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Abstract

In the following, we will take a look at a number of problems appearing in percolation theory.
More precisely, we will investigate site and bond percolation and examine corresponding random
systems, as well as random variables connected to them. Our main goal is to estimate the
dependence on parameters of those random variables in order to predict their behaviour for
parameters that cannot be handled well computationally.

We are also going to see that there are some questions about percolation theory that are even
computationally hard to grasp and that we were therefore not able to answer well.

Note that even though our main goal is to obtain experimental results, we take our time to define
the objects we are working with rigorously. This allows us to formulate the questions we are
interested in in a formal and precise way.
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1 Site percolation

In this chapter, we will take a look at site percolation. Let us define the base objects we are
going to be working with. For this, fix n ∈ N≥1.

Definition 1. A system (of sites) is defined to be a matrix A = (ai,j) ∈Mn×n({0, 2}). We say
that n is the size of A.

Remark 2. For simplicity, we will write "system" instead of "system of sites" throughout this
chapter.

Interpretation 3. A system A = (ai,j) of size n can be graphically interpreted: Draw a grid of
size n by n. Each square of the grid is situated in some row i and some column j. If ai,j = 0,
leave the square blank. If ai,j = 2, fill it black.

Take for instance the system

A =


2 0 0 2 0
0 2 2 2 0
0 0 0 0 0
2 0 0 0 2
2 0 2 0 2


of size n = 5. We can interpret A graphically as follows:

Definition 4. Let A be a system of size n. We will now define F (A) = (bi,j) ∈Mn×n({0, 1, 2})
by the following rules:

(i) ∀ 1 ≤ i, j ≤ n : ai,j = 2 ⇐⇒ bi,j = 2,

(ii) ∀ 1 ≤ j ≤ n : a1,j = 0 ⇐⇒ b1,j = 1,

(iii) ∀ 2 ≤ i ≤ n, 1 ≤ j ≤ n, ai,j = 0 : bi,j = 1 ⇐⇒ (bi−1,j = 1 or bi,j−1 = 1 or bi,j+1 = 1),

(iv) #{(i, j) ∈ {1, . . . , n}2 : bi,j = 1} is minimal.

A filled system (of sites) is defined to be a matrix F (A) for some system A.

The elements of A and F (A) are called sites. A site is open if it equals 0, closed if it equals 2,
and filled if it equals 1.
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Remark 5. The condition "bi,j−1 = 1" in (iii) is interpreted as "false" if j = 1. A similar remark
holds for the last condition when j = n.

Interpretation 6. Let B = (bi,j) be a filled system of size n. Reconsider a square in an n by n
grid situated in row i and column j. If bi,j = 0, leave the square blank. If bi,j = 1, fill it blue. If
bi,j = 2, fill it black.

We shall consider the following system of size n = 5:

A =


2 0 0 0 2
0 2 2 0 0
2 2 0 2 0
2 2 0 0 0
0 2 2 2 2

 .

Then

F (A) =


2 1 1 1 2
0 2 2 1 1
2 2 0 2 1
2 2 1 1 1
0 2 2 2 2

 .

Graphically, as described above, we can interpret A (left) and F (A) (right) as follows:

We can think of F (A) as the result of A being filled with water from the top, and flowing laterally
and downwards through open sites.

Examples 7. To clarify the above interpretation of a filled system, we will take a look at two
more examples of systems A of size n = 10 and the corresponding filled systems F (A):

A F (A)

Definition 8. Let A be a system of size n and F (A) = (bi,j) the corresponding filled system. A
and F (A) are said to percolate, if bn,j = 1 for some 1 ≤ j ≤ n.

2



Interpretation 9. Graphically, a system A percolates iff. one of the bottom squares is coloured
blue in the graphical representation of F (A). Hence, if A is filled with water from the top, it
percolates iff. the water reaches the bottom.

Examples 10. In the examples 7, the first system percolates, while the second one doesn’t.

Let us now consider random systems.

Definition 11. For a fixed probability 0 ≤ p ≤ 1, let ai,j(p), 1 ≤ i, j ≤ n, be independent
random variables satisfying

P{ai,j = 0} = p = 1− P{ai,j = 2}.

Then

An(p) :=

 a1,1(p) . . . a1,n(p)
...

. . .
...

an,1(p) · · · an,n(p)


is called a random system (of sites). We say that n is the size of An(p).

Examples 12. We shall take a look at some random systems of size n = 10.

A10

(
1
4

)
F
(
A10

(
1
4

))

A10

(
1
2

)
F
(
A10

(
1
2

))

A10

(
3
4

)
F
(
A10

(
3
4

))

Before focusing on our first problem, we will restate the Strong Law of Large Numbers (SLLN)
that will repeatedly be used to get experimental results to our questions.
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Theorem 13 (SLLN). Let (Xk)k≥1 be independent and identically distributed random variables
with expected value µ ∈ R. For n ≥ 1, let X̄n := 1

n

∑n
k=1Xk. Then

P
{

lim
n→+∞

X̄n = µ

}
= 1.

1.1 Passage time

Definition 14. Let F (A) = (bi,j) be a percolating system of size n. A passage through A (or
F (A)) of length m ∈ N is a family ((i1, j1), . . . , (im, jm)), such that

(i) ∀ 1 ≤ k ≤ m : ik, jk ∈ {1, . . . , n},

(ii) ∀ 1 ≤ k ≤ m− 1 : |ik+1 − ik|+ |jk+1 − jk| = 1,

(iii) ∀1 ≤ k ≤ m− 1 : ik ≤ ik+1,

(iv) ∀ 1 ≤ k ≤ m : bik,jk = 1,

(v) i1 = 1 and im = n.

We call P(A) := min{m ∈ N : ∃ a passage of length m through A} the passage time of A (or
F (A)).

Remark 15. The condition (ii) means that (ik, jk) and (ik+1, jk+1) are neighbouring vertices
of N2. As F (A) is percolating, the passage time of A exists. Moreover, conditions (ii) and (v)
imply that n ≤ P(A) ≤ n2.

Interpretation 16. Graphically, the passage time of a percolation system F (A) is the minimum
number of filled sites you need to traverse to get from the top to the bottom row of F (A).

Examples 17. We will take a look at passages through systems F (A).

(i) Let us consider the following percolating system F (A) of size n = 10, graphically given by

One passage through F (A) is the family

((1, 6), (2, 6), (2, 5), (3, 5), (4, 5), (4, 4), (5, 4), (6, 4), (7, 4), (8, 4), (8, 5), (8.6), (9, 6), (10, 6))

of length 14, graphically given by the following red-coloured sites:
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A shorter passage is given by

whose length equals 12. One easily checks that there is no strictly shorter passage through
A. Hence, the passage time of A equals P(A) = 12.

(ii) Here is an example of a percolating system F (A) of size n = 80, where one of the passages
with shortest length has again been marked in red:

The passage time of this system equals P(A) = 97.

Question. Let n ≥ 1 and 0 ≤ p ≤ 1. Knowing that a random system An(p) percolates, what is
the average value of its passage time?

Mathematically, if the probability P in definition 11 is defined on a σ-algebra of some probability
space Ω, we set Ω′ := {ω ∈ Ω : An(p)(ω) percolates}. For the rest of this section, let us replace
P by the conditional probability P ( · |Ω′). In that case, we are interested in the behaviour of the
expected value of the passage time An(p), i.e. in

Pn(p) := E(P(An(p)).

Answer. We have
Pn(p) =

∑
k≥0

k · P {P(An(p)) = k} .
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By remark 15, we can reduce this sum as follows:

Pn(p) =
∑

n≤k≤n2

k · P {P(An(p)) = k} .

However, determining the exact probabilities that appear in this sum is difficult for n great.

Thus, we will estimate Pn(p) using Theorem 13: We compute, independently, a large number k
of random systems An(p), calculate their passage time, then take the corresponding average.
The obtained result will be a good approximation of Pn(p).

Using Sage, we are able to estimate Pn(p) for 1 ≤ n ≤ 30, p fixed, and represent the results graph-
ically: The values on the x-axis stand for n, the values on the y-axis represent the approximated
value of Pn(p).

Here is an example for p = 0.6 and k = 100:

Graphically, we observe that Pn(p) can be approximated by apn+bp for some ap, bp ∈ R depending
on p. Using the "method of least squares," we can estimate, again using Sage, such ap, bp based
on the obtained approximations for P1(p), ..., P30(p).

In the following, we will give some examples for such estimates. We will only list the value of
ap, as bn has no asymptotic influence. Note that in all 4 cases, we choose k = 100.

p = 0.6, ap ≈ 1.45: p = 0.7, ap ≈ 1.22:
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p = 0.8, ap ≈ 1.08: p = 0.9, ap ≈ 1.01:

Remark 18. We can make a number of remarks and observations concerning our experimental
results.

(i) Due to computational difficulty, we are not able to give the corresponding graph for p ≤ 0.5.
The next section will deal in more detail with the cause of this problem.

(ii) Observe that
∀ 0 ≤ p ≤ 1 : ap ≥ 1.

This makes sense, because for n great, we have

n ≤ Pn(p) ≈ apn+ bp ≈ apn,

where the first inequality is due to P(An(p)) ≥ n (see remark 15).

(iii) Moreover, notice that Pn(1) = n = 1 · n + 0, hence a1 = 1. Thus, it makes sense that
ap → 1 for p→ 1.

(iv) The approximation Pn(p) ≈ apn+ bp is useful to estimate the passage time for percolating
systems of large size n without explicitly computing it. As we can graphically deduce, the
approximation is better for p closer to 1.

(v) Lastly, it is natural to wonder about a clearer dependence of ap on p. Unfortunately, as the
estimation of ap is already very computationally heavy, it is even harder to approximate ap
for a great number of different values for p. Nonetheless, we shall present a graph depicting
a rough estimate of ap in function of 0.5 ≤ p ≤ 0.92.

Every approximation of ap has been computed similarly to above: First, estimate P1(p),
..., P20(p) by calculating the average passage time of k = 50 independent random systems
respectively, then use the "method of least squares" to approximate ap.
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One could delve further into this estimation and find a function f : [0, 1] → R satisfying
f(p) ≈ ap for 0 ≤ p ≤ 1, for example x 7→ f(x) = αe−βx

2
+ 1 for some α, β ∈ R, β > 0.

Another question arises then: Do we have the symmetric behaviour

ap = a1−p

for 0 ≤ p ≤ 1? This would imply ap ≈ 1 for 0 < p ≈ 0, hence Pn(p) ≈ n for 0 < p ≈ 0.
This would make sense, as for p very small, we would expect the length of the shortest
passage through An(p) to be close to n (otherwise a great number of sites would be filled,
which is improbable for p ≈ 0).

The equality ap = a1−p would also imply that the average value of the passage time satisfies

Pn(p) ≈ Pn(1− p) for n ≥ 1, p ∈ [0, 1].

A good first step to investigate this guess is to get exact results for small n. We might
want to return to this at a later point in time.

1.2 Percolation probability

In this section, we will analyse the behaviour of the probability that a random system An(p)
percolates, called the percolation probability, in dependence of its size n and the probability p.
For n small, we can find exact expressions for this probability.

Definition 19. For n ≥ 1 and 0 ≤ p ≤ 1, we call

qn(p) := P{An(p) is percolating}

the percolation probability of the random system An(p).

Proposition 20. The percolation probability qn(p) for 1 ≤ n ≤ 4 and 0 ≤ p ≤ 1 is given by the
following table:

n qn(p)
1 p
2 −p4 + 2p2

3 p9 − 6p8 + 14p7 − 9p6 − 6p5 + 4p4 + 3p3

4 p16 − 20p14 + 44p13 + 10p12 − 108p11 + 66p10 + 48p9 − 22p8 − 28p7 − 6p6 + 12p5 + 4p4

Proof. For n ≥ 1 and 0 ≤ p ≤ 1, we can rewrite the percolation probability as follows:

qn(p)
def.
= P{An(p) is percolating}
=

∑
A∈Mn×n({0,2})
A is percolating

P(An(p) = A). (1.1)

Thus, if we generate all the percolating systems A of size n, compute the respective probabilities
for An(p) = A, then sum them up, we end up with qn(p). Those tasks will be given to a computer
program.

8



Note that in total, there are
#Mn×n({0, 2}) = 2n

2

systems to consider. The number of filled systems is the same (as there is a 1-to-1-correspondence
between the set of systems and the set of filled systems).

Because of this high number of systems to analyse, we shall give the proof for n = 2 only.
The cases n = 3, 4 are treated analogously, and the case n = 1 is trivial (as there is only one
percolating system of size 1).

Hence, let us fix n = 2. We can graphically give the 2n
2

= 22
2

= 16 filled systems F (A):

Percolating systems

Non-percolating systems

For a fixed percolating system A of size n with m(A) open sites, we have n2−m(A) closed sites.
Remember that p is the probability that a given site is open, and 1− p is the probability that a
given site is closed. Hence

P{An(p) = A} = pm(A) · (1− p)n2−m(A). (1.2)

Finally, we obtain

q2(p)
(1.1)
=

∑
A∈M2×2({0,2})
A is percolating

P(A2(p) = A)

(1.2)
=

∑
A∈M2×2({0,2})
A is percolating

pm(A) · (1− p)22−m(A)

graph
= p4 + p3(1− p)1 + p3(1− p)1 + p3(1− p)1 + p2(1− p)2 + p3(1− p)1 + p2(1− p)2

= −p4 + 2p2,

as was stated in the table above.

Remark 21. We can give some remarks and observations concerning the previous proposition.

(i) Similarly to what we did for n = 2 in above proof, we can give all the 22
3

= 256 filled
systems of size n = 3:
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Percolating systems

Non-percolating systems

(ii) For n = 4, one would already need to consider 22
4
> 65 000 systems, that we will therefore

not depict.

(iii) For n ≥ 5, the time needed to compute an exact expression for qn(p) is elevated. Therefore,
we decided to stop at n = 4.

(iv) By 1.2, P{An(p) = A} is a polynomial in p of degree n2. Therefore, qn(p) is by 1.1 a sum of
polynomials in p of degree n2, hence again a polynomial in p (of degree less than or equal
to n2).

(v) The table in the proposition 20 suggests that the degree of the polynomial qn(p) equals n2

and that the coefficient of pn2 equals ±1. However, we were not able to prove this claim
in general.

Our next goal is to find 0 ≤ p ≤ 1 such that the probability that a system An(p) percolates is
exactly one half.

Proposition 22. For n ≥ 1, there exists a unique τn ∈]0, 1[ such that qn(τn) = 1
2 .

10



Proof. The function qn : [0, 1]→ R satisfies the following properties:

• qn is continuous (as it is a polynomial by (iv) of the previous remark),

• qn(0) = 0 (a system with no open sites cannot percolate),

• qn(1) = 1 (a system with no closed sites always percolates),

• qn is injective (if 0 ≤ p1 < p2 ≤ 1, then we expect qn(p1) < qn(p2), as a system with more
open sites should be more likely to percolate).

By a direct consequence of the Intermediate Value Theorem, qn must attain the value 1
2 for some

τn ∈]0, 1[. Additionally, τn is unique, because qn is injective.

Definition 23. For n ≥ 1, the unique probability τn of proposition 22 will be called the perco-
lation border of An(·).

Examples 24. We shall examine τn , n = 1, 2, 3, 4, using proposition 20:

(i) n = 1: We have q1(p) = p for 0 ≤ p ≤ 1. Hence τ1 = 1
2 = 0.5.

(ii) n = 2: We have q2(p) = −p4 + 2p2, thus we are interested in solving

−p4 + 2p2 =
1

2

for p ∈]0, 1[. We claim that p =
√

1− 1√
2
≈ 0.541196100 is a solution. Indeed:

−

√
1− 1√

2

4

+2

√
1− 1√

2

2

= −
(

1− 1√
2

)2

+2

(
1− 1√

2

)
= −1+

2√
2
− 1

2
+2− 2√

2
=

1

2
.

By proposition 22, this p ∈]0, 1[ is unique. Hence τ2 =
√

1− 1√
2
≈ 0.541196100.

(iii) n = 3: In this case, q3(p) is a polynomial in p of degree 9 > 4. As there is no general
formula to solve equations of degree greater than 4, we shall approximate the solution
p ∈]0, 1[ to the equation q3(p) = 1

2 . Using Sage, we obtain the value p ≈ 0.559296316. This
is our estimation for the value of τ3.

(iv) n = 4: Similar to the case n = 3, we find τ4 ≈ 0.569724134.

Remark 25. Considering the examples above, we can make the following observations:

(i) τ1 < τ2 < τ3 < τ4. Hence, we expect (τn)n≥1 to be an increasing sequence of real numbers.
This is only an assumption. We were not able to prove this claim.

(ii) (τn)n≥1 is bounded from above (by 1). Hence, if we assume that (τn)n≥1 is an increasing
sequence, we can immediately conclude that (τn)n≥1 must be converging to some τ ∈ [0, 1].

Definition 26. It it exists, we call
τ := lim

n→+∞
τn

the percolation threshold (of site percolation).
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Question. Can we get experimental indications for the existence of the percolation threshold
τ? If so, how can it be estimated?

Answer. Firstly, let us take a look at how we can estimate qn(p). For this, fix n, k ≥ 1 and
p ∈ [0, 1]. Let Aln(p), 1 ≤ l ≤ k, be k independent random systems of size n. Let

Xl :=

{
1, if Aln(p) percolates
0, otherwise.

Then the expected value of Xl is given by

E(Xl)
def.
= E

(
1{Al

n(p) percolates}

)
= P{Aln(p) percolates} def.

= qn(p),

where "1" denotes the indicator function.

By theorem 13, 1
k

∑k
l=1Xl is a good estimation for qn(p) for k great. Based on this, we will

compute k random systems An(p) independently; if k0 of them percolate, then k0
k is a good

estimation for qn(p).

Now, this estimation for qn(p) can be done for varying p. In what follows, we will consider m ≥ 2
different values of p, uniformly distributed in the interval [0.3, 0.9].

Here is an example for n = 15, k = 500 and m = 50. The values on the x-axis represent the
values for p, those on the y-axis stand for our estimations of qn(p) that have been computed as
explained above.

An imprecise observation suggests that the percolation border τn lies around 0.6. As we assume
that the sequence (τn)n≥1 converges, this would already be a rough estimate for the percolation
threshold τ .

Next, we will consider the same kind of graph, with two additions:

• We connect the points of the graph to get a better feeling for the curve,

• We consider the greatest considered p such that our estimation for qn(p) lies below 1
2 , as

well as the smallest considered p such that qn(p) lies above 1
2 . Then we take the average

value of both, to estimate τn.

This yields the following graph, again using n = 15, k = 500 and m = 50, where the vertical red
line is given by the approximated value for τn:
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Unfortunately, the precision of this method directly depends on m, since the obtained estimation
of τn is the average of two consecutive probabilities, hence of the form(

0.3 + i
m−1

)
+
(

0.3 + i+1
m−1

)
2

= 0.3 +
1

2m− 2
+

i

m− 1
.

Thus, even if our estimations for qn(p) were perfect (which is clearly not the case), we would
still systematically commit an average mistake of around 1

2m . Hence, in above case, we expect
an average error of at least 1

2·50 = 0.01.

To get a better estimation, we will take a look at the method of curve fitting. Because of its
graph, a first choice would be the cumulative distribution function for a normally distributed
random variable, which in general has the form

Gµ,σ :

{
R → R
x 7→ 1

2

[
1 + erf

(
x−µ
σ
√
2

)]
for µ ∈ R and σ > 0, as well as the graph

However, it is hard to work with this family of functions, since it is based on the error function
erf. Therefore, we decided to consider a different family of functions, namely

Fr,a :

{
R → R
x 7→ 1

1+er(x−a)

for r, a ∈ R. A graph of such a function is given directly below, similar to the one above:
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Note that a function that would perfectly fit into our situation needed to satisfy F (1) = qn(1) = 1.
Unfortunately, we have Gµ,σ, Fr,a < 1, so in particular Gµ,σ(1), Fr,a(1) < 1. Nonetheless, we will
see that choosing the family of curves Fr,a will yield good estimates for τn and τ .

We should keep in mind the reason why we try to estimate our data points by a smooth curve:
We want to approximate p ∈ [0, 1] such that qn(p) = 1

2 . Therefore, after determination of the
parameters r, a ∈ R, we are interested in x ∈ [0, 1] such that Fr,a(x) = 1

2 :

Fr,a(x) =
1

2

def. Fr,a⇐⇒ 1

1 + er(x−a)
=

1

2

⇐⇒ 1 + er(x−a) = 2

⇐⇒ er(x−a) = 1

⇐⇒ r = 0 or x = a.

Choosing r = 0 would give us the constant function Fr,a = 1
2 . This case is clearly to be excluded,

as it would fit our data points very poorly. Therefore, our estimation for τn is given by the
parameter a. If n is great, the percolation threshold τ is close to τn (as we assume that the
sequence of percolation borders converges to τ). This gives us the following estimation:

τ ≈ a.

In the graphs below, the points’ x-coordinates are probabilities p, while their y-coordinates are
estimates for qn(p), found as described at the beginning of this answer. The drawn curve is the
graph of the function Fr,a, where the values for r, a ∈ R were found by using the method of curve
fitting ("least squares"). The red line is given by the points (a, y), y ∈ R. The given values for
n, k and m have the same meaning as for the previous graphs.

n = 15, k = 400,m = 50: n = 20, k = 400,m = 50:

Seeing that both approximations are close to another even though they correspond to different
choices of n, we assume that the percolation threshold also lies in this range, which yields the
approximation

0.592 ≤ τ ≤ 0.593.

A comparison with other experiments that also estimated τ found that τ ≈ 0.5927, showing that
our approximation is acceptable.
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2 Bond percolation

In this chapter, we will consider bond percolation. Note that to avoid confusion, we will use
the word "conduct" instead of "percolate" for the systems that we examine in this chapter (see
definition 36). Let us now define the base objects we are going to be working with. Again, n ≥ 1
will always denote a natural number.

Notation. (i) We use the notation [n]2 := {0, . . . , n}2. An element V ∈ [n]2 is called a vertex.

(ii) ‖ · ‖ shall denote the Euclidean norm of R2.

Definition 27. A system (of bonds) is a set A ⊆ [n]22 such that ∀(V1, V2) ∈ A:

(i) ‖V1 − V2‖ = 1,

(ii) ‖V1‖ < ‖V2‖.

We say that n is the size of A. The elements of A are called bonds of A .

Remark 28. For simplicity, we will write "system" instead of "system of bonds" throughout
this chapter.

Interpretation 29. As usual, the objects of the previous definition can easily be interpreted
graphically. Let A be a system of size n. A bond (V1, V2) of A shall be interpreted as a
line segment from V1 to V2. Condition (i) ensures that the points V1 and V2 are neighbouring
vertices of N2. Condition (ii) implies that a line segment does not appear twice in A (because

(V1, V2) ∈ A
(ii)

=⇒ (V2, V1) 6∈ A).

Examples 30. Here is an example of a system of bonds A of size n = 3, given by

A={((0,0),(0,1)),((0,1),(0,2)),((1,0),(2,0)),((2,0),(2,1)),((2,2),(3,2)),((3,2),(3,3)),((1,3),(2,3))}.

Graphically, it can be depicted by marking the vertices of [n]22 = {0, 1, 2, 3}2; then, for all the
bonds (V1, V2) of A, one draws a line segment from V1 to V2 as shown in the following graph:

Note that we will always depict the systems of bonds in such a way that the positive direction
of the y-axis is downwards. The origin 0 ∈ R2 is therefore always in the upper left corner.

Different systems of respective sizes n = 10, 30, 50 are shown below:
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Definition 31. Let A be a system of size n. A chain of bonds of A of length m ∈ N is an
m-tuple (V1, . . . , Vm) such that

(i) ∀ 1 ≤ i ≤ m− 1 : (Vi, Vi+1) is a bond of A or (Vi+1, Vi) is a bond of A,

(ii) #{V1, . . . , Vm} = m.

Remark 32. Condition (ii) ensures that no vertex Vi is contained twice in the m-tuple.

Definition 33. Let A be a system of size n and V1 = (a, b) ∈ [n]2 a vertex. Then V1 is said
to be energized via A if there exists a vertex V2 = (c, 0) ∈ [n]2 and a chain of bonds of A that
contains both V1 and V2. Moreover, a bond (W1,W2) ∈ A is said to be energized via A if W1 is
energized via A or W2 is energized via A.

Interpretation 34. The previous definition can easily be understood graphically. Informally
speaking, if we depict a system of bonds A, a bond of A (respectively a vertex) is energized iff.
it can be connected to a vertex of the top row via drawn lines (i.e. via the bonds of A).

In the following, energized bonds of a system A will always be represented in the colour red. We
say that this is the representation of the energized A.

The idea behind this is the following: All the vertices (0, 0), . . . , (n, 0) of the first row are con-
nected to a power source. The bonds of a system A of size n are interpreted as wire. A vertex
(respectively a bond) is energized if it can, via wire, be connected to the power source.

Examples 35. Below, we show some systems of bonds A of respective sizes n = 15, 15, 20 on
the left, and the corresponding representation of the energized A on the right.

A Energized A
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Lastly, below is a graph of an energized system of size n = 50:

Definition 36. Let A be a system of size n. The conduction height of A is defined as

h(A) := max{0 ≤ b ≤ n | ∃ 0 ≤ a ≤ n : (a, b) is energized via A}.

A is said to conduct if h(A) = n.

Examples 37. In the examples 35, we have respective conduction heights of h(A) = 13, 6, 20, 50.
The first two systems do not conduct, the last two do.

Definition 38. Fix n ≥ 1 and p ∈ [0, 1]. Let

Bn :=
{

(V1, V2) ∈ [n]22 : ‖V1 − V2‖ = 1 and ‖V1‖ < ‖V2‖
}
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be the set of all possible bonds that can appear in a system of bonds of size n. Moreover, let
aW , W ∈ Bn, be independent random variables satisfying

P{aW = 1} = p = 1− P{aW = 0}.

Lastly, let bW , W ∈ Bn, be sets defined by

bW :=

{
{W}, if aW = 1

∅, otherwise.

Then
An(p) :=

⋃
W∈Bn

bW

is called a random system (of bonds) of size n.

Remark 39. If the random variables aW are defined on some probability space Ω, then by
definition, An(p)(ω) is indeed a system of bonds of size n for all ω ∈ Ω. Informally speaking, we
can graphically think of An(p) as a system of size n, where the probability that a given bond is
drawn equals p.

Examples 40. For clarification, we shall give some examples for random systems An(p). In the
following, we fix n = 15 and draw some energized systems An(p) for p = 1

4 ,
1
2 ,

3
4 respectively.

Notice that the greater p is, the more bonds the system has (as expected).

2.1 Conduction height

Definition 41. For n ≥ 1 and 0 ≤ p ≤ 1, we call

hn(p) := E{h(An(p))}

the average conduction height of An(p).

Question. How does the average conduction height hn(p) depend on n and p?

Answer. We can approximate hn(p) as follows: Generate an elevated number k ≥ 1 of inde-
pendent random systems An(p), calculate their conduction height, then take the corresponding
average of those k values. Theorem 13 ensures that the result will be a good estimation for hn(p).

In the following graphs, we represent the approximated points (p, h1(p)), ..., (p, hn(p)) for fixed
0 ≤ p ≤ 1, n ≥ 1 (i.e. represent hm(p) in dependence of m for 1 ≤ m ≤ n).
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n = 15, k = 3 000, p = 0.25: n = 15, k = 3 000, p = 0.15:

As we can see, the curves have a high slope for k small. The slope then gets smaller as k increases.
Based on this observation, we try to find a fitting curve, corresponding to a map

fα,β,γ :

{
R → R
x 7→ αxβ + γ

for α, β, γ ∈ R. The following graphs depict estimated points (p, h1(p)), . . . , (p, hn(p)) for fixed
p and n, but additionally represent the curve of a function fαp,βp,γp , where the three parameters
have been determined using the "method of least squares."

In addition to the values of n, k, p, we will also list the corresponding determined value of βp as
it is, asymptotically speaking, the most relevant parameter for fαp,βp,γp .

n = 15, k = 3 000, p = 0.15, βp ≈ 0.2766: n = 15, k = 3 000, p = 0.25, βp ≈ 0.3027:

n = 15, k = 3 000, p = 0.35, βp ≈ 0.3559: n = 15, k = 3 000, p = 0.45, βp ≈ 0.7985:
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Remark 42. We can make a number of observations and remarks concerning the above graphs.

(i) An(1) is a conducting system, hence its conduction height equals n. Thus we have hn(1) =
n = 1 · n1 + 0, so β1 = 1.

(ii) For all 0 ≤ p ≤ 1, we have βp ≤ 1. This makes sense, otherwise we have for n great:

1
(ii)
=
hn(1)

n
≥ hn(p)

n
≈ αpnβp−1 +

γp
n
→ +∞, as n→ +∞,

which is a contradiction. We have used that αp > 0.

(iii) The approximation hn(p) ≈ αpn
βp + γp is useful to estimate the conduction height of a

system An(p) for n great, without explicitly computing it.

(iv) One might be interested in the dependence of βp on the probability p. Unfortunately, the
estimations of βp have already been computationally heavy. Therefore, approximating βp
for a greater number of different values for p will take a long time. We tried estimating the
values of βp by computing fewer random systems (i.e. choosing k smaller). However, this
yielded very rough approximations. The graph of the estimated points (p, βp) was therefore
not insightful. We did not include it.

2.2 Conduction probability

This section covers questions similar to those in section 1.2. We will give less explanations,
as most ideas are analogous to the mentioned section above. Moreover, as the systems of this
chapter are more complicated to work with, the results we give are often less precise to those of
the previous chapter.

Definition 43. For n ≥ 1 and 0 ≤ p ≤ 1, we call

qn(p) := P{An(p) conducts}

the conduction probability of the random system An(p).

Proposition 44. For 0 ≤ p ≤ 1, we have

q1(p) = −p2 + 2p

and
q2(p) = 4p8 − 18p7 + 27p6 − 10p5 − 9p4 + 4p3 + 3p2.

Proof. The idea is the same as in the proof of proposition 20.

Remark 45. One can easily argue, as done in remark 21, that qn(p) is a polynomial in p whose
degree is is less than or equal to 2n(n+1). The previous proposition shows that equality already
fails for n = 2. This is different to what we saw in section 1.2.

Moreover, the computation time for q3(p) was already very high. We were therefore not able to
give exact results for τn, n ≥ 3.

Proposition 46. For n ≥ 1, there exists a unique τn ∈]0, 1[ such that qn(τn) = 1
2 .

Proof. Similar to the proof of proposition 22.

20



Definition 47. For n ≥ 1, the unique probability τn of proposition 46 will be called the con-
duction border of An(·).

Examples 48. We shall estimate the conduction borders τ1, τ2 using proposition 44:

(i) n = 1: As in the previous chapter, one can show τ1 = 1− 1√
2
≈ 0.292893219.

(ii) n = 2: One can estimate τ2 ≈ 0.406779457.

Definition 49. If it exists, we call
τ := lim

n→+∞
τn

the conduction threshold.

Question. Can we get experimental indications for the existence of the conduction threshold
τ? If so, how can it be estimated?

Answer. We can estimate τn by using the method of curve fitting, similar to what we did in
the previous chapter. We choose the family of functions Fr,a : R → R again, and obtain the
following graphs.

n = 12, k = 200,m = 30: n = 15, k = 200,m = 30:

Other values for n yielded similar results. We therefore approximate

0.494 ≤ τ ≤ 0.496.
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