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Abstract
Consider the set
{p(x) = xn+an−1xn−1+...+a1x+a0 ∈ Z[x ]| p irred., ∀i = 0, ... , n− 1, |ai | < M}
of monic irreducible polynomials of bounded height M. We will study the distri-
bution of the Galois groups of splitting fields in this set, and how low values of M
predict the asymptotic behaviour for M large.
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1 Theory

Introduction
Consider the set of monic irreducible polynomials in the ring Q[X ]. We are interested in
studying the distribution of their Galois groups by using experimental methods. Therefore
we have to restrict ourselves to finite subsets of this infinite set. This can be achieved by
considering, for fixed n ∈ N, the set of monic irreducible polynomials p(x) = xn + an−1xn−1 +
... + a1x + a0 ∈ Q[X ] such that:

• ∀i ∈ {0, 1, ..., n − 1} : ai ∈ Z

• ∀i ∈ {0, 1, ..., n − 1} : |ai | < M, for some constant 0 < M ∈ N

• increasing M to see which groups will appear most often as M gets large

Since these sets are finite the Galois groups Gal(p(x)) can be computed in a finite amount of
time. We will use SageMath for our calculations.

1.1 Groups
We begin by recalling the symmetric group, and its subgroups, in order to better understand
the results we will get from our computations.
Definition (Symmetric group). Let X be a finite set of size n ∈ N. The set

SX = {f : X → X | f is a bijection }

equipped with the operation of function composition ◦ and the identity map id forms a group
(SX , ◦, id). We will denote it Sn and call it the the symmetric group.

Suppose X = {x1, ... , xn}, then there are n ways to choose f (x1). After that, there are
(n−1) ways to choose f (x2) because f is injective. Repeating this argument for every element
in X we arrive at the result that there are n× (n− 1)× ...× 1 = n! possible bijections. Thus
the order of the symmetric group is n!. Since f ∈ Sn maps every element in X to a unique
element in X , it rearranges the elements of the set.

Another family of groups are cyclic groups. These are the groups that can be generated by
a single element.
Definition (Cyclic group). We say that a group (G , ·, 1) is cyclic if there exists an element
g ∈ G such that:

G = {gk : k ∈ Z}

Example. Two important examples are (Z, +, 0) which can be generated by −1 and 1 as well
as the integers modulo n (Z/nZ, +, 0) which can be generated by 1, because any infinite cyclic
group is isomorphic to Z and any finite cyclic group is isomorphic to Z/nZ.
Example. Consider the polynomial zn − 1 ∈ C[z ], n ∈ N its roots z = e2kπi/n, k ∈ {1, ... , n}
form a group that is generated by ζn = e2πi/n
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Definition (Dihedral group). The dihedral group is noted Dn and has order 2n. It is the
group of symmetries, like rotations and reflections, of a regular polygon.
Definition (Alternating group). The alternating group is the group of even permutations.
On a set of n elements, it is called the alternating group of degree n. It is denoted by An or
Alt(n).
Definition (Frobenius group). A Frobenius group, denoted Fpn , where p is a prime number,
is a transitive permutation group on a finite set such that no non-trivial element fixes more
than one point and some non-trivial element fixes a point.
Definition (Group action). Let G be a group and X be a set. A group action on the set X
is a map G × X → X , (g , x)→ gx such that :

1. ∀x ∈ X : 1x = x

2. ∀g , h ∈ G ,∀x ∈ X : g(hx) = (gh)x

For each x ∈ X the set O(x) = {gx : g ∈ G} ⊆ X is called the orbit of x under the group
action of G . Furthermore it is called transitive if there is only one orbit, that is,

∀x , y ∈ X ∃g ∈ G : gx = y

For each x ∈ X the stabilizer is the set of elements that keep x fixed:

Stab(x) = {g ∈ G : gx = x}

Definition (Solvable group). Let G be a group. We say that G is solvable if there exists a
series of subgroups of {1} = G0 ≤ G1 ≤ ... ≤ Gn = G such that for every i ∈ {1, ... , n} :

1. Gi−1 ⊴ Gi

2. Gi/Gi−1 is abelian

Useful in this context are simple groups, that is, groups G who only have {1} and G as normal
subgroups. Since every abelian group is normal the subgroups of abelian groups are also all
normal. Thus an abelian group is simple if and only if it has no subgroups other than {1} and
itself.
It can be shown that ∀n ≥ 5 : An is simple. Using this, we see that ∀n ≥ 5 : Sn is not solvable.
Because suppose by contradiction that Sn were solvable. Then all its subgroups would also be
solvable. But, knowing that An is simple, we have that it is not solvable, namely {1} ⊴ An
and An/{1} = An is not abelian. Thus we get a contradiction.
Theorem 1 (Orbit-Stabiliser theorem). Let G be a group which acts on a finite set X . Let
x ∈ X . Let O(x) denote the orbit of x . Let Stab(x) denote the stabilizer of x by G . Let
[G : Stab(x)] denote the index of Stab(x) in G . Then :

|O(x)| = [G : Stab(x)] = |G |
|Stab(x)|
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1.2 Polynomials and Fields
In group theory we usually are interested in studying subgroups of groups. In field theory we do
the opposite. Given a monic irreducible polynomial p(x) = xn+an−1xn−1+...+a1x+a0 ∈ Q[X ]
we want to extend our base field Q to a larger field over which the polynomial splits. If F
is a field such that Q ⊆ F , then we will call F a field extension of Q and denote it F/Q.
We want to find the smallest extension field of Q over which the polynomial splits into linear
factors.
Thus we call F a splitting field of p(x) if :

• p(x) = (x − a1)(x − a2) ... (x − an) ∈ F [X ]

• if Q ⊆ E ⊆ F is an intermediate field over which p(x) splits, then E = F

Consider the polynomial p(x) = x2 − 2 ∈ Q[X ] it does not split over Q because it has a root√
2 /∈ Q. Thus p(x) splits of R, but that is not the smallest field. We can create the splitting

field Q(
√

2) = {a + b
√

2: a, b ∈ Q} by adjoining the root to Q. It can be shown, with simple
arithmetic, that this set satisfies the field axioms. Furthermore, it is the smallest extension
field of Q that contains

√
2. If we interpret a, b ∈ Q as ’scalars’ and the elements in Q(

√
2)

as ’vectors’, then we see that Q(
√

2) is a vector space and that {1,
√

2} forms a basis of this
vector space.
Thus we arrive at the notion of the degree of a field extension. If F/Q is a field extension,
then we call the degree of the extension, denoted [F : Q], the dimension of the associated
vector space.

Let F be a field, then the following set :

• ϕ : F → F such that ϕ is a bijection

• ∀x , y ∈ F : ϕ(x + y) = ϕ(x) + ϕ(y) and ϕ(x · y) = ϕ(x) · ϕ(y)

equipped with function composition and the identity map id forms a group called the auto-
morphism group of F denoted Aut(F ). For a field extension E ⊆ F , the automorphisms ϕ
such that ∀x ∈ E : ϕ(x) = x , form a subgroup of Aut(F ), denoted Aut(F/E ), and are called
E - automorphisms of F . For our case Aut(F/Q) we have :

If Q ⊆ F , ϕ ∈ Aut(F/Q), q ∈ Q, then 1 ∈ F and there exist m, n ∈ Z, n 6= 0 such that
q = m

n . Since ϕ is an automorphism we have that

ϕ(n) = ϕ(1 + · · ·+ 1) = nϕ(1) = n

Thus
ϕ(q) = ϕ(m

n ) = ϕ(m)ϕ(1
n ) = ϕ(1 + · · ·+ 1) 1

ϕ(n) = m
n = q

So that the elements q ∈ Q are kept fixed by the automorphisms in F . Therefore, Aut(F ) =
Aut(F/Q) for every field F such that Q ⊆ F .

Note that this is true for every prime field.
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Definition (Galois group). Let p(x) ∈ Q[X ] be a monic irreducible polynomial and F be its
splitting field, then the Galois group of the polynomial is

Gal(p(x)) = Aut(F )

Suppose ϕ ∈ Gal(p(x)) and α ∈ F is a root of p(x) = xn + an−1xn−1 + ... + a1x + a0, then

αn + an−1α
n−1 + ... + a1α + a0 = 0

⇒ ϕ(αn + an−1α
n−1 + ... + a1α + a0) = ϕ(0) = 0

Thus, since ϕ is an automorphism, we have that

ϕ(α)n + ϕ(an−1)ϕ(α)n−1 + ... + ϕ(a1)ϕ(α) + ϕ(a0) = 0

⇒ ϕ(α)n + an−1ϕ(α)n−1 + ... + a1ϕ(α) + a0 = 0
This shows that ϕ(α) is also a root of the polynomial p(x). Let R = {α1, ... , αn} be the
set of roots of the polynomial. Then, since Gal(F/Q) is a set of bijections, the Galois group
permutes the set X . This explains why Gal(p(x)) ≤ Sn. Let F = Q(x1, ... , xn) be the splitting
field generated by adjoining to Q the set of roots. Since the Q-automorphisms keep Q fixed
we can determine the elements of the Galois group by how they act on the set of roots. In
our case, where the polynomial p(x) is irreducible, we also have that the Gal(p(x)) defines a
transitive group action on the set R . In our experimentations we will test if these are indeed
the groups that will appear.
Example 1.1. For the polynomial p(x) = x2 − 2 we have the following:

(a) The splitting field of p(x) is Q(
√

2).

(b) The Q-automorphisms of p(x) are:

id :
√

2 7−→
√

2
σ :
√

2 7−→ −
√

2

(c) Gal(p) = {id , σ} ∼= C2

We have that σ · σ = id , because (σ · σ)(
√

2) = σ(σ(
√

2)) = σ(−
√

2) =
√

2 = id(
√

2). So,
the group G is the same as C2, the cyclic group of order 2, or S2, the symmetric group of
order 2, because we have a single element σ with σ2 = σ · σ = 1 the identity on the group.
Example 1.2. For the polynomial p(x) = x4 − 5x2 + 6 we have the following:

(a) The splitting field of p(x) is Q(
√

2,
√

3).

(b) The Q-automorphisms of p(x) are:

id :
√

2 7−→
√

2 σ1 :
√

2 7−→ −
√

2
√

3 7−→
√

3
√

3 7−→
√

3

σ2 :
√

2 7−→
√

2 σ3 :
√

2 7−→ −
√

2
√

3 7−→ −
√

3
√

3 7−→ −
√

3
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(c) Gal(Q(
√

2,
√

3)/Q) = Gal(p) = {id , σ1, σ2, σ3} ∼= V4

Notice that

• σi · σi = id for i = 1, 2, 3

• σ1 · σ2 = σ3

So there are three elements of order 2, and Gal(Q(
√

2,
√

3) = 〈σ1, σ2〉. To see the connection
with the symmetric group we label the roots of p(x) :

√
2 → 1, −

√
2 → 2,

√
3 → 3 and

−
√

3→ 4. Then we see that σ1 = (12), σ2 = (34) and σ3 = (12)(34). So that

Gal(p(x)) = {(), (12), (34), (12)(34)} = 〈(12), (34)〉 ∼= V4 ≤ S4

Where V4 is the Klein four group. It has three non trivial, cyclic subgroups of order 2 : 〈(12)〉,
〈(34)〉 and 〈(12)(34)〉
Example 1.3. For the polynomial p(x) = x3 − 2 we have the following:

(a) The splitting field of p(x) is Q( 3
√

2, ζ).

(b) The Q-automorphisms of p(x) are:

id : ζ 7−→ ζ σ1 : ζ 7−→ ζ2 σ2 : ζ 7−→ ζ
3
√

2 7−→ 3
√

2 3
√

2 7−→ 3
√

2 3
√

2 7−→ ζ
3
√

2

σ3 : ζ 7−→ ζ σ4 : ζ 7−→ ζ2 σ5 : ζ 7−→ ζ2

3
√

2 7−→ ζ2 3
√

2 3
√

2 7−→ ζ
3
√

2 3
√

2 7−→ ζ2 3
√

2

(c) Gal(Q( 3
√

2, ζ)/Q) ∼= S3

We have Gal(p) = {id , σ1, σ2, σ3, σ4, σ5}. Notice that

σ2
2(ζ) = ζ

σ2
2( 3
√

2) = σ2(ζ 3
√

2) = σ2(ζ)σ2( 3
√

2) = ζ2 3
√

2

Hence
σ2

2 = σ3

Furthermore
σ1(σ2(ζ)) = ζ2

σ1(σ2( 3
√

2) = σ1(ζ 3
√

2) = σ1(ζ)σ1( 3
√

2) = ζ2 3
√

2

Thus
σ1 · σ2 = σ5

7



Similar calculations show that σ1σ
2
2 = σ4, σ2

1 = σ3
2 = id and σ2σ1 = σ1σ

2
2. Hence, Gal(p) =

〈σ1, σ2〉
Now we label the roots of p : 3

√
2→ 1, ζ 3

√
2→ 2 and ζ2 3

√
2→ 3. Then, since σ1( 3

√
2) = 3

√
2,

σ1(ζ 3
√

2) = ζ2 3
√

2 and σ1(ζ2 3
√

2) = ζ 3
√

2, we see that σ1 = (23). And, similarly, we see that
σ2 = (123). The symmetric group S3 is generated by 〈(23), (123)〉. Furthermore (23) and
(123) satisfy the same relations as σ1 and σ2 above. For example :

(123)(123)(123) = (123)(132) = id

(23)(23) = id
σ1σ2 = (23)(123) = (13) = σ5

σ1σ
2
2 = (23)(123)(123) = (23)(132) = (12) = σ4

From this we can then conclude that Gal(p) is isomorphic to S3.
Alternatively, we arrive at same result, in the following way: Each σ ∈ Gal(Q( 3

√
2, ζ)/Q) is

determined by its effect on the 3 roots of the polynomial x3 − 2, which we have seen in 1.3,
are 3
√

2, ζ 3
√

2, ζ2 3
√

2. There are at most 6 permutations of these 3 roots, and since we know
there are 6 automorphisms, every permutation of the roots comes from an automorphism of
the field extension. Therefore Gal(Q( 3

√
2, ζ)/Q) ∼= S3 or Gal(Q( 3

√
2, ζ)/Q) ∼= Z/2Z× Z/3Z.

To show that Gal(Q( 3
√

2, ζ)/Q) ∼= S3 we need to show that the Galois group is not abelian.
In fact we have that σ1 ◦ σ4 6= σ4 ◦ σ1. Thus, Gal(Q( 3

√
2, ζ)/Q) ∼= S3.

Note that we can also write Q( 3
√

2, ζ) = Q(a), where a is a primitive element. For instance
we can choose a = 3

√
2 + ζ. Then we have that mipoa ∈ Q[x ] such that Q(a) is the splitting

field. Then Gal(mipoa) = S3 but deg(mipoa) = [Q(a) : Q] = 6. Hence S3 ≤ S6 is a
transitive subgroup.

1.2.1 The fundamental theorem of Galois Theory

The fundamental theorem of Galois Theory establishes a one-to-one correspondence between
subgroups of the Galois group of a field extension E/F and the intermediate fields between
E and F . This result gives us the ability to use methods of group theory to solve problems
in field theory. For example, the question whether a polynomial is solvable by radicals will be
converted to the question whether the Galois group of the polynomial is solvable.
Corollary 2. Let G be a finite group of automorphisms of a field E ; then

G = Aut(E/E G)

Proof. As G ⊂ Aut(E/E G), we have inequalities[
E : E G

]
≤ (G : 1) ≤ (Aut(E/E G) : 1) ≤

[
E : E G

]

Corollary 3. Let E ⊃ M ⊃ F ; if E is Galois over F , then it is Galois aver M.

Proof. We know E is the splitting field of some separable f ∈ F [X ] ; it is also the splitting
field of f regarded as an element of M [X ] .
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Let E be an extension of F . A subextension of E/F is an extension M/F with M ⊂ E ,
i.e., a field M with F ⊂ M ⊂ E . When E is Galois over F , the subextensions of E/F are
in one-to-one correspondence with the subgroups of Gal(E/F). More precisely, there is the
following statement.
Theorem 4 (Fundamental Theorem of Galois Theory). Let E be a Galois extension of F
with Galois group G . The map H 7→ E H is a bijection from the set of subgroups of G to the
set of subextensions of E/F ,

{subgroups H of G} 1:1←→ {subextensions F ⊂ M ⊂ E },

with inverse M 7→ Gal(E/M). Moreover,

(a) the correspondence is inclusion-reversing: H1 ⊃ H2 ⇐⇒ E H1 ⊂ E H2 ;

(b) indices equal degrees: (H1 : H2) = [E H2 : E H1];

(c) σHσ−1 ⇐⇒ σM, i.e., E σHσ−1 = σ(E H), Gal(E/σM) = σGal(E/M)σ−1;

(d) H is normal in G =⇒ E H is normal (hence Galois) over F , in which case
Gal(E H/F ) ' G/H

Example. Taking the polynomial p(x) = x4 − 5x2 + 6 we have Gal(p) = 〈σ1, σ2〉 as we have
seen in example 1.2. Notice that :

• the fixed field of 〈id〉 is Q(
√

2,
√

3)

• the fixed field of 〈σ1〉 = 〈(12)〉 is Q(
√

3)

• the fixed field of 〈σ2〉 = 〈(34)〉 is Q(
√

2)

• the fixed field of 〈σ1 · σ2〉 = 〈(12), (34)〉 is Q(
√

6)

Q

Q(
√

6) Q(
√

3)Q(
√

2)

Q(
√

2,
√

3)

〈σ2〉 〈σ1 · σ2〉 〈σ1〉

〈σ1, σ2〉

〈id〉

Example. Taking the polynomial p(x) = x3 − 2, we have Gal(p) = 〈σ1, σ2〉 as we have seen
in example 1.3. Notice that :

• the fixed field of 〈id〉 is Q( 3
√

2, ζ)
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• the fixed field of 〈σ2〉 = 〈(123)〉 is Q(ζ)

• the fixed field of 〈σ1〉 = 〈(23)〉 is Q( 3
√

2)

• the fixed field of 〈σ1σ2 = σ5〉 = 〈(13)〉 is Q(ζ 3
√

2)

• the fixed field of 〈σ1σ
2
2 = σ4〉 = 〈(12)〉 is Q(ζ2 3

√
2)

Q( 3
√

2, ζ)

Q(ζ2 3
√

2)Q(ζ)

Q

Q(ζ 3
√

2)Q( 3
√

2)

〈id〉

〈σ1σ
2
2〉〈σ2〉

S3

〈σ1σ2〉〈σ1〉

1.2.2 The inverse Galois problem

Out of curiosity, one can ask whether given a field F and a finite group G there exists a
polynomial with coefficients in the field F whose Galois group over F is isomorphic to the
given group G?
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This question has been solved for some fields and one can look it up. Among the fields
where the problem has a solution, C(t) is the most distinguishable.

One can also ask whether every finite group appears as the Galois group of some polynomial
p ∈ Q[x ]. In other words, we ask when given a finite group G and the field Q, is there a Galois
extension K/Q such that Gal(K/Q) ∼= G?

This problem dates back to Hilbert, who realized Sn and An over Q. Since 1892 many more
groups have been realized over Q. Shafarevich completed in 1958 the work begun by Scholz
in 1936 and Reichardt in 1937, and realized all solvable groups over Q.

2 Experimentation

2.1 Which groups can appear?
The Galois group G of an irreducible polynomial f of degree n over F permutes all the n
different roots of f and therefore it has to be a transitive subgroup of Sn.

We used the following document to list the different transitive subgroups: https://people.
maths.bris.ac.uk/~matyd/GroupNames/T31.html

Let’s look at the transitive subgroups of the symmetric group:
For a polynomial of degree 3, there are 2 transitive subgroups of S3:

order name
3 A3 = C3
6 S3

For a polynomial of degree 4 there are 5 transitive subgroups of S4:

order name
4 C4
4 C2xC2 = V4
8 D4
12 A4
24 S4

S4

D4A4

C 2
2

C4

For a polynomial of degree 5 there are 5 transitive subgroups of S5:

order name
5 C5
10 D5
20 F5
60 A5
120 S5

S5

A5

D5

F5 C5

For a polynomial of degree 6 there are 15 transitive subgroups of S6:
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order name
6 C6
6 S3
12 D6
12 A4
18 C3 × S3
24 C2 × A4
24 S4
36 S2

3
36 C 2

3 ⋊ C4
48 C2 × S4
60 A5
72 S3 o C2
120 S5
360 A6
720 S6

Here ⋊ denotes the semi-direct product and o denotes the wreath product. We are not going
to define these notations here.

2.2 Program
Let’s look at the program in SageMath that computed the Galois groups for us. In this program
we define a function called Galois Groups that takes two inputs. The first is M, the bound on
the coefficients of the polynomials and the second is N , the degree of the polynomials we are
considering.

def Galois_Groups (M,N):
R.<x> = QQ[]
for i in range(1,M):

C = cartesian_product ([ range(−i,i+1) ]∗N)
d = {}
m = C. cardinality ()
for k in range(0,m) :

f = R(list(C[k]) +[1])
if f. is_irreducible ():

G = f. galois_group ()
S = G. structure_description ()
if S in d:

d.update( { S:d[S]+1 } )
else:

d.update ({S:1})
print(i)
print(d)

12



• we define an empty dictionary d to collect and count the Galois groups

• we determine if the polynomial f is irreducible and calculate its Galois group

• if the Galois Groups is already in the dictionary as a key we increase the associated value
by 1

• if not we store the Galois group as a key and give it the value 1

To count the number of irreducible polynomials we defined the function irreducible which takes
the same inputs.

def irreducible (M,N):
R.<x> = QQ[]
for i in range(1,M):

C = cartesian_product ([ range(−i,i+1) ]∗N)
ir = 0
r = 0
m = C. cardinality ()
for k in range(0,m) :

f = R(list(C[k]) +[1])
if f. is_irreducible ():

ir = ir + 1
else :

r = r + 1
print(ir)
print(r)

2.2.1 Polynomials of degree 3

For polynomials of degree 3, we find 2 different groups: cyclic and symmetric groups. Fur-
thermore, for height 9, we find that 83.9% of polynomials are irreducible.

height 1 2 3 4 5 6 7 8 9
S3 12 68 216 496 976 1668 2670 3972 5654

A3 = C3 0 4 10 18 26 36 48 64 102

The full symmetric group Sn appears most often. For height 9, we see that 98.2% of irreducible
polynomials have Galois group S3.

2.2.2 Polynomials of degree 4

For the polynomials of degree 4 we find more groups. The higher the degree, the more groups
we find. For polynomials of degree 4 we find 4 different groups. We have cyclic, symmetric,
dihedral and alternating groups. Furthermore, for height 9, we find that 85.8% of polynomials
are irreducible.
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height 1 2 3 4 5 6 7 8 9
S4 20 274 1382 4204 10382 21318 39660 67198 107652
D4 10 70 188 444 774 1258 1834 2790 3808
C4 2 2 4 8 10 52 60 76 92

C2 × C2 2 6 9 32 46 73 94 129 174
A4 0 2 8 12 16 28 62 86 130

Now let’s take a look at the polynomials of degree 4. Here, we have more groups that appear.
We have: S4, D4, C4, C2 × C2, and A4. We notice that the dominant group is S4. For height
9 we have that 96.2% of irreducible polynomials have Galois group S4.

2.2.3 Polynomials of degree 5

height 1 2 3 4 5 6
S5 104 1790 11324 43464 126396 302258
A5 0 8 32 56 126 230
F5 0 4 14 44 94 130
D5 0 10 78 116 198 282
C5 0 0 0 4 8 8

For the polynomials of degree 5, we see again that S5 is the dominating group. For height
6, we see that 99.7% of irreducible polynomials have Sn as Galois group. And that 81.5% of
polynomials are irreducible.

2.2.4 Polynomials of degree 6

height 1 2 3
S6 240 8672 79596
S4 20 59 155

C2 × S4 18 167 819
D6 2 46 108

S3 o C2 8 278 1056
C6 4 4 4
A5 0 4 22

S3 × S3 0 8 36
C2 × A4 0 8 48

A6 0 4 46
A4 0 2 6

C3 × S3 0 12 28
S5 0 0 6
S3 0 0 10

C 2
3 ⋊ C4 0 0 0

For polynomials of degree 6, we confirm again that the dominating group is S6. Here we see
that not all Galois groups appear yet because we only go to height 3. Furthermore, for height
3, we find that 69.6% of polynomials are irreducible.
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2.3 Conclusion
For every degree, as the bound M on the coefficients gets large, we notice that :

• most polynomials are irreducible

• most irreducible polynomials have Sn as Galois group

For example, for polynomials of degree 3 and height 9, we have that 83.9% of polynomials are
irreducible, and 98.2% of irreducible polynomials have Galois group S3. From these results we
arrive at the following questions:
For very large M

• are most monic polynomials of degree n irreducible and have Galois group Sn ?

• what is the probability that a random monic irreducible polynomial has the full symmetric
group as Galois group ?

To answer quantitative questions like these one can use big O notation. For functions
f , g : N → N we say that f is big O of g as n goes to infinity and write f (n) = O(g(n))
if there exist constants K , N > 0 such that :

∀n ≥ N : f (n) ≤ Kg(n)

Next we define the following sets :
The set

An(M) = {p ∈ Z[X ] : deg(p) = n, p is monic, max
1≤i≤n−i

{|ai |} ≤ M}

of polynomials of degree n with integer coefficients bounded by M. Notice that there are
(2M + 1)n elements in this set. Since this is how many order pairs (a0, ... , an − 1) one can
form with coefficients drawn from {−M, ... ,−1, 0, 1, ... , +M}. This means that

An(M) = O(Mn)

The subset :
Bn(M) = {p ∈ An(M) : p is irreducible}

It is known that
#Bn(M) = O(Mn)

To quantify how many polynomials have the full symmetric group as Galois group we define
the following sets :
The set of polynomials in An(M) with Galois group Sn :

Cn(M) = {p ∈ An(M) : Gal(p) = Sn}

And the complement :
Dn(M) = {p ∈ An(M) : Gal(p) 6= Sn}

15



Note that, then we have the following disjoint union :

Bn(M) = Cn(M)
⊔

Dn(M)

B.L. van der Waerden [3] [4] showed that

#Cn(M)
#An(M) → 1

as M goes to infinity. And that for a random polynomial in An(M)

Prob(Gal(p) = Sn) ≥ 1− O(M−1/6)

Thus :
Prob(Gal(p) = Sn) = 1 as M →∞

O(M−1/6) is an error term that tells us how fast the Prob(Gal(p) = Sn) tends to one.

16



References
[1] Gabor Wiese Algèbre

[2] Gabor Wiese Structures Mathématiques

[3] Hanson Hao, Eli Navarro, Henri Stern Irreducibility and Galois Groups of Random Polyno-
mials

[4] B.L. van der Waerden Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit
Affekt.

17


	Theory
	Groups
	Polynomials and Fields
	The fundamental theorem of Galois Theory
	The inverse Galois problem


	Experimentation
	Which groups can appear?
	Program
	Polynomials of degree 3
	Polynomials of degree 4
	Polynomials of degree 5
	Polynomials of degree 6

	Conclusion


