression and the exponential model for the values we asked
for. Moreover, we will find the expressions of the two models, as well
as the value of R2 of the linear regression.
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7 Conclusion

In this paper, we have worked closely with the linear regression model and
tried to see how and if it can be applied to financial matters and, more
specifically, to the modeling of stocks. We then introduced some quality
indicators, as well as a whole new and more advanced model (the exponential
model). After some mathematical "experiments" though, we arrived to the
following conclusion.

Even though we can construct complex formulas to show us the quality
of our model, the reality of things is that it is always dependent to the kind
of data we are trying to represent. In our first example, we saw a quite
predictable example where we obtained high values for R2 for both models.
If we were to make a future prediction it would probably be very close to
reality, if not equal to it.

Due to the R2 value being close to 1, in the first example, the regression
line was precise and our predictions were accurate. However, in the second
one, this was not the case for the predictions, even though once again the
regression line was precise. Each problem has its own factors and risks that
have to be taken under consideration. While the two models we introduced
in our paper seem to be very much trustworthy for modeling simple data,
when trying to model stock data or other more complex systems, we need
to put the work and create even more complex models. We can also use the
multiple linear regression (denoted MLR), which can take several factors. For
example, the following picture is a linear regression with two parameters.
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