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Abstract

The purpose of this paper is to find out the number of solutions of polynomial equa-
tions in two variables over a finite field, by doing experimentations. We used the
properties of finite fields to find the solutions. Moreover we tried to find algebraic
numbers in C, which we used for the formulas of the number of solutions.

We are grateful to dear Prof. Dr. Gerard van der Geer and dear Bryan Advo-
caat for all their support and help through this mathematical experimental project.
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1 Introduction
Finite Fields were first introduced by Evariste Galois in his paper "sur la théorie des
nombres" in 1830. This paper is considered to be the founding article of the general
theory of finite fields. In honor of Evariste Galois, finite fields are also named Galois
fields.
Moreover, finite fields are fundamental in many areas of mathematics including num-
ber theory, Galois theory, cryptography and many more.

Our main goal is to examine the solutions of the polynomial equations
f(x, y) = 0 over finite fields. The number of solutions of these equations is finite.
That makes it possible to count them, in contrast to the solutions of polynomial
equations over the real numbers.
An equation f(x, y) = 0 over the real numbers usually defines a curve. So the solu-
tions of polynomial equations f(x, y) = 0 over finite fields are analogous to those of
the real numbers.

2 Finite fields
In this chapter we will only discuss finite fields. First we will see what finite fields
are by giving a definition, showing some properties and examples. After that we
will show some multiplication and addition tables with the elements of a finite field.

2.1 Definition and properties

Definition 2.1. A field is a set F with two binary operations + and × such that :

◦ (F,+) is a commutative group with identity element 0

◦ (F \ {0},×) is a commutative group with identity element 1.

◦ ∀a, b, c ∈ F : a(b+ c) = ab+ ac.

A field is called finite when its number of elements is finite.

More precisely, for each field F there is always a homomorphism Z −→ F send-
ing 1 ∈ Z to 1 ∈ F . This means that the homomorphism is either injective or the
kernel is a prime ideal 6= (0) in Z, hence of the form (p) for a prime p. In that case
F contains Z/pZ = Fp.
If F is a finite field it cannot contain Z, hence it contains a finite field Fp.

Definition 2.2. By definition, the prime field of a field F is the smallest subfield
of F , the intersection of all subfields of F . For a finite field F the prime field is a
finite field Fp = Z/pZ for a prime p.
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Properties. Any two finite fields with the same number of elements are isomorphic
and they can’t have two different subfields with the same number of elements. So,
every finite field contains a unique prime field Fp with characteristic p.

The order of a finite field is always a power of a prime number.

Proof. Let Fq be a finite field of cardinality q. Then it contains a unique prime field
Fp with characteristic p. Thus Fq is an extension of Fp and Fq is a Fp− vector space.
The dimension of the vector space is the degree of the extension ([Fq : Fp]).
Let [Fq : Fp] = n.
⇒ the dimension of the vector space is n.
Hence |Fq| = pn.

�

Another useful fact is that any finite subgroup of the multiplicative group of a
field is cyclic. In particular, for a finite field Fq the group F∗q is cyclic.

Examples

a) F4 = F2[α] and α3 = 1 so F4 = { 0, α0, α1, α2}

b) F16 = F2[α] with α15 = 1 so F16 = { 0, αi i = 0, · · · , 14}.

Moreover, the finite field Fpn is a subfield of Fpm ⇔ n divides m.
Now, let us move on to the description of Fq = Fpn .
Fpn can be constructed in the following way. One can choose an irreducible polyno-
mial f in Fp[x] of degree n, then (Fq =) Fpn ∼= Fp[x]/(f).
Fp[x]/(f) is an extension field of Fp and the irreducible polynomial f is not always
unique.
So in other words, Fpn = Fp(α) with f(α) = 0.

Examples

a) For F4 we have that α3 = 1 (because F∗4 is cyclic), but then α 6= 1 satisfies
α2 + α + 1 = 0, since X3 − 1 = (X2 +X + 1)(X − 1) and α 6= 1.

b) For F8 we have that β7 = 1 (F∗8 is cyclic), hence β 6= 1 satisfies β3 + β + 1 = 0 or
β3 + β2 + 1 = 0 since X7 − 1 = (X − 1)(X3 +X2 + 1)(X3 +X + 1) in F2[x].

c) F9
∼= F3[x]/(x2 + 1) or F9

∼= F3[x]/(x2 + x+ 2).

Furthermore, by Fermat’s little theorem, if p is a prime number and x ∈ Fp, then
xp = x.

⇒ xp − x =
∏
a∈Fp

(x− a)

More generally every element of Fpn satisfies the polynomial equation xpn − x = 0.
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2.2 Addition and multiplication table

� addition and multiplication table on F4:

F4={0, 1, α, α + 1} and F4
∼= F2[x]\(x2 + x + 1), F4 = F2[α]. So we have that

α2 = α + 1 and α3 = α · α2 = α(α + 1) = α2 + 1 = 1.

We get the following multiplication and addition table.

+ 0 1 α α+1
0 0 1 α α+1
1 1 0 α+1 α
α α α+1 0 1
α+1 α+1 α 1 0

· 0 1 α α+1
0 0 0 0 0
1 0 1 α α+1
α 0 α α+1 1
α+1 0 α+1 1 α

� addition and multiplication table on F8:

F8={0, 1, α, α + 1, α2, α2 + 1, α2 + α, α2 + α + 1} and F8
∼= F2[x]\(x3 + x + 1), so

α3 = α + 1, α4 = α2 + α, α5 = α2 + α + 1, α6 = α2 + 1, α7 = 1.

+ 0 1 α α2 α+1 α2+α α2+α+1 α2 + 1
0 0 1 α α2 α+1 α2+α α2+α+1 α2 + 1
1 1 0 α+1 α2 + 1 α α2+α+1 α2+α α2

α α α+1 0 α2+α 1 α2 α2+1 α2+α+1
α2 α2 α2+1 α2+α 0 α2+α+1 α α+1 1
α+1 α+1 α 1 α2+α+1 0 α2+1 α2 α2+ α
α2+ α α2+ α α2+α+1 α2 α α2+1 0 1 α+1
α2+α+1 α2+α+1 α2+α α2 + 1 α+1 α2 1 0 α
α2 + 1 α2 + 1 α2 α2+α+1 1 α2+α α+1 α 0

· 0 1 α α2 α+1 α2+α α2+α+1 α2 + 1
0 0 0 0 0 0 0 0 0
1 0 1 α α2 α+1 α2+α α2+α+1 α2 + 1
α 0 α α2 α+1 α2+α α2+α+1 α2 + 1 1
α2 0 α2 α+1 α2+α α2+α+1 α2 + 1 1 α
α+1 0 α+1 α2+α α2+α+1 α2 + 1 1 α α2

α2 + α 0 α2+α α2+α+1 α2 + 1 1 α α2 α+1
α2+α+1 0 α2+α+1 α2 + 1 1 α α2 α+1 α2+α
α2 + 1 0 α2 + 1 1 α α2 α+1 α2+α α2+α+1

Now let us move on to the next chapter Counting points on curves over
finite fields.
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3 Counting points on curves over finite fields
In this chapter we will look at the solutions of polynomial equations f(x, y) = 0 over
finite fields. We will first show some examples and then after that, we will give a
small summary on how in fact to predict easily the number of solutions of the type
of equations f(x, y) = 0.
Let us first start with the equation y2 + y = x3 over F2n .

3.1 Example 1

We consider the equation y2 + y = x3 over F2n . Let Nn = # {(x, y)} : x, y ∈
F2n : y2 + y = x3}+ 1.
First we did some experimentations and we calculated by hand the solutions for
N1, N2 and N3.

For the equation over F2 (n = 1), we get the following solution set;
S1 = {(1, 0), (1, 1)}.
⇒ N1 = 3.

For y2 + y = x3/F4 (n = 2) we get the solution set
S2 = {(0, 0), (0, 1), (1, α), (1, α+ 1), (α, α), (α, α+ 1), (α+ 1, α), (α+ 1, α+ 1)}.
⇒ N2 = 9.

For y2 + y = x3/F8 (n = 3) the set of solutions is
S3 = {(0, 0), (0, 1), (α + 1, α2 + α), (α + 1, α2 + α + 1), (α2 + 1, α2 + α),
(α2 + 1, α2 + α + 1), (α2 + α + 1, α2), (α2 + α + 1, α2 + 1)}.
⇒ N3 = 9.

y2 + y = x3 over F16 (n=4) has the following solution set,
S4 = {(0, 0), (0, 1), (1, α2 + α), (1, α2 + α + 1), (α2 + α, α2 + α),
(α2 + α, α2 + α + 1), (α2 + α + 1, α2 + α), (α2 + α + 1, α2 + α + 1)}
⇒ N4 = 9.

Furthermore, N5 = 33 and N6 = 81.

Instead of calculating the solutions by hand, there is an easier method to find the
number of solutions for n odd. It is the following.

The multiplicative group F∗q is cyclic. For q = 2n we thus have a cyclic group
of order 2n − 1. The map f : F∗q −→ F∗q, x 7−→ x3 is a homomorphism of groups.
The kernel of the map consists of solutions of x3 = 1, that is, elements whose order
divides 3.
Let K := ker(f) = {x ∈ F∗q : x3 = 1}. Every image element of f is taken k times,
with k = # K.
x3 = 1⇔ ord(x) divides 3. Hence the kernel only consists of elements whose order
divides 3, and 3 divides 2n − 1 if and only if n is even.
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Let us now separate the case where n is even and the case where n is odd.

If n is odd then 3 does not divide 2n − 1. Hence there are no elements of order 3,
hence k = 1. Hence the map is injective for n odd. Moreover x = 0 goes to 0 under
x −→ x3. So the map f is a bijection of F2n odd.
On the other hand, when n is even 3 divides 2n − 1. Hence there are elements of
order 3 and #K > 1.
In a cyclic group (multiplicatively written) of order n with n ≡ 0 (mod 3), the kernel
of x −→ x3 had order 3. This implies that #K = 3. Hence, every image element of
f is taken 3 times if n is even.
Further, let us find the solutions of y2 + y = x3/F2n for n odd.

We see that if x runs through F2n we get all the elements of F2n as the right hand
side. As for the left hand side, let us observe the map ϕ : y −→ y2 + y. We notice
that ϕ is a linear map.

Proof. Let ϕ : F2n −→ F2n , y 7−→ y2 + y be a map. F2n is a vector space over the
field F2.
Let us show that ϕ is a linear map:

� i) Let a, b ∈ F2n

ϕ(a+ b) = (a+ b)2 + (a+ b)

= ϕ(a) + ϕ(b).

� ii) Let a ∈ F2n .

ϕ(0a) = 0 and ϕ(1a) = ϕ(a).

⇒ ϕ is a linear map.
�

ker(ϕ) = {0, 1}
⇒ ϕ is not injective, so |imϕ| 6= 2n.

im(ϕ) = 2n

2
= 2n−1.

Hence the image in F2n consists of 2n−1 elements. Call this image A. For x in A we
can solve the equation y2 + y = x and we get that it has 2 solutions.
In total there are 2× 2n−1 = 2n solutions. Hence Nn = 2n + 1, for n odd.

This technique is only useful for n odd. As for n even it is impossible to find
the number of solutions with this method. Therefore we need another approach
where we can find all the numbers of solutions.

We tried to find, experimentally, an algebraic number α ∈ C with αᾱ = 2 such that
Nn = 2n + 1 − αn − ᾱn, ∀n ≥ 1. To find this algebraic number, we look at our
solutions on page 6.

We have that N1 = 3, so 3 = 2 + 1− α− ᾱ.
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Moreover ᾱ = 2
α
, so 0 = α + 2

α
.

This means that α is a solution of (X−α)(X−ᾱ) = X2+2 = 0 and hence α =
√
−2

and ᾱ = −
√
−2.

We notice that the formula Nn = 2n + 1 −
√
−2

n − (−
√
−2)n holds for n odd,

as well as for n = 2, n = 4 and n = 6 by inspection. The formula can be checked
for many n. So probably it holds for all n.
Let us proceed to the next example.

3.2 Example 2

We consider the equations y2 + y = x3 + 1 and y2 + y = x3 + x over F2n and let
again Nn = # {(x, y)} : x, y ∈ F2n : y2 + y = x3 + 1}+ 1.

To find the number of solutions of these polynomial equations we will proceed as
before in 3.1.
We try to find an α ∈ C such that Nn = 2n + 1− αn − ᾱn, ∀n ≥ 1.

By inspection, we notice that y2 + y = x3 + 1/F2n has the same number of solutions
as y2 + y = x3/F2n . Let us prove that this is indeed the case.

Proof. We consider y2 + y = x3 over F2n . Moreover, we suppose that we replace x
by x+ 1. Then we have the following.
x3 = x2 · x→ (x2 + 1)(x+ 1) = x3 + x2 + x+ 1.
So the number of solutions of the polynomial equation y2 + y = x3 + 1 is the same
as the same number of solutions as for y2 + y = x3 + x2 + x+ 1.
Further, we have that x3 + x2 + x+ 1 = x3 + (x2 + 1) + (1 + x) + 1.
Now if we replace y by y + x+ 1, we get (y + x+ 1)2 + y + x+ 1 = x3 + 1.

So via (x, y)→ (x+ 1, y + x+ 1) we see that the equation y2 + y = x3 changes into
y2 + y = x3 + 1 and thus has the same number of solutions over F2n for all n.

�

Hence α is the same as in Example 1, so the number of solutions for y2+y = x3+1
over F2n is Nn = 2n + 1−

√
−2

n − (−
√
−2)n, ∀n ≥ 1.

For the equation y2 + y = x3 + x, we calculated N1 = 1, N2 = 5, N3 = 13, N4 = 25
and we observed that with α = 1 + i these numbers, N1, N2, N3 and N4, agree with
2n + 1− αn − ᾱn for n = 1, 2, 3, 4.
The formula can be checked for many n, so probably it holds for all n.
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3.3 Example 3

Consider the polynomial equation y2 + y = x5 + x3 over F2n . Again define
Nn = # {(x, y)} : x, y ∈ F2n : y2 + y = x5 + x3}+ 1.

Experimentally, we find that N1 = 5 and N2 = 5.
To find the numbers of solutions for this equation, one α does not suffice. But in-
stead we have to find α and β such that Nn = 2n + 1−αn− ᾱn− βn− β̄n , ∀n ≥ 1.

Since N1 = 5 and N2 = 5, we have

for n = 1, 5 = 2 + 1− α− ᾱ− β − β̄. (1)
for n = 2, 5 = 22 + 1− α2 − ᾱ2 − β2 − β̄2. (2)

αᾱ = 2 and ββ̄ = 2. Let a = α + ᾱ and b = β + β̄.
Moreover, a2 = α2 + 2αᾱ + ᾱ2 = α2 + ᾱ2 + 4 and b2 = β2 + β̄2 + 4.
From equations (1) and (2) we get

a+ b = −2, a2 + b2 = 8.

This gives us the solutions for a and b:

We have {a, b} = {−1 +
√

3,−1−
√

3}.
So α is a solution of X2 − aX + 2 and β of X2 − bX + 2.
Experimentally we verified Nn = 2n + 1 −

∑
αni + ᾱi

n, i = 1, 2 for five n. The
formula can be verified for many n, so probably it holds for all n.

3.4 Example 4

Consider the equation y3 − y = x4 / F3n and let

Nn = #{(x, y)} : x, y ∈ F3n : y3 − y = x4}+ 1.

For this equation we have

N1 = 4, N2 = 4, N3 = 28, N4 = 28.

We notice that for this equation one α does not suffice to find the number of solutions.
If we had one α, we would have that α (with αᾱ = 3) is a solution of X2 + 3 = 0.
This would imply that α =

√
−3 and ᾱ = −

√
−3.

Now, when we check in the formula we get 13 6= N2. So one α is not enough.

When we try it with α1 and α2 we see that it works:

We get that α1, α2 and their conjugates are the roots of the polynomial

t4 − 3t2 + 9 = (t2 + 3t+ 3)(t2 − 3t+ 3).

Hence Nn = 3n + 1− αn1 − ᾱ1
n − αn2 − ᾱ2

n, ∀n ≥ 1

with α1, α2, ᾱ1, ᾱ2 ∈ {
√

3
2

+ 3
√
−3
2
,
√

3
2
− 3

√
−3
2
, −

√
3
2

+ 3
√
−3
2
, −

√
3
2
− 3

√
−3
2
}.

Experimentally we verified that Nn = 3n + 1 −
∑2

i=1 α
n
i + ᾱni for four n and the

formula can be verified for many n, so probably it holds for all n.
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3.5 Example 5

Finally, we consider the equation y2 + y = x7/F2n . Let again Nn = # {(x, y)} :
x, y ∈ F2n : y2 + y = x7}+ 1.
By experimenting, we get that N1 = 3, N2 = 5 and N3 = 3.

For this equation we find out, that we need in total α1, α2 and α3 such that
Nn = 2n + 1− αn1 − ᾱ1

n − αn2 − ᾱ2
n − αn3 − ᾱ3

n, ∀n ≥ 1.
More precisely we get that α1, α2, α3 and their conjugates are solutions of the
polynomial t6 − 2t3 + 8. Hence

α1, α2, α3, ᾱ1, ᾱ2, ᾱ3 ∈ { 3
√

1 +
√
−7, ζ3

3
√

1 +
√
−7, ζ23

3
√

1 +
√
−7, 3

√
1−
√
−7,

ζ3
3

√
1−
√
−7, ζ23

3

√
1−
√
−7}, ζ3 = e

2π
3
i.

αi is of the form 3
√

1±
√
−7.

The examples above help us to notice that if one considers certain equations
f(x, y) = 0 defined over Fpn then, as one finds by experimentation, one can predict
the number Nn of solutions for all n if one knows Nn for n = 1, 2, . . . , g with some
g.
How many Nn one needs, depends on the equation. For example for y2 + y = xa

over F2, we saw in example 1 that we only need N1 if a = 1 and in example 5 we
saw that we need N1, N2, N3 for a = 7 to find the number of solutions for all n.
Moreover, we also saw in example 3 that we only need N1 and N2 to find Nn ∀n.
So in general, the greater the exponent of x, the more Nn we need to find the number
of solutions. But miraculously, once we know N1, . . . , Ng, one can predict in these
cases Nn for all n.
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4 Conclusion
In this project, we saw that once we found the number of solutions of f(x, y) = 0
for certain f over Fp for a few m (m = 1, 2, . . . ,M) we can predict the number
of solutions of f(x, y) = 0 over Fp for all n. We noticed as well that, the more
’complicated’ the equation was, the more α’s with αᾱ = p we needed.
The subject of curves over finite fields can be found in many other subjects in
mathematics, like for example in coding theory, cryptography, exponential sums,
etc. Curves over finite fields can even be used for a wide field of new researches that
can help other areas of mathematics.
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