Distribution of
 Galois groups

Da Cruz Rebelo Tania
Da Silva Carregueira Sara
Capesius Nicolas

supervised by
Belmans Pieter

Experimental Mathematics 4
University of Luxembourg

Abstract

Consider the set $\left\{p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in \mathbb{Z}[x] \mid p\right.$ irred., $\left.\forall i=0, \ldots, n-1,\left|a_{i}\right|<M\right\}$ of monic irreducible polynomials of bounded height M. We will study the distribution of the Galois groups of splitting fields in this set, and how low values of M predict the asymptotic behaviour for M large.

Contents

1 Theory 3
1.1 Groups 3
1.2 Polynomials and Fields 5
1.2.1 The fundamental theorem of Galois Theory 8
1.2.2 The inverse Galois problem 10
2 Experimentation 11
2.1 Which groups can appear? 11
2.2 Program 12
2.2.1 Polynomials of degree 3 13
2.2.2 Polynomials of degree 4 13
2.2.3 Polynomials of degree 5 14
2.2.4 Polynomials of degree 6 14
2.3 Conclusion 15

1 Theory

Introduction

Consider the set of monic irreducible polynomials in the ring $\mathbb{Q}[X]$. We are interested in studying the distribution of their Galois groups by using experimental methods. Therefore we have to restrict ourselves to finite subsets of this infinite set. This can be achieved by considering, for fixed $n \in \mathbb{N}$, the set of monic irreducible polynomials $p(x)=x^{n}+a_{n-1} x^{n-1}+$ $\ldots+a_{1} x+a_{0} \in \mathbb{Q}[X]$ such that:

- $\forall i \in\{0,1, \ldots, n-1\}: a_{i} \in \mathbb{Z}$
- $\forall i \in\{0,1, \ldots, n-1\}:\left|a_{i}\right|<M$, for some constant $0<M \in \mathbb{N}$
- increasing M to see which groups will appear most often as M gets large

Since these sets are finite the Galois groups $\operatorname{Gal}(p(x))$ can be computed in a finite amount of time. We will use SageMath for our calculations.

1.1 Groups

We begin by recalling the symmetric group, and its subgroups, in order to better understand the results we will get from our computations.
Definition (Symmetric group). Let X be a finite set of size $n \in \mathbb{N}$. The set

$$
S_{X}=\{f: X \rightarrow X \mid f \text { is a bijection }\}
$$

equipped with the operation of function composition \circ and the identity map id forms a group (S_{X}, \circ, id). We will denote it S_{n} and call it the the symmetric group.
Suppose $X=\left\{x_{1}, \ldots, x_{n}\right\}$, then there are n ways to choose $f\left(x_{1}\right)$. After that, there are ($n-1$) ways to choose $f\left(x_{2}\right)$ because f is injective. Repeating this argument for every element in X we arrive at the result that there are $n \times(n-1) \times \ldots \times 1=n$! possible bijections. Thus the order of the symmetric group is $n!$. Since $f \in S_{n}$ maps every element in X to a unique element in X, it rearranges the elements of the set.

Another family of groups are cyclic groups. These are the groups that can be generated by a single element.

Definition (Cyclic group). We say that a group $(G, \cdot, 1)$ is cyclic if there exists an element $g \in G$ such that:

$$
G=\left\{g^{k}: k \in \mathbb{Z}\right\}
$$

Example. Two important examples are $(\mathbb{Z},+, 0)$ which can be generated by -1 and 1 as well as the integers modulo $n(\mathbb{Z} / n \mathbb{Z},+, 0)$ which can be generated by 1 , because any infinite cyclic group is isomorphic to \mathbb{Z} and any finite cyclic group is isomorphic to $\mathbb{Z} / n \mathbb{Z}$.
Example. Consider the polynomial $z^{n}-1 \in \mathbb{C}[z], n \in \mathbb{N}$ its roots $z=e^{2 k \pi i / n}, k \in\{1, \ldots, n\}$ form a group that is generated by $\zeta_{n}=e^{2 \pi i / n}$

Definition (Dihedral group). The dihedral group is noted D_{n} and has order $2 n$. It is the group of symmetries, like rotations and reflections, of a regular polygon.

Definition (Alternating group). The alternating group is the group of even permutations. On a set of n elements, it is called the alternating group of degree n. It is denoted by A_{n} or Alt (n).
Definition (Frobenius group). A Frobenius group, denoted $F_{p^{n}}$, where p is a prime number, is a transitive permutation group on a finite set such that no non-trivial element fixes more than one point and some non-trivial element fixes a point.
Definition (Group action). Let G be a group and X be a set. A group action on the set X is a map $G \times X \rightarrow X,(g, x) \rightarrow g x$ such that :

1. $\forall x \in X: 1 x=x$
2. $\forall g, h \in G, \forall x \in X: g(h x)=(g h) x$

For each $x \in X$ the set $O(x)=\{g x: g \in G\} \subseteq X$ is called the orbit of x under the group action of G. Furthermore it is called transitive if there is only one orbit, that is,

$$
\forall x, y \in X \exists g \in G: g x=y
$$

For each $x \in X$ the stabilizer is the set of elements that keep x fixed:

$$
\operatorname{Stab}(x)=\{g \in G: g x=x\}
$$

Definition (Solvable group). Let G be a group. We say that G is solvable if there exists a series of subgroups of $\{1\}=G_{0} \leq G_{1} \leq \ldots \leq G_{n}=G$ such that for every $i \in\{1, \ldots, n\}$:

1. $G_{i-1} \unlhd G_{i}$
2. G_{i} / G_{i-1} is abelian

Useful in this context are simple groups, that is, groups G who only have $\{1\}$ and G as normal subgroups. Since every abelian group is normal the subgroups of abelian groups are also all normal. Thus an abelian group is simple if and only if it has no subgroups other than $\{1\}$ and itself.
It can be shown that $\forall n \geq 5: A_{n}$ is simple. Using this, we see that $\forall n \geq 5: S_{n}$ is not solvable. Because suppose by contradiction that S_{n} were solvable. Then all its subgroups would also be solvable. But, knowing that A_{n} is simple, we have that it is not solvable, namely $\{1\} \unlhd A_{n}$ and $A_{n} /\{1\}=A_{n}$ is not abelian. Thus we get a contradiction.

Theorem 1 (Orbit-Stabiliser theorem). Let G be a group which acts on a finite set X. Let $x \in X$. Let $O(x)$ denote the orbit of x. Let $\operatorname{Stab}(x)$ denote the stabilizer of x by G. Let [$G: \operatorname{Stab}(x)$] denote the index of $\operatorname{Stab}(x)$ in G. Then :

$$
|O(x)|=[G: \operatorname{Stab}(x)]=\frac{|G|}{|\operatorname{Stab}(x)|}
$$

1.2 Polynomials and Fields

In group theory we usually are interested in studying subgroups of groups. In field theory we do the opposite. Given a monic irreducible polynomial $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0} \in \mathbb{Q}[X]$ we want to extend our base field \mathbb{Q} to a larger field over which the polynomial splits. If F is a field such that $\mathbb{Q} \subseteq F$, then we will call F a field extension of \mathbb{Q} and denote it F / \mathbb{Q}. We want to find the smallest extension field of \mathbb{Q} over which the polynomial splits into linear factors.
Thus we call F a splitting field of $p(x)$ if :

- $p(x)=\left(x-a_{1}\right)\left(x-a_{2}\right) \ldots\left(x-a_{n}\right) \in F[X]$
- if $\mathbb{Q} \subseteq E \subseteq F$ is an intermediate field over which $p(x)$ splits, then $E=F$

Consider the polynomial $p(x)=x^{2}-2 \in \mathbb{Q}[X]$ it does not split over \mathbb{Q} because it has a root $\sqrt{2} \notin \mathbb{Q}$. Thus $p(x)$ splits of \mathbb{R}, but that is not the smallest field. We can create the splitting field $\mathbb{Q}(\sqrt{2})=\{a+b \sqrt{2}: a, b \in \mathbb{Q}\}$ by adjoining the root to \mathbb{Q}. It can be shown, with simple arithmetic, that this set satisfies the field axioms. Furthermore, it is the smallest extension field of \mathbb{Q} that contains $\sqrt{2}$. If we interpret $a, b \in \mathbb{Q}$ as 'scalars' and the elements in $\mathbb{Q}(\sqrt{2})$ as 'vectors', then we see that $\mathbb{Q}(\sqrt{2})$ is a vector space and that $\{1, \sqrt{2}\}$ forms a basis of this vector space.
Thus we arrive at the notion of the degree of a field extension. If F / \mathbb{Q} is a field extension, then we call the degree of the extension, denoted $[F: \mathbb{Q}]$, the dimension of the associated vector space.

Let F be a field, then the following set :

- $\phi: F \rightarrow F$ such that ϕ is a bijection
- $\forall x, y \in F: \phi(x+y)=\phi(x)+\phi(y)$ and $\phi(x \cdot y)=\phi(x) \cdot \phi(y)$
equipped with function composition and the identity map id forms a group called the automorphism group of F denoted $\operatorname{Aut}(F)$. For a field extension $E \subseteq F$, the automorphisms ϕ such that $\forall x \in E: \phi(x)=x$, form a subgroup of $\operatorname{Aut}(F)$, denoted $\operatorname{Aut}(F / E)$, and are called E - automorphisms of F. For our case $\operatorname{Aut}(F / \mathbb{Q})$ we have :

If $\mathbb{Q} \subseteq F, \phi \in \operatorname{Aut}(F / \mathbb{Q}), q \in \mathbb{Q}$, then $1 \in F$ and there exist $m, n \in \mathbb{Z}, n \neq 0$ such that $q=\frac{m}{n}$. Since ϕ is an automorphism we have that

$$
\phi(n)=\phi(1+\cdots+1)=n \phi(1)=n
$$

Thus

$$
\phi(q)=\phi\left(\frac{m}{n}\right)=\phi(m) \phi\left(\frac{1}{n}\right)=\phi(1+\cdots+1) \frac{1}{\phi(n)}=\frac{m}{n}=q
$$

So that the elements $q \in \mathbb{Q}$ are kept fixed by the automorphisms in F. Therefore, $\operatorname{Aut}(F)=$ $\operatorname{Aut}(F / \mathbb{Q})$ for every field F such that $\mathbb{Q} \subseteq F$.

Note that this is true for every prime field.

Definition (Galois group). Let $p(x) \in \mathbb{Q}[X]$ be a monic irreducible polynomial and F be its splitting field, then the Galois group of the polynomial is

$$
\operatorname{Gal}(p(x))=\operatorname{Aut}(F)
$$

Suppose $\phi \in \operatorname{Gal}(p(x))$ and $\alpha \in F$ is a root of $p(x)=x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$, then

$$
\begin{gathered}
\alpha^{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{1} \alpha+a_{0}=0 \\
\Rightarrow \phi\left(\alpha^{n}+a_{n-1} \alpha^{n-1}+\ldots+a_{1} \alpha+a_{0}\right)=\phi(0)=0
\end{gathered}
$$

Thus, since ϕ is an automorphism, we have that

$$
\begin{aligned}
& \phi(\alpha)^{n}+\phi\left(a_{n-1}\right) \phi(\alpha)^{n-1}+\ldots+\phi\left(a_{1}\right) \phi(\alpha)+\phi\left(a_{0}\right)=0 \\
& \quad \Rightarrow \phi(\alpha)^{n}+a_{n-1} \phi(\alpha)^{n-1}+\ldots+a_{1} \phi(\alpha)+a_{0}=0
\end{aligned}
$$

This shows that $\phi(\alpha)$ is also a root of the polynomial $p(x)$. Let $R=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ be the set of roots of the polynomial. Then, since $\operatorname{Gal}(F / \mathbb{Q})$ is a set of bijections, the Galois group permutes the set X. This explains why $\operatorname{Gal}(p(x)) \leq S_{n}$. Let $F=\mathbb{Q}\left(x_{1}, \ldots, x_{n}\right)$ be the splitting field generated by adjoining to \mathbb{Q} the set of roots. Since the \mathbb{Q}-automorphisms keep \mathbb{Q} fixed we can determine the elements of the Galois group by how they act on the set of roots. In our case, where the polynomial $p(x)$ is irreducible, we also have that the $\operatorname{Gal}(p(x))$ defines a transitive group action on the set R. In our experimentations we will test if these are indeed the groups that will appear.
Example 1.1. For the polynomial $p(x)=x^{2}-2$ we have the following:
(a) The splitting field of $p(x)$ is $\mathbb{Q}(\sqrt{2})$.
(b) The \mathbb{Q}-automorphisms of $p(x)$ are:

$$
\begin{aligned}
& \text { id }: \sqrt{2} \longmapsto \sqrt{2} \\
& \sigma: \sqrt{2} \longmapsto-\sqrt{2}
\end{aligned}
$$

(c) $\operatorname{Gal}(p)=\{i d, \sigma\} \cong C_{2}$

We have that $\sigma \cdot \sigma=i d$, because $(\sigma \cdot \sigma)(\sqrt{2})=\sigma(\sigma(\sqrt{2}))=\sigma(-\sqrt{2})=\sqrt{2}=i d(\sqrt{2})$. So, the group G is the same as C_{2}, the cyclic group of order 2 , or S_{2}, the symmetric group of order 2 , because we have a single element σ with $\sigma^{2}=\sigma \cdot \sigma=1$ the identity on the group.
Example 1.2. For the polynomial $p(x)=x^{4}-5 x^{2}+6$ we have the following:
(a) The splitting field of $p(x)$ is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(b) The \mathbb{Q}-automorphisms of $p(x)$ are:

$$
\begin{aligned}
i d: \sqrt{2} & \longmapsto \sqrt{2} & \sigma_{1}: \sqrt{2} & \longmapsto-\sqrt{2} \\
\sqrt{3} & \longmapsto \sqrt{3} & \sqrt{3} & \longmapsto \sqrt{3} \\
\sigma_{2}: \sqrt{2} & \longmapsto \sqrt{2} & \sigma_{3}: \sqrt{2} & \longmapsto-\sqrt{2} \\
\sqrt{3} & \longmapsto-\sqrt{3} & \sqrt{3} & \longmapsto-\sqrt{3}
\end{aligned}
$$

(c) $\operatorname{Gal}(\mathbb{Q}(\sqrt{2}, \sqrt{3}) / \mathbb{Q})=\operatorname{Gal}(p)=\left\{i d, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\} \cong V_{4}$

Notice that

- $\sigma_{i} \cdot \sigma_{i}=i d$ for $i=1,2,3$
- $\sigma_{1} \cdot \sigma_{2}=\sigma_{3}$

So there are three elements of order 2 , and $\operatorname{Gal}\left(\mathbb{Q}(\sqrt{2}, \sqrt{3})=\left\langle\sigma_{1}, \sigma_{2}\right\rangle\right.$. To see the connection with the symmetric group we label the roots of $p(x): \sqrt{2} \rightarrow 1,-\sqrt{2} \rightarrow 2, \sqrt{3} \rightarrow 3$ and $-\sqrt{3} \rightarrow 4$. Then we see that $\sigma_{1}=(12), \sigma_{2}=(34)$ and $\sigma_{3}=(12)(34)$. So that

$$
\operatorname{Gal}(p(x))=\{(),(12),(34),(12)(34)\}=\langle(12),(34)\rangle \cong V_{4} \leq S_{4}
$$

Where V_{4} is the Klein four group. It has three non trivial, cyclic subgroups of order $2:\langle(12)\rangle$, $\langle(34)\rangle$ and $\langle(12)(34)\rangle$
Example 1.3. For the polynomial $p(x)=x^{3}-2$ we have the following:
(a) The splitting field of $p(x)$ is $\mathbb{Q}(\sqrt[3]{2}, \zeta)$.
(b) The \mathbb{Q}-automorphisms of $p(x)$ are:

$\begin{aligned} i d & : \zeta \longmapsto \zeta \\ \sqrt[3]{2} & \longmapsto \sqrt[3]{2} \end{aligned}$	$\begin{aligned} \sigma_{1}: \zeta & \longmapsto \zeta^{2} \\ \sqrt[3]{2} & \longmapsto \sqrt[3]{2} \end{aligned}$	$\begin{aligned} \sigma_{2} & : \zeta \\ \sqrt[3]{2} & \longmapsto \zeta \sqrt[3]{2} \end{aligned}$
$\sigma_{3}: \zeta \longmapsto \zeta$	$\sigma_{4}: \zeta \longmapsto \zeta^{2}$	$\sigma_{5}: \zeta \longmapsto \zeta^{2}$
$\sqrt[3]{2} \longmapsto \zeta^{2} \sqrt[3]{2}$	$\sqrt[3]{2} \longmapsto \zeta \sqrt[3]{2}$	$\sqrt[3]{2} \longmapsto \zeta \sqrt{2}$ 2

(c) $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}) \cong S_{3}$

We have $\operatorname{Gal}(p)=\left\{i d, \sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4}, \sigma_{5}\right\}$. Notice that

$$
\begin{gathered}
\sigma_{2}^{2}(\zeta)=\zeta \\
\sigma_{2}^{2}(\sqrt[3]{2})=\sigma_{2}(\zeta \sqrt[3]{2})=\sigma_{2}(\zeta) \sigma_{2}(\sqrt[3]{2})=\zeta^{2} \sqrt[3]{2}
\end{gathered}
$$

Hence

$$
\sigma_{2}^{2}=\sigma_{3}
$$

Furthermore

$$
\begin{gathered}
\sigma_{1}\left(\sigma_{2}(\zeta)\right)=\zeta^{2} \\
\sigma_{1}\left(\sigma_{2}(\sqrt[3]{2})=\sigma_{1}(\zeta \sqrt[3]{2})=\sigma_{1}(\zeta) \sigma_{1}(\sqrt[3]{2})=\zeta^{2} \sqrt[3]{2}\right.
\end{gathered}
$$

Thus

$$
\sigma_{1} \cdot \sigma_{2}=\sigma_{5}
$$

Similar calculations show that $\sigma_{1} \sigma_{2}^{2}=\sigma_{4}, \sigma_{1}^{2}=\sigma_{2}^{3}=i d$ and $\sigma_{2} \sigma_{1}=\sigma_{1} \sigma_{2}^{2}$. Hence, $\operatorname{GaI}(p)=$ $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$
Now we label the roots of $p: \sqrt[3]{2} \rightarrow 1, \zeta \sqrt[3]{2} \rightarrow 2$ and $\zeta^{2} \sqrt[3]{2} \rightarrow 3$. Then, since $\sigma_{1}(\sqrt[3]{2})=\sqrt[3]{2}$, $\sigma_{1}(\zeta \sqrt[3]{2})=\zeta^{2} \sqrt[3]{2}$ and $\sigma_{1}\left(\zeta^{2} \sqrt[3]{2}\right)=\zeta \sqrt[3]{2}$, we see that $\sigma_{1}=(23)$. And, similarly, we see that $\sigma_{2}=(123)$. The symmetric group S_{3} is generated by $\langle(23),(123)\rangle$. Furthermore (23) and (123) satisfy the same relations as σ_{1} and σ_{2} above. For example:

$$
\begin{gathered}
(123)(123)(123)=(123)(132)=i d \\
(23)(23)=i d \\
\sigma_{1} \sigma_{2}=(23)(123)=(13)=\sigma_{5} \\
\sigma_{1} \sigma_{2}^{2}=(23)(123)(123)=(23)(132)=(12)=\sigma_{4}
\end{gathered}
$$

From this we can then conclude that $\mathrm{Gal}(p)$ is isomorphic to S_{3}.
Alternatively, we arrive at same result, in the following way: Each $\sigma \in \operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q})$ is determined by its effect on the 3 roots of the polynomial $x^{3}-2$, which we have seen in $\mathbb{1 . 3}$, are $\sqrt[3]{2}, \zeta \sqrt[3]{2}, \zeta^{2} \sqrt[3]{2}$. There are at most 6 permutations of these 3 roots, and since we know there are 6 automorphisms, every permutation of the roots comes from an automorphism of the field extension. Therefore $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}) \cong S_{3}$ or $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z}$. To show that $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}) \cong S_{3}$ we need to show that the Galois group is not abelian. In fact we have that $\sigma_{1} \circ \sigma_{4} \neq \sigma_{4} \circ \sigma_{1}$. Thus, $\operatorname{Gal}(\mathbb{Q}(\sqrt[3]{2}, \zeta) / \mathbb{Q}) \cong S_{3}$.

Note that we can also write $\mathbb{Q}(\sqrt[3]{2}, \zeta)=\mathbb{Q}(a)$, where a is a primitive element. For instance we can choose $a=\sqrt[3]{2}+\zeta$. Then we have that mipo $o_{a} \in \mathbb{Q}[x]$ such that $\mathbb{Q}(a)$ is the splitting field. Then $\operatorname{Gal}\left(\right.$ mipo $\left._{a}\right)=S_{3}$ but $\operatorname{deg}\left(\right.$ mipo $\left._{a}\right)=[\mathbb{Q}(a): \mathbb{Q}]=6$. Hence $S_{3} \leq S_{6}$ is a transitive subgroup.

1.2.1 The fundamental theorem of Galois Theory

The fundamental theorem of Galois Theory establishes a one-to-one correspondence between subgroups of the Galois group of a field extension E / F and the intermediate fields between E and F. This result gives us the ability to use methods of group theory to solve problems in field theory. For example, the question whether a polynomial is solvable by radicals will be converted to the question whether the Galois group of the polynomial is solvable.
Corollary 2. Let G be a finite group of automorphisms of a field E; then

$$
G=\operatorname{Aut}\left(E / E^{G}\right)
$$

Proof. As $G \subset \operatorname{Aut}\left(E / E^{G}\right)$, we have inequalities

$$
\left[E: E^{G}\right] \leq(G: 1) \leq\left(\operatorname{Aut}\left(E / E^{G}\right): 1\right) \leq\left[E: E^{G}\right]
$$

Corollary 3. Let $E \supset M \supset F$; if E is Galois over F, then it is Galois aver M.
Proof. We know E is the splitting field of some separable $f \in F[X]$; it is also the splitting field of f regarded as an element of $M[X]$.

Let E be an extension of F. A subextension of E / F is an extension M / F with $M \subset E$, i.e., a field M with $F \subset M \subset E$. When E is Galois over F, the subextensions of E / F are in one-to-one correspondence with the subgroups of $\operatorname{Gal}(E / F)$. More precisely, there is the following statement.
Theorem 4 (Fundamental Theorem of Galois Theory). Let E be a Galois extension of F with Galois group G. The map $H \mapsto E^{H}$ is a bijection from the set of subgroups of G to the set of subextensions of E / F,

$$
\{\text { subgroups } H \text { of } G\} \stackrel{1: 1}{\longleftrightarrow}\{\text { subextensions } F \subset M \subset E\}
$$

with inverse $M \mapsto \operatorname{Gal}(E / M)$. Moreover,
(a) the correspondence is inclusion-reversing: $H_{1} \supset H_{2} \Longleftrightarrow E^{H_{1}} \subset E^{H_{2}}$;
(b) indices equal degrees: $\left(H_{1}: H_{2}\right)=\left[E^{H_{2}}: E^{H_{1}}\right]$;
(c) $\sigma H \sigma^{-1} \Longleftrightarrow \sigma M$, i.e., $E^{\sigma H \sigma^{-1}}=\sigma\left(E^{H}\right), G a l(E / \sigma M)=\sigma G a l(E / M) \sigma^{-1}$;
(d) H is normal in $G \Longrightarrow E^{H}$ is normal (hence Galois) over F, in which case

$$
\operatorname{Gal}\left(E^{H} / F\right) \simeq G / H
$$

Example. Taking the polynomial $p(x)=x^{4}-5 x^{2}+6$ we have $\operatorname{Gal}(p)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ as we have seen in example [1.2. Notice that:

- the fixed field of $\langle i d\rangle$ is $\mathbb{Q}(\sqrt{2}, \sqrt{3})$
- the fixed field of $\left\langle\sigma_{1}\right\rangle=\langle(12)\rangle$ is $\mathbb{Q}(\sqrt{3})$
- the fixed field of $\left\langle\sigma_{2}\right\rangle=\langle(34)\rangle$ is $\mathbb{Q}(\sqrt{2})$
- the fixed field of $\left\langle\sigma_{1} \cdot \sigma_{2}\right\rangle=\langle(12),(34)\rangle$ is $\mathbb{Q}(\sqrt{6})$

Example. Taking the polynomial $p(x)=x^{3}-2$, we have $\operatorname{Gal}(p)=\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ as we have seen in example [1.3. Notice that:

- the fixed field of $\langle i d\rangle$ is $\mathbb{Q}(\sqrt[3]{2}, \zeta)$
- the fixed field of $\left\langle\sigma_{2}\right\rangle=\langle(123)\rangle$ is $\mathbb{Q}(\zeta)$
- the fixed field of $\left\langle\sigma_{1}\right\rangle=\langle(23)\rangle$ is $\mathbb{Q}(\sqrt[3]{2})$
- the fixed field of $\left\langle\sigma_{1} \sigma_{2}=\sigma_{5}\right\rangle=\langle(13)\rangle$ is $\mathbb{Q}(\zeta \sqrt[3]{2})$
- the fixed field of $\left\langle\sigma_{1} \sigma_{2}^{2}=\sigma_{4}\right\rangle=\langle(12)\rangle$ is $\mathbb{Q}\left(\zeta^{2} \sqrt[3]{2}\right)$

1.2.2 The inverse Galois problem

Out of curiosity, one can ask whether given a field F and a finite group G there exists a polynomial with coefficients in the field F whose Galois group over F is isomorphic to the given group G ?

This question has been solved for some fields and one can look it up. Among the fields where the problem has a solution, $\mathbb{C}(t)$ is the most distinguishable.

One can also ask whether every finite group appears as the Galois group of some polynomial $p \in \mathbb{Q}[x]$. In other words, we ask when given a finite group G and the field \mathbb{Q}, is there a Galois extension K / \mathbb{Q} such that $\operatorname{Gal}(K / \mathbb{Q}) \cong G$?
This problem dates back to Hilbert, who realized S_{n} and A_{n} over \mathbb{Q}. Since 1892 many more groups have been realized over \mathbb{Q}. Shafarevich completed in 1958 the work begun by Scholz in 1936 and Reichardt in 1937, and realized all solvable groups over \mathbb{Q}.

2 Experimentation

2.1 Which groups can appear?

The Galois group G of an irreducible polynomial f of degree n over F permutes all the n different roots of f and therefore it has to be a transitive subgroup of S_{n}.
We used the following document to list the different transitive subgroups: https://people. maths.bris.ac.uk/~matyd/GroupNames/T31.htmI

Let's look at the transitive subgroups of the symmetric group:
For a polynomial of degree 3 , there are 2 transitive subgroups of S_{3} :

order	name
3	$A_{3}=C_{3}$
6	S_{3}

For a polynomial of degree 4 there are 5 transitive subgroups of S_{4} :

order	name
4	C_{4}
4	$C_{2} \times C_{2}=V_{4}$
8	D_{4}
12	A_{4}
24	S_{4}

For a polynomial of degree 5 there are 5 transitive subgroups of S_{5} :

order	name
5	C_{5}
10	D_{5}
20	F_{5}
60	A_{5}
120	S_{5}

For a polynomial of degree 6 there are 15 transitive subgroups of S_{6} :

order	name
6	C_{6}
6	S_{3}
12	D_{6}
12	A_{4}
18	$C_{3} \times S_{3}$
24	$C_{2} \times A_{4}$
24	S_{4}
36	S_{3}^{2}
36	$C_{3}^{2} \rtimes C_{4}$
48	$C_{2} \times S_{4}$
60	A_{5}
72	S_{3} 2 C_{2}
120	S_{5}
360	A_{6}
720	S_{6}

Here \rtimes denotes the semi-direct product and \urcorner denotes the wreath product. We are not going to define these notations here.

2.2 Program

Let's look at the program in SageMath that computed the Galois groups for us. In this program we define a function called Galois Groups that takes two inputs. The first is M, the bound on the coefficients of the polynomials and the second is N, the degree of the polynomials we are considering.

```
def Galois_Groups(M,N):
    R.<x> = QQ[]
    for i in range(1,M):
        C = cartesian_product([range(-i,i+1)]*N)
        d = {}
        m = C.cardinality()
        for k in range(0,m) :
            f = R(list(C[k])+[1])
                if f.is_irreducible():
                    G = f.galois_group()
                    S = G.structure_description()
                        if S in d:
                            d.update( { S:d[S]+1 } )
                    else:
                    d.update({S:1})
            print(i)
            print(d)
```

- we define an empty dictionary d to collect and count the Galois groups
- we determine if the polynomial f is irreducible and calculate its Galois group
- if the Galois Groups is already in the dictionary as a key we increase the associated value by 1
- if not we store the Galois group as a key and give it the value 1

To count the number of irreducible polynomials we defined the function irreducible which takes the same inputs.

```
def irreducible(M,N):
    R.<x> = QQ[]
    for i in range(1,M):
        C = cartesian_product([range(-i,i+1)]*N)
        ir = 0
        r = 0
        m = C.cardinality()
        for k in range(0,m) :
        f = R(list(C[k])+[1])
        if f.is_irreducible():
            ir = ir + 1
            else :
                r = r + 1
    print(ir)
    print(r)
```


2.2.1 Polynomials of degree 3

For polynomials of degree 3, we find 2 different groups: cyclic and symmetric groups. Furthermore, for height 9 , we find that 83.9% of polynomials are irreducible.

height	1	2	3	4	5	6	7	8	9
S_{3}	12	68	216	496	976	1668	2670	3972	5654
$A_{3}=C_{3}$	0	4	10	18	26	36	48	64	102

The full symmetric group S_{n} appears most often. For height 9, we see that 98.2% of irreducible polynomials have Galois group S_{3}.

2.2.2 Polynomials of degree 4

For the polynomials of degree 4 we find more groups. The higher the degree, the more groups we find. For polynomials of degree 4 we find 4 different groups. We have cyclic, symmetric, dihedral and alternating groups. Furthermore, for height 9, we find that 85.8% of polynomials are irreducible.

height	1	2	3	4	5	6	7	8	9
S_{4}	20	274	1382	4204	10382	21318	39660	67198	107652
D_{4}	10	70	188	444	774	1258	1834	2790	3808
C_{4}	2	2	4	8	10	52	60	76	92
$C_{2} \times C_{2}$	2	6	9	32	46	73	94	129	174
A_{4}	0	2	8	12	16	28	62	86	130

Now let's take a look at the polynomials of degree 4. Here, we have more groups that appear. We have: $S_{4}, D_{4}, C_{4}, C_{2} \times C_{2}$, and A_{4}. We notice that the dominant group is S_{4}. For height 9 we have that 96.2% of irreducible polynomials have Galois group S_{4}.

2.2.3 Polynomials of degree 5

height	1	2	3	4	5	6
S_{5}	104	1790	11324	43464	126396	302258
A_{5}	0	8	32	56	126	230
F_{5}	0	4	14	44	94	130
D_{5}	0	10	78	116	198	282
C_{5}	0	0	0	4	8	8

For the polynomials of degree 5, we see again that S_{5} is the dominating group. For height 6 , we see that 99.7% of irreducible polynomials have S_{n} as Galois group. And that 81.5% of polynomials are irreducible.

2.2.4 Polynomials of degree 6

height	1	2	3
S_{6}	240	8672	79596
S_{4}	20	59	155
$C_{2} \times S_{4}$	18	167	819
D_{6}	2	46	108
$S_{3} 2 C_{2}$	8	278	1056
C_{6}	4	4	4
A_{5}	0	4	22
$S_{3} \times S_{3}$	0	8	36
$C_{2} \times A_{4}$	0	8	48
A_{6}	0	4	46
A_{4}	0	2	6
$C_{3} \times S_{3}$	0	12	28
S_{5}	0	0	6
S_{3}	0	0	10
$C_{3}^{2} \rtimes C_{4}$	0	0	0

For polynomials of degree 6, we confirm again that the dominating group is S_{6}. Here we see that not all Galois groups appear yet because we only go to height 3 . Furthermore, for height 3 , we find that 69.6% of polynomials are irreducible.

2.3 Conclusion

For every degree, as the bound M on the coefficients gets large, we notice that :

- most polynomials are irreducible
- most irreducible polynomials have S_{n} as Galois group

For example, for polynomials of degree 3 and height 9, we have that 83.9% of polynomials are irreducible, and 98.2% of irreducible polynomials have Galois group S_{3}. From these results we arrive at the following questions:
For very large M

- are most monic polynomials of degree n irreducible and have Galois group S_{n} ?
- what is the probability that a random monic irreducible polynomial has the full symmetric group as Galois group ?

To answer quantitative questions like these one can use big O notation. For functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ we say that f is big O of g as n goes to infinity and write $f(n)=O(g(n))$ if there exist constants $K, N>0$ such that :

$$
\forall n \geq N: f(n) \leq K g(n)
$$

Next we define the following sets :
The set

$$
A_{n}(M)=\left\{p \in \mathbb{Z}[X]: \operatorname{deg}(p)=n, \mathrm{p} \text { is monic, } \max _{1 \leq i \leq n-i}\left\{\left|a_{i}\right|\right\} \leq M\right\}
$$

of polynomials of degree n with integer coefficients bounded by M. Notice that there are $(2 M+1)^{n}$ elements in this set. Since this is how many order pairs $\left(a_{0}, \ldots, a_{n}-1\right)$ one can form with coefficients drawn from $\{-M, \ldots,-1,0,1, \ldots,+M\}$. This means that

$$
A_{n}(M)=O\left(M^{n}\right)
$$

The subset :

$$
B_{n}(M)=\left\{p \in A_{n}(M): p \text { is irreducible }\right\}
$$

It is known that

$$
\# B_{n}(M)=O\left(M^{n}\right)
$$

To quantify how many polynomials have the full symmetric group as Galois group we define the following sets :
The set of polynomials in $A_{n}(M)$ with Galois group S_{n} :

$$
C_{n}(M)=\left\{p \in A_{n}(M): \operatorname{Gal}(p)=S_{n}\right\}
$$

And the complement :

$$
D_{n}(M)=\left\{p \in A_{n}(M): \operatorname{Gal}(p) \neq S_{n}\right\}
$$

Note that, then we have the following disjoint union :

$$
B_{n}(M)=C_{n}(M) \bigsqcup D_{n}(M)
$$

B.L. van der Waerden [3] [4] showed that

$$
\frac{\# C_{n}(M)}{\# A_{n}(M)} \rightarrow 1
$$

as M goes to infinity. And that for a random polynomial in $A_{n}(M)$

$$
\operatorname{Prob}\left(\operatorname{Gal}(p)=S_{n}\right) \geq 1-O\left(M^{-1 / 6}\right)
$$

Thus:

$$
\operatorname{Prob}\left(\operatorname{Gal}(p)=S_{n}\right)=1 \text { as } M \rightarrow \infty
$$

$O\left(M^{-1 / 6}\right)$ is an error term that tells us how fast the $\operatorname{Prob}\left(\operatorname{Gal}(p)=S_{n}\right)$ tends to one.

References

[1] Gabor Wiese Algèbre
[2] Gabor Wiese Structures Mathématiques
[3] Hanson Hao, Eli Navarro, Henri Stern Irreducibility and Galois Groups of Random Polynomials
[4] B.L. van der Waerden Die Seltenheit der reduziblen Gleichungen und der Gleichungen mit Affekt.

