
Pseudo-random numbers

Anne Fisch

Maxime Rubio

Yannick Verbeelen

supervised by

Dr. George Kerchev

Prof. Gabor Wiese

Prof. Ivan Nourdin

Experimental Mathematics 3
University of Luxembourg

Faculty of Science, Technology and Medicine
Academic Year 2020-2021 (Summer Semester)

Abstract

The goal of this project is to get to know the notions of pseudo-random

numbers as well as the basics of statistical tests and to apply those tests

to pseudo-random number generators. The focus of this project will

lie on testing a generator invented in 2006 by Alain Schumacher, who

also acted as an external expert.

1

Contents

1 Introduction 3

1.1 Randomness . 3
1.2 Pseudo-Random Number Generators 4
1.3 Testing . 5

1.3.1 Statistical Testing . 5

2 Statistical Tests 6

2.1 Tests for Distribution . 6
2.1.1 The Chi-Squared Test 7
2.1.2 The Kolmogorov-Smirnov Test 9
2.1.3 Cramér-von Mises Test 10

2.2 Tests for Independence . 10
2.2.1 The Runs Test . 10
2.2.2 Spearman's Rank Correlation Coe�cient 12

3 The AHS random number generator 16

3.1 Transformation of AHS sequence 16
3.2 Testing the AHS-RNG . 17
3.3 Testing the LCG . 18
3.4 Comparing the AHS generator to the LCG 20
3.5 Test Suites . 21

3.5.1 TestU01 . 21

4 Conclusion 24

Appendices 26

A Code 26

A.1 Chi-square Program . 26
A.2 Kolmogorov-Smirnov Program 28
A.3 Linear Congruent Generator Program 30
A.4 Testing Program . 31
A.5 TestU01-AHS-generator . 32
A.6 TestU01-LCG-generator . 38

2

1 Introduction

1.1 Randomness

What exactly is randomness? Everybody knows what it is and we get con-
fronted by it everyday but it is actually really hard to de�ne it in a mathe-
matical sense.
For example, taking two sequences of elements from {0, 1}:

• 1100110011

• 0100101110

Most people would agree that the second-one is more "random" than the
�rst, even tough both sequences have a probability of 1

210
of occurring.

This comes from the fact that we can probably predict the next element of
the �rst sequence to be 0 while there is no way of telling what will be the
next element of the second one.
Additionally, relying on the predictability of the next element in a sequence,
brings a problem of subjectivity since it is also really hard to de�ne the limit
where the predictability is obvious enough.
For example, taking the following sequence:

28; 448; 298; 149; 2348; 2234; 1117; 17872

Some people might recognize that a certain pattern has been used (multiply-
ing by 16, subtracting 150 and dividing by 2, then starting again) and would
predict the next number to be 17872− 150 = 17722, but this will probably
not be the case for everybody.
This is the reason why we often rely on physical events to simulate ran-
domness, for example �ipping a coin or rolling a dice. Using coin �ipping,
it would be possible to randomly obtain our very �rst sequence by setting
Tails = 1 and Head = 0. It would not be probable but still possible.

However, this method of simulating randomness has quite a lot of disadvan-
tages for areas where huge amounts of random numbers are needed (cryp-
tocurrency, statistics, etc.). For one they are very slow at producing big
sequences. Imagine �ipping a coin millions of times just to get one random
sequence. That is why using computers will probably be the better choice.

However, computers are deterministic as their actions are determined by a
prescribed set of instructions, so how could it produce a random sequence? In
some instances, an extra piece of hardware can allow a computer to generate
random sequences from physical events, such as with a Geiger counter.
This however is again not very fast and also does not allow the reproduction
of the same sequence which can in some cases be really practical for example

3

when testing a program.
This is where pseudo-random number generators step in.

1.2 Pseudo-Random Number Generators

Pseudo-random number generators (PRNG), as their name suggests, are al-
gorithms that generate sequences that seem random by using mathematical
formulas or even precalculated tables.
In most applications using those sequences is good enough and they do not
bring the disadvantages of true random number generators (TRNG) already
mentioned above. They are more e�cient than true random number gener-
ators and since they are deterministic, one can easily reproduce the exact
same sequences when needed.

A well-known example of a PRNG is the linear congruential generator (LCG)
which works as follows:
We de�ne the generator by selecting the four integers:

� the modulus m; with m > 0

� the multiplier a; with 0 ≤ a < m

� the increment c; with 0 ≤ c < m

� the seed x0; with 0 ≤ x0 < m

The generated sequence is then de�ned recursively: xi+1 = (axi+c) mod(m)
For example, for m = 7; a = 3; c = 5 and x0 = 2 we get:

2; 4; 3; 0; 5; 6; 2; 4; 3; 0

Of course, once an integer reappears the sequence is just going to cycle
through the same subsequence. The length of this subsequence is called the
period, in this case we have a sequence of period 6. Of course, this sequence
does not really seem random as the period is really small.
In general, for linear congruential generators the period will always be at
most m, thus a generator with a small modulus will not do a great job at
generating long pseudo-random sequences.

There exists a multitude of other PRNGs like the Middle-Square Algorithm,
which takes the square of a four-digit number, extracts the middle four digits
and continues with the same procedure leaving us with a sequence of num-
bers between 0 and 9999.
However we will focus on the AHS number generator (named after its in-
ventor Alain H. Schumacher), which we will introduce later on, and on

4

a commonly used linear congruential generator de�ned by the following pa-
rameters: m = 232; a = 1664525; c = 1013904223;x0 = 0.

The period is only one of the numerous factors one needs to consider before
judging or comparing PRNGs. Other factors are for example the distribu-
tion of the generated numbers or the independence between elements and
subsequences.
For this reason, a lot of tests for PRNGs and their generated sequences exist
and need to be applied before choosing which one suits the situation the
best.

1.3 Testing

There exist two types of tests:

� Statistical tests are applied on sequences and do not need any informa-
tion about how they were generated.

� Theoretical tests are applied on the generator itself as they do not need
a generated sequence.

In this project, we will set our focus on statistical tests. An important
notion is that in a few cases, a sequence generated by a TRNG can seem
non-random (for example in section 1.1 where the very �rst sequence could
possibly be obtained by coin �ipping). So pseudo-random sequences can in
some situations appear more random than real random sequences.
Thus, statistical tests can sometimes deceive us and for that reason it is
crucial to understand that the passing of a test only comforts us that a
sequence is random but never assures that it really is.
This is why it is important to apply a lot of tests on a sequence before making
any assumptions, the more tests it passes, the more con�dence we can have
that it is random.

1.3.1 Statistical Testing

Statistical tests are used to verify if enough evidence is given to reject a
certain hypothesis, called the null hypothesis, denoted by H0. Let us have
the null hypothesis be "H0 : the sequence is random" as an example for
comprehension in this section.
For each test a certain statistic, relevant to the randomness, is analysed to
determine if H0 is rejected or not, i.e. to determine if the randomness is
rejected. The null hypothesis is never accepted since, as explained before,
the passing of a test does not guarantee the randomness but only does not
reject it.

5

Two types of errors can happen: Firstly, we reject H0 even though the hy-
pothesis is correct (error of the �rst type) and secondly H0 is not correct
but we do not reject it (error of the second type).
The probability of having a type 1 error is called the level of signi�cance
and is most of the time set before the testing and denoted by α. In other
words, α is the probability of rejecting H0 even though the hypothesis is
true. Commonly used values for α are 0.01, 0.05 and 0.1.

Let us consider the following example: Suppose we roll an unbiased die 20
times and record the values of the die after each roll. The die should land
on each value about the same amount of time.
We set "H0 : the die is not biased towards any value" and α = 0.01.
Most of the times the experiment will conclude with H0 not being rejected,
but it would still be possible that one does reject the null hypothesis in some
cases. Imagine during the experiment the die lands 9 times on the value 5,
which is not impossible. The probability of this happening is:

p =

(
20
9

)
× 511

620

≈ 0, 0022

This is smaller than α and so we would reject H0 even though the die is
unbiased, giving us an error of type 1, showing again that failing or passing
one test is not su�cient to judge a sequence or a generator.

In most tests, the method will be the same as in this example, we suppose
the null hypothesis to be true and then calculate a certain probability which
helps us to decide if we should reject H0 or not.
This probability is called the p-value and most of the time, we will reject
H0 if the p-value is smaller than the signi�cance level α. How the p-value
is computed and what the null hypothesis states always depends on the test
that is being regarded. In the following, we will explain the procedure of
di�erent tests and apply them on both the AHS generator and the LCG.

2 Statistical Tests

2.1 Tests for Distribution

In this section, three tests for distribution, so called goodness-of-�t tests,
are described. First we start with the Chi-square Test before moving on to
the Kolmogorov-Smirnov Test and then �nishing with the Cramér-von Mises
Test.

6

2.1.1 The Chi-Squared Test

There are two main types of the Chi-square Test, the test of independence
and the goodness-of-�t test. In this section we are interested in the goodness-
of-�t test. Generally, this test is based on comparing the number of occur-
rences of some events with the number of occurrences of the same events,
that would be expected under the null hypothesis to be tested.
More precisely, we �rst take a sample of n observations to be tested and
establish a null hypothesis, which claims that the observed data perfectly
�ts a special distribution (which has to be �xed). Then the sample has to
be divided up into k intervals, so that we get for each interval the number of
occurrences of the corresponding event. Moreover, the expected numbers of
values in each interval are calculated, assuming the null hypothesis is true.
Then the chi-square value is given by

χ2 =

k∑
i=1

(Oi − Ei)2

Ei

where k is the number of intervals, Ei are the expected and Oi the observed
numbers of values in the ith interval.
Now this calculated chi-square value has to be compared with the critical
values of the distribution table. For this we need to consider the signi�cance
level α and the degree of freedom (denoted by the symbol df or ν) which is
given by k− 1. This can be explained by the fact that if we know how many
numbers are in the k − 1 intervals, the number of values in the kth interval
can easily be calculated, knowing the size of the sample. Now we have two
ways to determine if these results are statistically signi�cant or not, using
the degree of freedom and the signi�cance level.
The �rst method consists in comparing the chi-square value with the critical
values (which can easily be determined by looking at a chi-square distribution
table). If the calculated chi-square value is now superior to the critical value,
the null hypothesis has to be rejected, if it is inferior, the null hypothesis
can not be rejected.
The other method consists in calculating the p-value and comparing this p-
value to the signi�cance level α. However, since it is beyond our knowledge
to calculate the exact value of the p-value, we can simply look at a chi-square
distribution table to get an idea in which area the p-value lies. As already
mentioned above, if the p-value is strictly inferior to α, the null hypothesis
has to be rejected, if the p-value is superior to α, the null hypothesis can not
be rejected.

Example

Let us consider a concrete example for better understanding/visualization:
Let us consider the experience described in the book "`The Art of Computer

7

Programming Vol 2"' by Knuth, where two dice are rolled 144 times and the
following values for the sum of both are observed:
i 2 3 4 5 6 7 8 9 10 11 12

Oi 2 6 10 16 18 32 20 13 16 9 2

As we consider the sum of the two dice, we see that we have 11 intervals.
Since we consider the dice to be unbiased, we suppose that any value (from
1 to 6) has the same probability (16) to be thrown for the two dice. Let X
be the variable which represents the sum of both dice, so we get that:

P (X = 2) = 1
36 P (X = 3) = 2

36 = 1
18 P (X = 4) = 3

36 = 1
12

P (X = 5) = 4
36 = 1

9 P (X = 6) = 5
36 P (X = 7) = 6

36 = 1
6

P (X = 8) = 5
36 P (X = 9) = 4

36 = 1
9 P (X = 10) = 3

36 = 1
12

P (X = 11) = 2
36 = 1

18 P (X = 12) = 1
36

This implies that we get the following expected results:
i 2 3 4 5 6 7 8 9 10 11 12

Ei 4 8 12 16 20 24 20 16 12 8 4

So that the chi-square value is the following:

χ2 =

k∑
i=1

(Oi − Ei)2

Ei

=
4

4
+

4

8
+

4

12
+

0

16
+

4

20
+

64

24
+

0

20
+

9

16
+

16

12
+

1

8
+

4

4

= 1 +
1

2
+

1

3
+ 0 +

1

5
+

8

3
+ 0 +

9

16
+

4

3
+

1

8
+ 1

=
1853

240
≈ 7, 72083

Since we have 11 intervals, we have ν = 11− 1 = 10 degree of freedoms and
if we take a signi�cance level of α = 0.05 we see that the critical value equals
18.31 which is superior to the chi-square value which implies that we can not
rejected the hypothesis that the dice are unbiased.
Similarly if we calculate the p-value knowing that χ2 = 7.72 and ν = 10,
we see by looking at the distribution table that the p-value lies between
0.5 and 0.75. Using a p-value calculator , we get that p = 0.656 and since
0.656 > 0.05, we get the same conclusion that we can not reject the null
hypothesis. However it is important to emphasize the fact that this does not
mean that the dice are not biased, it does just mean that we can not reject
the null hypothesis.

Application of the test

Since we are interested in testing the PRNGs for uniformly distribution on
the interval [0, 1), we establish the following null hypothesis:

8

"H0 : The numbers are uniformly distributed on the interval [0, 1)"
Then we �rst divide the sequence into 10 intervals, and consider for simplic-
ity reasons the following 10 intervals: [0, 0.1), [0.1, 0.2), ..., [0.9, 1.0).
Then the numbers of data points in each interval has to be counted and the
chi-square value is calculated. Since we are talking about uniform distri-
bution, the expected numbers are given by the division b n10c for each inter-
val. Finally we get, for a signi�cance level of α = 0.05, a critical value of
zc = 16.919. That means that we will reject the null hypothesis if χ2> zc
and otherwise we will not reject it.

2.1.2 The Kolmogorov-Smirnov Test

The goal of the Kolmogorov-Smirnov Test is to compare the distribution of
a randomly generated sample with the distribution it should theoretically
have.
For this test, the null hypothesis is de�ned as "H0 : the distribution of the
sample is uniform".
Let us say that we have a sample of size n : σ = {X1, X2, . . . , Xn}. In order
to quantify the distributions we have two functions:

1. F (x) = Pr(X ≤ x), for a random variable X, which is the cumulative
distribution function (CDF);

2. Fn(x) =
#{X ∈ σ|X ≤ x}

n
,called the empirical cumulative distribu-

tion function (ECDF).

Since the theoretical distribution, which the generators should produce, is
uniform, F (x) = x ∀x ∈ [0, 1].
To compare these two functions, Andrey Kolmogorov came up with the fol-
lowing statistic, which represents the biggest deviation between them:

Dn = sup
x
|Fn(x)− F (x)| (1)

The distribution of Dn has been widely studied, at �rst by Andrey Kol-
mogorov (see also [5] [7]) who found the limiting form of the distribution
function Dn:

lim
n→∞

Pr(
√
nDn ≤ x) = 1− 2

∞∑
i=1

(−1)i−1e−2i
2x2 =

√
2π

x

∞∑
i=1

e
−(2i−1)2π2

8x2 (2)

N. V. Smirnov considered Kolmogorov's Dn di�erently, by having two dif-
ferent statistics D+

n and D−n :

D+
n = sup

x
(Fn(x)− F (x)) (3)

D−n = sup
x

(F (x)− Fn(x)) (4)

9

Moreover, Smirnov published (see [10]) a table for estimating the value of
these statistics. He also found the following formula (see also [4] [11]):

Pr(
√
nD+

n ≤
t√
n

) = 1− t

nn

∑
t<k≤n

(
n

k

)
(k − t)k(t+ n− k)n−k−1 (5)

Finally, in their article (see [7]), the authors provide an algorithm imple-
mented in C to evaluate precisely and e�ciently Kolmogorov's Dn distribu-
tion.

2.1.3 Cramér-von Mises Test

Cramér-von Mises Test is similar to the Kolmogorov-Smirnov Test, in the
sense that the objective is to analyse the distribution of a random sequence.
Thus, we will have the same functions F and Fn, representing the cumulative
distribution function and the empirical distribution function respectively.
Also, we admit the same null hypothesis "H0 : the distribution of the random
sample is uniform".
However, in the case of the Cramér-von Mises Test, the statistic is de�ned
as

ω2
n = n

∫ ∞
−∞

(Fn(x)− F (x))2 dF (x)

The study of the distribution of ω2
n involves resolutions and formulas beyond

our knowledge but is explained in the following article [2], which also contains
a table of values x such that Pr(w2

n ≤ x) = p, for di�erent values of p and
n.

2.2 Tests for Independence

Since the pseudo random numbers of a PRNG should appear to be indepen-
dent and identically distributed, two tests for independence are described
in this section. First we start with the Runs Test, before moving on to the
Spearman's rank Correlation Test

2.2.1 The Runs Test

The Runs Test is a statistical procedure used to check if a sequence of data
has been obtained from a random process. To do so the test uses runs of
data, which can be de�ned as follow:
A run is a sequence of a certain type preceded and followed by occurrences of

the alternate type or by no events at all.

Of course, there are di�erent ways of de�ning the event being used in the
test, as long as it produces a dichotomous sequence of values. In our version
we will use the median of the sequence. Other possibilities would have been
to use the mean-value of the sequence or to just set a cut-o� value ourselves.

10

(Reminder: If we would rearrange the sequence in an ascending or descend-
ing list of numbers, the median would be the middle number of this list. In
case of an even amount of numbers in the sequence, the middle pair is added
together and divided by two to determine the median.)
We then de�ne a run as being a series of consecutive numbers below or above
the median. (If a number equals the median we will include it in the group
of superior values.)

Take for example the following sequence:

15; 88; 45; 75; 21; 6; 92; 80; 56; 33; 11; 3; 19; 41

By rearranging this sequence we can easily recognize that the median is
33+41

2 = 37:

3; 6; 11; 15; 19; 21;︸ ︷︷ ︸
7 numbers

33; 41;︸ ︷︷ ︸
middle

45; 56; 75; 80; 88; 92︸ ︷︷ ︸
7 numbers

The next step is to count the number of runs as well as the amount of
numbers below and above the median:

15;︸︷︷︸
1

88; 45; 75;︸ ︷︷ ︸
2

21; 6;︸ ︷︷ ︸
3

92; 80; 56︸ ︷︷ ︸
4

33; 11; 3; 19;︸ ︷︷ ︸
5

41︸︷︷︸
6

Thus we have, runs r = 6, numbers above the median n1 = 7, numbers
below the median n2 = 7.

Now we need to calculate the test statistic which we will compare to the data
expected to be obtained if the null hypothesis is valid. The null hypothesis
in this case is:
"H0 : The occurence of pattern for the two types of the observations is deter-
mined by a random process." (The two types of the observations here being
either numbers below or above the median.)
It is important to note that generally two di�erent methods are used to cal-
culate the test statistic depending on the size of the sequence.
For smaller samples the critical value can be retrieved from a table by Swed
and Eisenhart ([12]). Hence from the table for n1 = n2 = 7, the upper
critical value (Uc) is 3 and the lower critical value (Lc) is 12. Meaning that
we would reject the null hypothesis if r ≤ Uc or r ≥ Lc, which isn't the case
for our sequence above as 3 < r = 6 < 12.

Let us now move to the method for bigger samples as this is going to be more
practical to test bigger sequences generated by random number generators.
For this we will use an approximation technique.

11

The test-statistic z is calculated by an approximation of the normal distri-
bution and with the following formula:

z =
rO − rE
sR

where rO is the number of observed runs, rE is the number of expected runs
and sR is the standard deviation of the number of runs.
We have:

rE =
2n1n2
n1 + n2

+ 1

sR =

√
(2n1n2)(2n1n2 − n1 − n2)
(n1 + n2)2(n1 + n2 + 1)

Now the �nal step is to compare the obtained test-statistic with the critical
value for larger samples. For a signi�cance level at 5% the critical value is
zc = 1, 96. We reject the null hypothesis if |z| > zc. (−z > zc means there
are too few runs and there are too many runs if z > zc.)

2.2.2 Spearman's Rank Correlation Coe�cient

To answer the question whether there is a relation between two variables or
not, a correlation coe�cient can be calculated.
The correlation coe�cient gives us the direction and the strength of the re-
lationship between two variables. It takes values between −1 and 1, where
values close to 1 represent a strong positive correlation whereas values close
to −1 represent a strong negative correlation. Zero correlation however does
not imply independence, but it is a necessary condition for independence.
In fact, there are two major methods for correlation analyses. The parametric
correlation, also known as Pearson Correlation, determines the strength and
the direction of a linear relationship between two variables whereas the non-
parametric correlation, also known as Spearman's rank Correlation, mea-
sures the strength and the direction of the monotonic relationship.
To be able to talk about the Spearman's rank correlation coe�cient, it is
important to �rst understand Pearson's correlation.

Pearson's correlation coe�cient formula

If we have a sample of size n, the Pearson's correlation coe�cient is given
by:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

12

where x̄ = 1
n

∑n
i=1 xi and ȳ = 1

n

∑n
i=1 yi are the means of the variables.

By rearranging we get the following formulas:

r =
n
∑n

i=1 xiyi −
∑n

i=1 xi
∑n

i=1 yi√
n
∑n

i=1 x
2
i − (

∑n
i=1 xi)

2
√
n
∑n

i=1 y
2
i − (

∑n
i=1 yi)

2

=

∑n
i=1 xiyi − nx̄ȳ√∑n

i=1 x
2
i − nx̄2

√∑n
i=1 y

2
i − nȳ2

Spearman's rank correlation coe�cient

As already mentioned above, the Spearman's rank correlation is the non-
parametric version of the Pearson's correlation, it measures the strength and
direction of the association between two ranked variables. Most often, this
correlation test is used when the requirements of the parametric correlation
test (continuous data, linearity, normally distributed variables) are not sat-
is�ed. The only requirement is, that the data can be ranked.
Since, monotonic relation instead of linear relation is tested, which is less
"restrictive", the Spearman's rank correlation coe�cient is able to discover
dependencies which the Pearson's correlation coe�cient does not recognize.
(A positive monotonic relation means that if one variable increases, then the
other increases too; a negative monotonic relation means that if one variables
increases, the other one decreases)
The method consists in �nding ranks xi and yi for each pair of Xi and Yi
values and then run Pearson's correlation on these ranks instead of on the
raw data.
To do so, we �rst order the values of the X variable from the smallest to the
biggest value and assign to them the integer corresponding to their position
(starting with 1). If all the values are di�erent from each other, then the
rank xi of Xi equals the integer of the corresponding position. If multiple
values are equal, we say that we have tied ranks, in that case, the rank does
not equal the position of the value Xi but we calculate the rank by counting
the positions of the multiple values, summing the position integers together
and then dividing this sum by how many values are tied.
If for example the positions 4 and 5 correspond to equal values then we sum
those positions 4 + 5 = 9 and divide it through the number of tied ranks
4+5
2 = 4.5. The same procedure is applied to the Y variable. Let's consider

an example for a better understanding:

13

Xi 56 75 45 71 61 64 58 80 76 61

Positions Xi 2 8 1 7 4 6 3 10 9 5

xi(ranks) 2 8 1 7 4.5 6 3 10 9 4.5

Yi 66 70 66 65 56 66 77 67 63 45

Positions Yi 5 9 6 4 2 7 10 8 3 1

yi(ranks) 6 9 6 4 2 6 10 8 3 1

If there are tied ranks in any of the two variables, we apply, as already men-
tioned, the Person's Correlation Coe�cient formula to the ranks. However
if there are no tied ranks (i.e xi 6= xj for all i 6= j), the xi's and the yi's both
consists of the integers between 1 and n, so we get the following formula for
the Spearman's rank correlation coe�cient:

ρ = 1−
6
∑n

i=1 d
2
i

n(n2 − 1)

where di = xi − yi is the di�erence in ranks of the ith element for i ∈
{1, 2, ..., n}

Application of the test

To apply the Spearman's rank correlation test to a PRNG, we �rst have
to divide the sequence of pseudo-random numbers into two, in order to get
values for the two variables X and Y .
To do so, we de�ne all the even iterations U0, U2, ..., Un−2 to come from dis-
tribution X and all odd iterations U1, U3, ..., Un−1 to come from distribution
Y . Now ranks has to be assigned to each Xi based on its value. The smallest
Xi will get rank xi = 1, the second smallest will get rank xi = 2 and so on.
In the case of tied ranks, so if two or more Xi share the same value, we take
the average of their numeric position, just as explained above. The same
procedure is applied for the values of Y . Then we established the following
null hypothesis:
"H0 : There is no correlation between the variables X and Y ."
Now we know that if we get ρ = ±1, a monotonic function would perfectly
�t the relation between X and Y and if ρ = 0, there is no monotonic func-
tion between the variables. To be able to interpret all the other values for
ρ, (e.g. ρ = 0.7 or ρ = −0.4), we can use the Fisher Transformation to
make ρ comparable to the normal distribution. The Fisher Transformation
is de�ned by:

F (r) =
1

2
ln

1 + r

1− r
= tanh−1(r)

where r = ρ is the Spearman's rank correlation coe�cient. Under the null
hypothesis, we will then get:√

n− 3

1.06
F (r) ∼ N(0, 1)

14

So if we de�ne the z-score

z =

√
n− 3

1.06
F (r)

which approximately follows the normal distribution under the null hypoth-
esis, we can easily determine the critical values and the p-value. So similarly
as for the run test, we get, for a signi�cance level of α = 0.05, a critical value
of zc = 1.96. So we reject the null hypothesis if |z| > zc

15

3 The AHS random number generator

The AHS generator is a quite new random number generator. It was devel-
oped in 2006 by Alain H. Schumacher, after whom it is also named. The
main idea of this RNG is to simulate the process of �ipping an unbiased coin.
To produce a random number sequence of n bits, we have to �ip the coin n
times, so that each coin �ip produces one bit of the sequence. Since �ipping
an unbiased coin follows a Bernoulli trial with

Pr("Tail") = Pr("Head") =
1

2
,

we see that we will get independent and identically distributed random num-
bers.
However, as we already pointed out, computers only understand determinis-
tic processes, that is why a lot of di�erent sources of randomness have to be
combined in order to perfectly simulate the process of coin �ipping. To get a
general idea of the algorithm without going into too many details, a so-called
Bit �shing table has to be introduced, from where we will get the bits of the
sequence. The bit �shing table is a table consisting of equally distributed
0's and 1's. By combining di�erent sources of randomness, the position of
the bit is determined, then the bit is extracted from the bit �shing table and
added to the sequence of random numbers. For a sequence of n bits, this
process is repeated n times.

3.1 Transformation of AHS sequence

To apply the �ve tests explained in section 2, we needed a sequence of num-
bers uniformly distributed over (0, 1). However, the AHS generator produces
8-bit binary numbers. Once converted in decimal, we get integers between
−128 and 127 included. We could get numbers over (0, 1) by adding 128 to
every number and dividing the result by 256 but we got very poor results
when testing such sequence with the Chi-square Test, for example.
Instead of having only 256 di�erent possible numbers, we would like to have
2562 numbers. To do so, we combine two di�erent 8-bit binary numbers by
concatenation. For example, let's combine 10110101 (181 in decimal) and
11000100 (196 in decimal) to get 1011010111000100 (46532 in decimal).
It allows us to have decimal integers from 0 to 2562−1 and then divide them
by 2562.
Two integers, let say 181 and 196 are combined as such : 181× 256 + 196 =
46532. The e�ect of multiplying the �rst integer by 256 is to append eight
zeros to its binary representation which are then replaced by the binary
representation of the second integer when adding both terms.

16

3.2 Testing the AHS-RNG

Since we are interested in testing the AHS generator, we will now apply the
statistical tests explained in section 2 to the AHS generator. To do so, we
have implemented a Python program (see A.4) which does the computations
and got the following results:

data.txt

AHS

Test name statistic p-value

Kolmogorov-Smirnov test 0.0006108642578125378 0.8660095975687303

Chi-square test 1.8015625 0.9942310385555476

Spearman test 0.0010989930553995848 0.4464164136126185

Runs test -1.3798795964816928 0.1676237197407061

Cramér-von Mises test 0.03165801592767239 0.9704088228493296

The only thing that has to be done, is the interpretation of those results.
For the interpretation of each test, the same signi�cance level α = 0.05 is
used.

Kolmogorov-Smirnov test

For this test, the statistical value corresponds to the KS test statistics D =
0, 0006, and since we have a sequence of 960000 data points we will get the
following critical value:

zc =
1.36√
n

=
1.36√
960000

≈ 0, 001388

And since 0.0006 < 0.001388, we can not reject the null hypothesis which is
also con�rmed by the p-value of 0.866 > 0.05. So we conclude that the AHS
generator will pass this test.

Chi-square test

For this test, the statistical value corresponds to the chi-square value, so
we see that we will get χ2 ≈ 1.802. As mentioned in the section 2.1.1 the
critical value is zc = 16.919 and since 1.802 < 16.919, the null hypothesis
will not be rejected. This is also con�rmed by the fact that we get a p-value
of 0.994 > 0.05. So we can conclude that the AHS generator will pass this
test.

17

Spearman test

For this test, the statistical value corresponds to the Spearman's rank cor-
relation coe�cient ρ = 0.0011. As mentioned in section 2.2.2, we will have
to apply the Fisher Transformation to make ρ comparable to the normal
distribution. So we get:

F (ρ) = tanh−1(ρ) ≈ 0.0011,

which implies that

z =

√
n− 3

1.06
F (ρ) =

√
960000− 3

1.06
0.0011 ≈ 1.046

And since zc = 1.96, and we have that 1.0646 < 1.96, we see that we do not
reject the null hypothesis, which is again also con�rmed by the p-value of
0.446 > 0.05. So we get that the AHS generator passes this test.

Runs test

For this test, the statistical value corresponds to the test-statistic z, so we
have that z = −1.38. And since we know from section 2.2.1 that we have the
same critical value as for the Spearman's rank test, zc = 1.96, we see that
| − 1, 38| < 1.96, which implies that we will not reject the null hypothesis.
This is again con�rmed by the p-value of 0.167 > 0.05. So we can conclude
that the AHS generator passes this test too.

Cramér-von Mises test

For this test, the statistical value corresponds to the Cramér-von Mieses
statistics, so we have ω2

n = 0.0316. And since we get a p-value of 0.97, we
see that 0.97 > 0.05. So we can conclude that the AHS generator also passes
this test

3.3 Testing the LCG

As already mentioned in the section 1.2, we will compare the AHS generator
to the LCG with the following parameters:

� a = 1664525

� c = 1013904223

� m = 232

� x0 = 0

18

That is why we generated a sequence of 1920000 numbers of this LCG and
applied the same tests to this sequence as we applied to the sequence of the
AHS generator and we got the following results:

data.txt

LCG

Test name statistic p-value

Kolmogorov-Smirnov test 0.0010912617830869387 0.020641421075878887

Chi-square test 14.902028176026992 0.09366248811839077

Spearman test -0.00062095935292248 0.5429137952913983

Runs test 0.3846596172236302 0.7004896180591527

Cramér-von Mises test 0.4851985395651715 0.043442056008061725

If we do the interpretations in the same way as we did it for the AHS gen-
erator, with a signi�cance level of α = 0.05 we get:

Kolmogorov-Smirnov test

Here we see that D = 0, 001, and since we have a sequence of 1920000 data
points we will get the following critical value:

zc =
1.36√
n

=
1.36√

1920000
≈ 0, 000981

And since 0.001 > 0.000981, we will reject the null hypothesis which is also
con�rmed by the p-value of 0.021 < 0.05. So we conclude that the LCG fails
this test.

Chi-square test

For this test we see that χ2 ≈ 14.9. And since zc = 16.919 and 14.9 < 16.919,
the null hypothesis will not be rejected. This is also con�rmed by the fact
that we get a p-value of 0.09 > 0.05. So we can conclude that the LCG will
pass this test.

Spearman test

For this test, we get ρ = −0.00062. Calculating the Fisher Transformation,
we get:

F (ρ) = tanh−1(ρ) ≈ −0.00062,

which implies that

z =

√
n− 3

1.06
F (ρ) =

√
1920000− 3

1.06
(−0.00062) ≈ −0.834

19

And since zc = 1.96, and we have that | − 0.834| < 1.96, we see that we do
not reject the null hypothesis, which is again also con�rmed by the p-value
of 0.543 > 0.05. So we get that the LCG passes this test.

Runs test

For this test, we have that z = 0.385. And since zc = 1.96, we see that
0.385 < 1.96, which implies that we will not reject the null hypothesis. This
is again con�rmed by the p-value of 0.70 > 0.05. So we can conclude that
the LCG passes this test too.

Cramér-von Mises test

Here we see that ω2
n = 0.485 and we get a p-value of 0.043 and since 0.043 <

0.05, we can conclude that the LCG does not pass this test.

3.4 Comparing the AHS generator to the LCG

As we can see from the two previous sections, the AHS generator passes
all 5 tests whereas the LCG only passes 3 of the 5 tests. The LCG fails
the Kolmogorov-Smirnov and the Cramer-von Mises test, which are both
tests for uniform distribution. Another test for uniform distribution is the
chi-square test. For this test we see that the test statistic is very close to
the critical value and that the p-value is therefore close to zero, so even if
the LCG passes this test, it does not pass it as good as the AHS generator
does (which has a p-value of almost 1 for this test). However, the tests for
independence are passed by the two generators without any problems. So we
can conclude that the AHS generator seems to be a better generator in terms
of uniform distribution than the LCG, while we can not really compare the
respective independence of their elements, since we have only done two tests
for independence which were both passed by the two generators.

20

3.5 Test Suites

As a "bad" PRNG can mess up the analysis of a research, it is important
for the researcher to know if the PRNG is suited for his work.
Of course, the best option for this is to run tests on the PRNG. However,
not every researcher might be advanced enough in this area to run the right
tests or to make the right interpretations out of it. Especially as so many
tests exist, it is impossible to �nd a PRNG that does not fail any test. So,
the aim is to use PRNGs that do not fail any "reasonable" tests.
But again, not every researcher is going to have the knowledge of which tests
will fall into that category.
This is why one solution is to trust experts to put together a battery of
tests, that a "good'" PRNG should not fail. The very �rst battery of sta-
tistical tests for uniform RNGs was proposed by Donald Knuth in the �rst
edition of his book 'The Art of Computer Programming' in 1968. In 1995,
George Marsaglia programmed the DIEHARD tests which have been
widely used in the testing of PRNGs for years. However, it is only consti-
tuted of about 15 tests and it is not extensible as it does not allow new tests
to be added. To �x theses �aws Pierre L'Ecuyer and Richard Simard

programmed the software library TestU01 in 2007.

3.5.1 TestU01

TestU01 is a software library providing a multitude of utilities for statistical
testing of uniform RNGs. It provides many implementations of di�erent
PRNGs and a large variety of statistical tests.
However, the most interesting part for us here, is that it also includes di�erent
test suites:

• Small Crush (consisting of 10 tests)

• Crush (96 tests)

• Big Crush (160 tests)

The usual procedure is to run Small Crush on the PRNG and if there are
no failures, one of the bigger suites is applied. This is also what we did
for the AHS-generator. We applied the test to the generator by taking 32-
bit binary numbers since this is what is advised. To be more precise, we
de�ned a generator that loops through a sequence of 32-bit binary numbers
generated by the AHS. (This is of course not ideal compared to taking a
long enough sequence to run the test suite on, however for our purpose this
will be su�cient, as the test results show.) For the transformation to 32-bit
binary integers, we used the same principle as in 3.1.

21

Here is the summary (see appendix A.5 for the full breakdown) of the results:

data.txt

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

Generator: AHS

Number of statistics: 15

Total CPU time: 00:00:09.66

All tests were passed

As all tests are passed, the next step would be to run Crush on the generator.
However for this, the sequence should ideally be constituted of 232 elements.
Of course, if we generate such a long sequence by looping through a smaller
sequence, the test results for uniform distribution will not be great.
Because of some technical di�culties and lack of time, we will not be doing
this in this report, but this would be the next step if this research would be
expanded.

We did also run the Small Crush battery on the LCG to verify if the intuition
we got from our previous tests about uniform distribution for the LCG was
right. Here is the summary of the results:

data.txt

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

Generator: LCG

Number of statistics: 15

Total CPU time: 00:00:09.24

The following tests gave p-values outside [0.001, 1]:

eps means a value < 1.0e-300:

eps1 means a value < 1.0e-15:

Test p-value

--

1 BirthdaySpacings eps

3 Gap eps

4 SimpPoker eps

5 CouponCollector eps

7 WeightDistrib eps

8 MatrixRank eps

9 HammingIndep eps

10 RandomWalk1 H eps

22

10 RandomWalk1 M eps

10 RandomWalk1 J 4.0e-5

10 RandomWalk1 R eps

10 RandomWalk1 C eps

--

All other tests were passed

As we can see, the LCG fails on 12 of the 15 calculated statistics, reinforcing
that the sequence generated by the LCG does not fare well in tests for
uniform distribution.

23

4 Conclusion

In conclusion, we can say that the AHS generator seems to be quite a good
generator, since it has passed all the tests to which we have applied it.
Especially in terms of uniform distribution, this generator seems to be very
strong. Also compared to the LCG, the AHS generator seems to be a lot
better. Another interesting step would be to compare the AHS generator
with a well-known and very good generator, which could unfortunately not
be done in this project because of lack of time.

24

References

[1] Mohamad Bujang and Fatin Sapri. An application of the runs test to
test for randomness of observations obtained from a clinical survey in
an ordered population. The Malaysian Journal of Medical Sciences,
25(4):146�151, 2018.

[2] Sandor Csorgo and Julian J. Faraway. The exact and asymptotic distri-
butions of cramer-von mises statistics. Journal of the Royal Statistical

Society. Series B (Methodological), 58(1):221�234, 1996.

[3] James E Gentle. Random number generation and Monte Carlo methods.
Statistics and computing 448149. Springer, New York, 2nd ed.. edition,
2003.

[4] Donald Knuth. Art of Computer Programming, Volume 2: Seminumer-

ical Algorithms, 3rd Edition. 3rd edition. edition, 1997.

[5] A. KOLMOGOROV. Sulla determinazione empirica di una lgge di dis-
tribuzione. Inst. Ital. Attuari, Giorn., 4:83�91, 1933.

[6] Liang Li. Testing several types of random number generator. 2012.

[7] G. Marsaglia, W.W. Tsang, and J. Wang. Evaluating kolmogorov's
distribution. Journal of Statistical Software, 8:1�4, 2003.

[8] B. D. Mccullough. A review of testu01. Journal of Applied Economet-

rics, 21(5):677�682, 2006.

[9] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine
Barker. A statistical test suite for random and pseudorandom number
generators for cryptographic applications. Technical report, 2001.

[10] N. Smirnov. Table for estimating the goodness of �t of empirical distri-
butions. The Annals of Mathematical Statistics, 19(2):279�281, 1948.

[11] N. V. Smirnov. Approximate laws of distribution of random variables
from empirical data. Uspekhi Mat. Nauk, (10):179�206, 1944.

[12] Frieda S. Swed and C. Eisenhart. Tables for testing randomness of
grouping in a sequence of alternatives. The Annals of Mathematical

Statistics, 14(1):66�87, 1943.

25

Appendices

A Code

In this section, the descriptions and the code can be found of the programs
which we implemented by ourselves.

A.1 Chi-square Program

Since we are interested in testing the PRNGs for uniformly distribution on
the interval [0, 1), we have written a program in Python which does exactly
this test:
First of all, the user is asked to enter the name of the �le of the sequence he
wants to test. Then the real process begins, for simplicity reasons we consider
the following 10 intervals: [0, 0.1), [0.1, 0.2), ..., [0.9, 1.0). Then the program
loops though the n data points of the sample and counts the number of data
points in each interval, which is done in the function called subdivisions.
Next the function chi_square_val is called, where the chi-square value is
calculated. And �nally the calculated chi-square value is compared to the
critical values to determine whether the null hypothesis has to be rejected
or accepted. This is done using the function significance test, where we
took the critical values from a chi-square distribution table using the degree
of freedom ν = 9 (since we have k = 10 intervals).

1 def chi_square_val(dataset , n):

2 """ Null hypothesis: Numbers are distributed uniformly on

[0, 1)

3 dataset = dictionnary with 10 intervals

4 n = number of datapoints

5 output: chi -squared value

6 """

7 chi_sq_value = 0

8 e_val = n/10

9 for o_val in dataset:

10 chi_sq_value += pow((e_val - dataset[o_val]), 2)/e_val

11 return chi_sq_value

12

13 def subdivisions(file):

14 """ output: dictionnary with 10 intervals containing the

number of datapoints of each subdivision"""

15 subdiv = {"1": 0,

16 "2": 0,

17 "3": 0,

18 "4": 0,

19 "5": 0,

20 "6": 0,

21 "7": 0,

22 "8": 0,

23 "9": 0,

26

24 "10": 0

25 }

26

27 file.seek (0)

28 data_points = file.readlines ()

29

30 for n in data_points:

31 n = float(n)

32 if n < 0.1:

33 subdiv["1"] += 1

34 elif n < 0.2:

35 subdiv["2"] += 1

36 elif n < 0.3:

37 subdiv["3"] += 1

38 elif n < 0.4:

39 subdiv["4"] += 1

40 elif n < 0.5:

41 subdiv["5"] += 1

42 elif n < 0.6:

43 subdiv["6"] += 1

44 elif n < 0.7:

45 subdiv["7"] += 1

46 elif n < 0.8:

47 subdiv["8"] += 1

48 elif n < 0.9:

49 subdiv["9"] += 1

50 elif n < 1.0:

51 subdiv["10"] += 1

52 return subdiv

53

54 def significiance_test(chi_sq_val , alpha = 0.05):

55 """since we have 10 intervals , df= 10 -1=9; critical values

are taken from a distribution table """

56 critical_val = 16.919

57 if chi_sq_val > critical_val:

58 return "REJECT"

59 else:

60 return "DO NOT REJECT"

61

62 filename = input("Enter the filename of the sequence you want

to work on: ")

63 alpha = 0.05

64 print('Significance level: 0.05')

65 f = open(filename + '.txt', 'r')

66 s = 0

67 for line in f:

68 s += 1

69 print(s)

70 t = chi_square_val(subdivisions(f), s)

71 print("chi squared value: ", t)

72 print(significiance_test(t, alpha))

27

A.2 Kolmogorov-Smirnov Program

We applied the test in two ways, both are implemented in a Python �le (ref).
First, the user is ask to input the size n of the sample and the probability p
he wants to work with. Then the program produces the graph of F (x) and
Fn(x) together with an acceptance band at length dα(n) of F (x). dα(n) is
simply determined by dividing the corresponding critical value by

√
n. To

illustrate why, here is an example: Pr(K+
10 ≤ 1.1658) = 0.95 which means,

in this case, that
√

10 sup(F10(x) − F (x)) ≤ 1.1658 (to succeed the test)
⇒ sup(F10(x) − F (x)) ≤ 1.1658√

10
. Thus F10(x) has to be maximum at 1.1658√

10

from F (x). If the graph of Fn(x) gets out of the acceptance band, then we
reject the null hypothesis and the test failed.
Finally, the program computes the statistics K+

n and K−n and compare them
to the critical value computed by the program if n > 32 or given by the user
otherwise.

1 import random , math

2 import numpy as np

3 import matplotlib.pyplot as plt

4 #from scipy.stats import kstest

5

6 filename = input("Input the name of the textfile you want to

work on: ")

7 n = eval(input("Input the number of observations you want to

work with: "))

8 alpha = eval(input("Among these values {0.01, 0.05, 0.25, 0.5,

0.75, 0.95, 0.99}, pick up the level of significance (alpha

) you want to work with: "))

9

10 def build_sample ():

11 """Build an array of size n with pseudorandom numbers from

the file filename."""

12 with open(filename , 'r') as of:

13 i = 0

14 seq = []

15 for line in of:

16 seq.append(eval(line))

17 i += 1

18 sample = [random.randint(0, i) for j in range (n)]

19 for j in range (n):

20 sample[j] = seq[sample[j]]

21 return sample

22

23 def F(x):

24 """The theoretical distribution function : F(x) =

Probability(X <= x)"""

25 if x <= 1:

26 return x

27 else:

28 return 1

29

28

30 def Fn(x):

31 """Fn(x) = (number of elements in the sample which are <= x

) / n

32 It 's the empirical distribution function."""

33 count = 0

34 for a in sample:

35 if a <= x:

36 count += 1

37 return count/n

38

39 def get_distribution_of_K ():

40 """if n <= 35: Asks the user to input the corresponding

value for K+ and K- from the table.

41 else: compute that value."""

42 if n < 31:

43 d = eval(input("Input the corresponding value for K+

and K- from the table: "))

44 else:

45 g = lambda x: x - 1/(6* math.sqrt(n))

46 if alpha == 0.01:

47 yp = 0.07089

48 if alpha == 0.05:

49 yp = 0.1601

50 if alpha == 0.25:

51 yp = 0.3793

52 if alpha == 0.5:

53 yp = 0.5887

54 if alpha == 0.75:

55 yp = 0.8326

56 if alpha == 0.95:

57 yp = 1.2239

58 if alpha == 0.99:

59 yp = 1.5174

60 d = g(yp)

61 return d

62

63

64 ### 1) Builiding the sample to work on ###

65 sample = build_sample ()

66 sample.sort()

67

68 ### 2) Graph to compare distributions ###

69 max_dev = get_distribution_of_K ()/math.sqrt(n) # It 's the

maximum deviation between distributions we will tolerate

according to alpha

70 x = np.linspace (0,1.2, 100)

71 y1 = [F(a) for a in x]

72 y2 = [Fn(a) for a in x]

73 y3 = [F(a) - max_dev for a in x]

74 y4 = [F(a) + max_dev for a in x]

75 g1 , = plt.plot(x, y1 , linewidth =1.2)

76 g2 , = plt.plot(x, y2 , linewidth =1.2)

77 g3 , = plt.plot(x, y3 , 'k--', linewidth =1.2)

78 g4 , = plt.plot(x, y4 , 'k--', linewidth =1.2)

29

79 plt.legend ([g1, g2 , g3], [r"Theoretical distribution: $F(x)$",

r"Empirical distribution: $F_n(x)$", r"Acceptance band: $F(

x) \pm d_\alpha(n)$"])

80 plt.xlabel(r'x ')

81 plt.ylabel(r"y")

82 plt.savefig(filename+"-KS -test.pdf")

83

84 ### 3) We compute K+ and K- statistics ###

85 list_plus = [(j/n) - F(sample[j-1]) for j in range(1, n+1, 1)]

86 list_minus = [F(sample[j-1]) - (j-1)/n for j in range(1, n+1,

1)]

87 K_plus = math.sqrt(n)*max(list_plus)

88 K_minus = math.sqrt(n)*max(list_minus)

89 print("K+ = ", K_plus)

90 print("K- = ", K_minus)

91 K = get_distribution_of_K ()

92 if K_plus > K or K_minus > K:

93 print("The test failed.")

94 else:

95 print("The test succeeded.")

A.3 Linear Congruent Generator Program

This program will generate a sequence of numbers between [0, 1) by using
the method of a linear congruent generator. First a variable called LIMIT

is determined which represents the length of the sequence to be generated.
Then the user is asked to enter the �le name to store the sequence and
to enter the di�erent parameters of the LCG (seed, multiplier, increment
and modulus). Then the algorithm opens the �le and stores the generated
numbers, obtained by the formula of the LCG: Xn = (aXn−1 + c)mod(m),
in that �le.

1 LIMIT = 10**6

2

3 filename = input("Enter a filename to store the sequence ")

4 seed = int(eval(input("Input the seed ")))

5 a = int(eval(input("Input the multiplier ")))

6 c = int(eval(input("Input the increment ")))

7 m = int(eval(input("Input the modulus ")))

8

9 of = open(filename +".txt", 'w')

10 n = 1

11 of.write(str(seed/m))

12 of.write("\n")

13 x0 = seed

14 while n <= LIMIT:

15 x1 = (a*x0+c)%m

16 of.write(str(x1/m))

17 of.write("\n")

18 x0 = x1

19 n += 1

20 of.close ()

30

A.4 Testing Program

This program will apply the following 5 tests to a sequence of any generator
which generates numbers between [0, 1):
KS-test, Chi-square test, Spearman's rank test, Runs test, Cramér-von Mieses
test
First the user is asked to enter the name of the generator and to enter the
name of the �le containing the sequence to test. Then the program applies
the �ve tests to this sequence and writes down the test statistic and the
p-value for each tests in a new text �le, which is done in the function called
gen_outputs. Finally this text �le is generated as an output.

1 from numpy.lib.npyio import genfromtxt

2 from scipy import stats

3 import numpy as np

4 from statsmodels.sandbox.stats.runs import runstest_1samp

5

6 def gen_output(title , stat , pvalue):

7 of.write(title)

8 n = 40-len(title)

9 for i in range(n):

10 of.write(' ')

11 sstat = str(stat)

12 of.write(sstat)

13 n = 40-len(sstat)

14 for i in range(n):

15 of.write(' ')

16 spavlue = str(pvalue)

17 of.write(spavlue)

18 n = 40-len(spavlue)

19 for i in range(n):

20 of.write(' ')

21 of.write('\n')

22

23 gen_name = input("Input the name of the generator you are

testing : ")

24 filename = input("Input the name of the file containing the

sequence to test : ")

25 seq = genfromtxt(filename)

26

27 of = open('output -'+gen_name+'-test.txt', 'w')

28 of.write(gen_name+"\n \n")

29 of.write("Test name")

30 for i in range (31):

31 of.write(" ")

32 of.write("statistic")

33 for i in range(40-len("statistic")):

34 of.write(" ")

35 of.write("p-value")

36 for i in range (33):

37 of.write(" ")

38 of.write("\n")

39

31

40

41 ### TESTING ###

42

43 # KS -test

44 stat , pvalue = stats.kstest(seq , 'uniform ')

45 gen_output("Kolmogorov -Smirnov test", stat , pvalue)

46

47 # Chi -square test

48 freq_obs = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

49 for a in seq:

50 freq_obs[int(a*10)] += 1

51 stat , pvalue = stats.chisquare(freq_obs)

52 gen_output("Chi -square test", stat , pvalue)

53

54 # Spearman test

55 l1 = []

56 l2 = []

57 ltot = list(seq)

58 for i in range(0, len(ltot) -1, 2):

59 l1.append(ltot[i])

60 l2.append(ltot[i+1])

61 stat , pvalue = stats.spearmanr(l1 , l2)

62 gen_output("Spearman test", stat , pvalue)

63

64 # Runs test

65 stat , pvalue = runstest_1samp(seq , cutoff='median ', correction=

False)

66 gen_output('Runs test', stat , pvalue)

67

68 # Cramér-von Mises test

69 res = stats.cramervonmises(seq , 'uniform ')

70 gen_output('Cramér-von Mises test', res.statistic , res.pvalue)

71

72

73 of.close ()

A.5 TestU01-AHS-generator

The Small Crush battery applied to the AHS generator yielded the following:

data.txt

xxx

Starting SmallCrush

Version: TestU01 1.2.3

xxx

HOST = gauss, Linux

AHS

32

smarsa_BirthdaySpacings test:

N = 1, n = 5000000, r = 0, d = 1073741824, t = 2, p = 1

Number of cells = d^t = 1152921504606846976

Lambda = Poisson mean = 27.1051

--

Total expected number = NTotal observed number : 28

p-value of test : 0.46

CPU time used : 00:00:01.60

Generator state:

Test sknuth_Collision calling smultin_Multinomial

HOST = gauss, Linux

AHS

smultin_Multinomial test:

N = 1, n = 5000000, r = 0, d = 65536, t = 2,

Sparse = TRUE

GenerCell = smultin_GenerCellSerial

Number of cells = d^t = 4294967296

Expected number per cell = 1 / 858.99346

EColl = n^2 / 2k = 2910.383046

Hashing = TRUE

Collision test, Mu = 2909.2534, Sigma = 53.8957

Test Results for Collisions

Expected number of collisions = Mu : 2909.25

Observed number of collisions : 2932

p-value of test : 0.34

Total number of cells containing j balls

j = 0 : 4289970228

j = 1 : 4994137

33

j = 2 : 2930

j = 3 : 1

j = 4 : 0

j = 5 : 0

CPU time used : 00:00:01.78

Generator state:

HOST = gauss, Linux

AHS

sknuth_Gap test:

N = 1, n = 200000, r = 22, Alpha = 0, Beta = 0.00390625

Number of degrees of freedom : 1114

Chi-square statistic : 1024.51

p-value of test : 0.97

CPU time used : 00:00:00.58

Generator state:

HOST = gauss, Linux

AHS

sknuth_SimpPoker test:

N = 1, n = 400000, r = 24, d = 64, k = 64

Number of degrees of freedom : 19

Chi-square statistic : 17.14

p-value of test : 0.58

CPU time used : 00:00:00.57

34

Generator state:

HOST = gauss, Linux

AHS

sknuth_CouponCollector test:

N = 1, n = 500000, r = 26, d = 16

Number of degrees of freedom : 44

Chi-square statistic : 41.61

p-value of test : 0.57

CPU time used : 00:00:00.54

Generator state:

HOST = gauss, Linux

AHS

sknuth_MaxOft test:

N = 1, n = 2000000, r = 0, d = 100000, t = 6

Number of categories = 100000

Expected number per category = 20.00

Number of degrees of freedom : 99999

Chi-square statistic : 1.01e+5

p-value of test : 0.07

Anderson-Darling statistic : 0.98

p-value of test : 0.02

CPU time used : 00:00:01.05

35

Generator state:

HOST = gauss, Linux

AHS

svaria_WeightDistrib test:

N = 1, n = 200000, r = 27, k = 256, Alpha = 0, Beta = 0.125

Number of degrees of freedom : 41

Chi-square statistic : 40.33

p-value of test : 0.50

CPU time used : 00:00:00.48

Generator state:

HOST = gauss, Linux

AHS

smarsa_MatrixRank test:

N = 1, n = 20000, r = 20, s = 10, L = 60, k = 60

Number of degrees of freedom : 3

Chi-square statistic : 0.32

p-value of test : 0.96

CPU time used : 00:00:00.64

Generator state:

HOST = gauss, Linux

36

AHS

sstring_HammingIndep test:

N = 1, n = 500000, r = 20, s = 10, L = 300, d = 0

Counters with expected numbers >= 10

Number of degrees of freedom : 2209

Chi-square statistic : 2204.25

p-value of test : 0.52

CPU time used : 00:00:00.67

Generator state:

HOST = gauss, Linux

AHS

swalk_RandomWalk1 test:

N = 1, n = 1000000, r = 0, s = 30, L0 = 150, L1 = 150

Test on the values of the Statistic H

Number of degrees of freedom : 52

ChiSquare statistic : 48.79

p-value of test : 0.60

Test on the values of the Statistic M

Number of degrees of freedom : 52

ChiSquare statistic : 53.87

p-value of test : 0.40

Test on the values of the Statistic J

Number of degrees of freedom : 75

37

ChiSquare statistic : 64.53

p-value of test : 0.80

Test on the values of the Statistic R

Number of degrees of freedom : 44

ChiSquare statistic : 43.01

p-value of test : 0.51

Test on the values of the Statistic C

Number of degrees of freedom : 26

ChiSquare statistic : 18.58

p-value of test : 0.85

CPU time used : 00:00:01.73

Generator state:

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

Generator: AHS

Number of statistics: 15

Total CPU time: 00:00:09.66

All tests were passed

A.6 TestU01-LCG-generator

The Small Crush battery applied to the sequence generated by the LCG
generator yielded the following:

data.txt

xxx

Starting SmallCrush

Version: TestU01 1.2.3

38

xxx

HOST = gauss, Linux

LCG

smarsa_BirthdaySpacings test:

N = 1, n = 5000000, r = 0, d = 1073741824, t = 2, p = 1

Number of cells = d^t = 1152921504606846976

Lambda = Poisson mean = 27.1051

--

Total expected number = NTotal observed number : 4989070

p-value of test : eps

CPU time used : 00:00:01.37

Generator state:

Test sknuth_Collision calling smultin_Multinomial

HOST = gauss, Linux

LCG

smultin_Multinomial test:

N = 1, n = 5000000, r = 0, d = 65536, t = 2,

Sparse = TRUE

GenerCell = smultin_GenerCellSerial

Number of cells = d^t = 4294967296

Expected number per cell = 1 / 858.99346

EColl = n^2 / 2k = 2910.383046

Hashing = TRUE

Collision test, Mu = 2909.2534, Sigma = 53.8957

Test Results for Collisions

Expected number of collisions = Mu : 2909.25

Observed number of collisions : 0

39

p-value of test : 1 - eps1

Total number of cells containing j balls

j = 0 : 4289967296

j = 1 : 5000000

j = 2 : 0

j = 3 : 0

j = 4 : 0

j = 5 : 0

CPU time used : 00:00:01.83

Generator state:

HOST = gauss, Linux

LCG

sknuth_Gap test:

N = 1, n = 200000, r = 22, Alpha = 0, Beta = 0.00390625

Number of degrees of freedom : 1114

Chi-square statistic : 4.10e+7

p-value of test : eps

CPU time used : 00:00:00.51

Generator state:

HOST = gauss, Linux

LCG

sknuth_SimpPoker test:

N = 1, n = 400000, r = 24, d = 64, k = 64

Number of degrees of freedom : 19

Chi-square statistic : 1.10e+7

40

p-value of test : eps

CPU time used : 00:00:00.53

Generator state:

HOST = gauss, Linux

LCG

sknuth_CouponCollector test:

N = 1, n = 500000, r = 26, d = 16

Number of degrees of freedom : 44

Chi-square statistic : 3.40e+7

p-value of test : eps

CPU time used : 00:00:00.33

Generator state:

HOST = gauss, Linux

LCG

sknuth_MaxOft test:

N = 1, n = 2000000, r = 0, d = 100000, t = 6

Number of categories = 100000

Expected number per category = 20.00

Number of degrees of freedom : 99999

Chi-square statistic :99374.70

p-value of test : 0.92

Anderson-Darling statistic : 0.39

p-value of test : 0.61

41

CPU time used : 00:00:01.04

Generator state:

HOST = gauss, Linux

LCG

svaria_WeightDistrib test:

N = 1, n = 200000, r = 27, k = 256, Alpha = 0, Beta = 0.125

Number of degrees of freedom : 41

Chi-square statistic : 2.46e+6

p-value of test : eps

CPU time used : 00:00:00.44

Generator state:

HOST = gauss, Linux

LCG

smarsa_MatrixRank test:

N = 1, n = 20000, r = 20, s = 10, L = 60, k = 60

Number of degrees of freedom : 3

Chi-square statistic : 3.76e+6

p-value of test : eps

CPU time used : 00:00:00.62

Generator state:

HOST = gauss, Linux

42

LCG

sstring_HammingIndep test:

N = 1, n = 500000, r = 20, s = 10, L = 300, d = 0

Counters with expected numbers >= 10

Number of degrees of freedom : 2209

Chi-square statistic : 6.05e+5

p-value of test : eps

CPU time used : 00:00:00.77

Generator state:

HOST = gauss, Linux

LCG

swalk_RandomWalk1 test:

N = 1, n = 1000000, r = 0, s = 30, L0 = 150, L1 = 150

Test on the values of the Statistic H

Number of degrees of freedom : 52

ChiSquare statistic : 3070.62

p-value of test : eps

Test on the values of the Statistic M

Number of degrees of freedom : 52

ChiSquare statistic : 858.37

p-value of test : eps

Test on the values of the Statistic J

Number of degrees of freedom : 75

ChiSquare statistic : 133.32

p-value of test : 4.0e-5

43

Test on the values of the Statistic R

Number of degrees of freedom : 44

ChiSquare statistic : 184.71

p-value of test : eps

Test on the values of the Statistic C

Number of degrees of freedom : 26

ChiSquare statistic : 169.33

p-value of test : eps

CPU time used : 00:00:01.74

Generator state:

========= Summary results of SmallCrush =========

Version: TestU01 1.2.3

Generator: LCG

Number of statistics: 15

Total CPU time: 00:00:09.24

The following tests gave p-values outside [0.001, 0.9990]:

eps means a value < 1.0e-300:

eps1 means a value < 1.0e-15:

Test p-value

--

1 BirthdaySpacings eps

2 Collision 1 - eps1

3 Gap eps

4 SimpPoker eps

5 CouponCollector eps

7 WeightDistrib eps

8 MatrixRank eps

9 HammingIndep eps

10 RandomWalk1 H eps

10 RandomWalk1 M eps

10 RandomWalk1 J 4.0e-5

10 RandomWalk1 R eps

10 RandomWalk1 C eps

--

All other tests were passed

44

45

