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Abstract

In this experimental mathematics project, we will calculate the number of
solutions of an equation in two or three variables over a given finite field for
various examples. After some experimentation and key observations, we try
to find a closed formula for the number of solutions and we then try to find a
similarity between the results of the examples.

In other words, we want to find a general formula for the number of solutions
that works for all kind of curves over any finite field.
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1 Introduction
If we look at equations in two variables, that are of the type f(x, y) = 0 over the
real numbers, then we know, since Descartes that we get a curve. Such equations
can also be treated over finite fields of cardinality q and the number of solutions is
then finite, since the number of elements in the field is finite. In this project, we will
focus on these equations, and we will try to find an explicit formula for the number
of solutions, that holds for any given smooth curve over any finite field Fq. Indeed,
it is by experimenting and doing heuristics by computer and even by hand that we
see some patterns arise.

1.1 Finite Fields

Before starting with our experimentation, let us recall some useful properties of finite
fields that will occur throughout this project. The references are the lecture notes
from the course "Théorie des nombres et applications à la cryptographie" given by
Lassina Dembele. Note that the proofs are left out here.

Proposition 1.1. LetK be a field and f ∈ K[x] an irreducible polynomial of degree
n > 0. Then by setting

L := K[x]/ (f(x)) ,

we have the following properties:

(a) L is a finite field that contains K.

(b) There exists α ∈ L such that f(α) = 0, i.e. L contains a zero of f .

(c) Let α ∈ L be a zero of f , then every x ∈ L is of the form

x = b0 + b1α + . . .+ bn−1α
n−1,

where bi ∈ K for all i ∈ {0, . . . , n− 1}.

Theorem 1.2. Let p be a prime number and n > 1 an integer.

(a) The number of elements of any finite field K is of the form pn, where p is the
characteristic of K.

(b) There exists a finite field with pn elements, where any two such fields are
isomorphic. We denote this (up to isomorphism) unique field by Fpn .

(c) Let K ⊆ Fpn be a subfield. Then there exists m|n such that #K = pm.

(d) Let m|n. Then there exists a unique subfield K ⊆ Fpn with pm elements and
K is the set of all elements a ∈ Fpn satisfying apm = a.

Let us look at an example, where we apply the above notions.
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Example 1.3. Consider the finite field F2. The only polynomial of degree 2 that
is irreducible in F2 is f(x) = x2 + x + 1. From the above Proposition 1.1, we get
that L = F2[x]/ (f(x)) is a field containing F2. Moreover, L has dimension 2, so it
follows that it has at most 22 = 4 elements.

By Theorem 1.2, we know that L is the only finite field of 4 elements, which we
denote by F4. Now in order to find the elements of F4, we look at Proposition 1.1,
which says that every element of F4 is given by

x = b0 + b1α + . . .+ bn−1α
n−1,

where α is a zero of f and bi ∈ F2 for all i = 0, . . . , n− 1. Hence,

F4 = {0, 1, α, α+ 1}.

Before we move on to the experimental part, we end this recall with a property of
the multiplicative group of a finite field.

Proposition 1.4. Let K be a finite field with pn elements, where p is a prime and
n ∈ N≥1. Then the multiplicative group K× is a cyclic group of order pn−1.
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2 Counting Points on Curves over Finite Fields
Throughout this document, we suppose that x, y and z are unknown variables in a
given finite field and let n ∈ N and p be a prime number. Moreover, in the following
examples, our goal will be to determine a closed formula for the number of solutions
of a given equation over a finite field.

2.1 Examples

Example 2.1. Consider the equation y2+ y = x3+1 over F2 and let Nn denote the
number of solutions of this equation over the finite field F2n given by

Nn = #
{
(x, y) : x, y ∈ F2n , y

2 + y = x3 + 1
}
+ 1.

Note that in the above formula, we have to add 1 in virtue of the point at infinity.
Now, in order to find a closed formula for Nn, we try to construct it experimentally.
Hence, let us first compute N1 and N2.

• We have N1 = # {(x, y) : x, y ∈ F2, y
2 + y = x3 + 1}+1. To calculate N1, we

first solve the equation y2 + y = x3 +1 over F2 and we get the set of solutions

S = {(1, 0), (1, 1)} .

Therefore, N1 = 2 + 1 = 3.

• We have N2 = # {(x, y) : x, y ∈ F4, y
2 + y = x3 + 1} + 1. Now we solve the

equation y2 + y = x3 + 1 over F4 = {0, 1, a, a+ 1} and we obtain

S = {(1, 0), (1, 1), (0, a), (0, a+ 1), (a, 0), (a, 1), (a+ 1, 0), (a+ 1, 1)} .

Hence, N2 = 8 + 1 = 9.

Since two values are not enough to deduce a closed formula for Nn, we calculate the
proceeding values using Sage. Below follows a table of the first eight values of Nn.

n 1 2 3 4 5 6 7 8

Nn 3 9 9 9 33 81 129 225

Table 1: The first eight values of Nn computed with Algorithm 1.

We do not see immediately a pattern for Nn, that is why we are going to distinguish
between the following two cases.

1. For odd n: In Table 1, we see a certain pattern, that is

N3 = 4N1 − 3, N5 = 4N3 − 3, N7 = 4N5 − 3.

So for n > 3, we can assume that Nn is given by the following recursive formula

Nn = 4Nn−2 − 3, where N1 = 3.
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After having found a recursive formula, it might also be interesting to find a
direct formula. By looking individually at each Nn, we observe that

N1 = 3 = 21 + 1, N3 = 9 = 23 + 1, N5 = 33 = 25 + 1, N7 = 129 = 27 + 1.

Hence, we can assume in this case that Nn is given by the formula

Nn = 2n + 1. (1)

2. For even n: Let us examine Nn closely and try to use equation (1). Thus,

N2 = 9 = 22 + 1 + 4 = 22 + 1 + (−2)2/2+1,

N4 = 9 = 24 + 1− 8 = 22 + 1 + (−2)4/2+1,

N6 = 81 = 26 + 1 + 16 = 22 + 1 + (−2)6/2+1,

N8 = 225 = 28 + 1− 32 = 22 + 1 + (−2)8/2+1.

Hence, we can assume in this case that Nn is given by the formula

Nn = 2n + 1 + (−2)
n
2
+1. (2)

Since we want to find a general formula that works for every n, but the formulas for
odd and even n are different, we have to combine (1) and (2). So for k ∈ N, we have

N2k+1 = 22k+1 + 1 and N2k = 22k + 1 + (−2)k+1.

This allows us to write

Nn = 2n + 1 + xn(−2)
n
2
+1, where xn =

{
0 if n is odd,
1 if n is even.

Moreover, we can see that

xn(−2)
n
2
+1 = −2xn(−2)

n
2 = −xn(−2)

n
2 − xn(−2)

n
2 .

However, it is difficult to find one xn such that

−xn(−2)
n
2 − xn(−2)

n
2 =

{
0 if n is odd,

(−2)n2+1 if n is even.

Therefore, we try to find xn1 and xn2 such that

−xn1(−2)
n
2 − xn2(−2)

n
2 =

{
0 if n is odd,

(−2)n2+1 if n is even.

By setting xn1 := 1 and xn2 := (−1)n, it is easy to verify that xn1 and xn2 satisfy
the above given condition. Hence,

Nn = 2n + 1− (−2
n
2 )− (−1)n(−2

n
2 )

= 2n + 1− (i
√
2)n − (−i

√
2)n

= 2n + 1− αn − αn, where α = i
√
2.
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Moreover, it is important to remark that one can also use another approach to find
a formula for Nn in the case where n is odd. However, this strategy does not require
experimentation, but a more theoretical thinking. Below, we are going to give a
proof for (1) and explain why this approach does not work when n is even.

For this method, we will look separately at the two sides of the equation

y2 + y = x3 + 1, where x, y ∈ Fq and q = 2n.

Let us first analyse the left hand side of the above equation. With Fq being a
vector space over F2, it is easy to check that the map ϕ : Fq −→ Fq given by
y 7−→ y2 + y is a linear map. Then, one might ask what the kernel of ϕ looks like.
Since any quadratic equation has 2 solutions, the kernel of the linear map ϕ is given
by

ker (ϕ) = {y ∈ F2n : y2 + y = 0} = F2 = {0, 1}.

Thus, ϕ being a linear map over F2 with its kernel consisting of two elements implies
that its image in Fq consists of 2n

2
= 2n−1 elements. This means that the number of

elements is halved under this map, i.e. that y and y + 1 go to the same element.

Now, let us look at the right hand side of the equation. For the moment, let us
forget about the "+1" and look at what happens when we send x to x3. Restricting
ourselves to the non-zero elements of Fq, we see that they form a multiplicative
group, denoted by F×q and that is cyclic of order 2n − 1. One can easily check that
the map φ : F×q −→ F×q given by x 7−→ x3 is a homomorphism of groups. Then, the
kernel of φ consists of the solutions of x3 = 1 in F×q and is given by

ker (φ) = {x ∈ F×q : x3 = 1}.

Hence, looking for the solutions of x3 = 1 in F×q , means that we have to look for
elements of order 3 in F×q . We conclude that the kernel of φ only consists of elements
whose order divides 3.

For example, if n = 3, then we consider the cyclic group F×8 , which has 7 elements.
If there is an element of order 3, then it lies in the kernel. From Group Theory, we
know that the order of an element divides the order of a group. In this case, the
order of the group is 7, which is not divisible by 3. That is why we conclude that
there are no elements of order 3 in this group and that the kernel is empty.

In general, 3 is a divisor of 2n− 1 if and only if n is even. In this case, #ker (φ) = 3
since we are in a cyclic group with n ≡ 0 mod 3. This means that every element of
the image of φ is taken 3 times. However, if n is odd, then 3 does not divide 2n− 1.
This means, that there are no elements of order 3. Thus, the map φ has no kernel
and is a bijection on Fq.

Finally, we conclude that if n is odd, then Nn = 2n+1 and if n is even, then φ is not
a bijection and that is why we have to find Nn using the experimental approach.
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Example 2.2. Consider the equation x3 + y3 + z3 = 0 in the projective space1 P2

over Fp and let Np be the number of solutions of the equation in P2 over Fp given
by

Np = #
{
(0, 0, 0) 6= (x, y, z) : x, y, z ∈ Fp, x

3 + y3 + z3 = 0
}
.

In order to find a general formula for Np, we consider the following two cases.

First, let us consider the case where p ≡ 2 mod 3. We try to find experimentally
a formula for Np by starting to compute N2, N5 and N11 by hand.

• For p = 2, the solutions of x3 + y3 + z3 = 0 in P2 over F2 are given by

S = {(1, 1, 0), (1, 0, 1), (0, 1, 1)} .

Therefore, N2 = 3.

• For p = 5, the solutions of x3 + y3 + z3 = 0 in P2 over F5 are given by

S = {(0, 1, 4), (1, 0, 4), (1, 4, 0), (1, 1, 2), (1, 2, 1), (2, 1, 1)} .

Therefore, N5 = 6.

• For p = 11, the solutions of x3 + y3 + z3 = 0 in P2 over F11 are given by

S = {(0, 10, 1), (1, 4, 1), (2, 7, 1), (3, 3, 1), (4, 1, 1), (5, 8, 1),
(6, 9, 1), (7, 2, 1), (8, 5, 1), (9, 6, 1), (10, 0, 1), (10, 1, 0)} .

Therefore, N2 = 12.

In order to make more precise conclusions, we need more values. Hence, below
follows a table of the first eight values of Np calculated with Sage.

p 2 5 11 17 23 29 41 47

Np 3 6 12 18 24 30 42 48

Table 2: The first 8 values of Np computed with Algorithm 2.

From Tabel 2, we can assume that Np is given by the formula

Np = p+ 1. (3)

We now give a proof that (3) indeed holds for every p ≡ 2 mod 3.

1We only look at (x, y, z) 6= (0, 0, 0) and we consider that (x, y, z) and (cx, cy, cz) with 0 6= c ∈ Fp

are the same.
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Proof. Let p be a prime number such that p ≡ 2 mod 3. Then p 6≡ 1 mod 3, so
that p − 1 6≡ 0 mod 3, which implies that 3 - (p − 1). We already know that the
order of the multiplicative group of Fp is p − 1 and that it is cyclic. Therefore, we
have that 3 - ord

(
F×p
)
and thus, the application

φ : F×p −→ F×p
x 7−→ x3

is a bijective homomorphism, thus an isomorphism. This implies that every element
of F×p has a different cube root. So, the number of solutions of x3 + y3 + z3 = 0 is
the same as for x+ y+ z = 0. In the projective space, x+ y+ z = 0 is the equation
of a line. Now, let us find the number of solutions of this equation. By rewriting
this equation as y = −x− z, we consider the two cases.

• If x = 0, this equation has one solution: (0, y,−y) for some fixed y ∈ F×p .

• If x 6= 0, there are p possibilities for z so that the equation has p solutions:
(x,−x− z, z) for z ∈ Fp and x ∈ Fp fixed.

Thus, Np = # {(0, 0, 0) 6= (x, y, z) : x, y, z ∈ Fp : x
3 + y3 + z3 = 0} = p+ 1.

Let us now look at the case p ≡ 1 mod 3. In order to find experimentally a
formula for Np, we need to calculate some values of Np.

For p = 7, the solutions of x3 + y3 + z3 = 0 in P2 over F7 are given by

S = {(0, 3, 1), (0, 5, 1), (0, 6, 1), (3, 0, 1), (3, 1, 0), (5, 0, 1), (5, 1, 0), (6, 0, 1), (6, 1, 0)} .

Thus, N7 = 9.

For p > 7, it is too much to calculate by hand, that is why we used Sage to obtain
some more values of Np and put them in the table below.

p 7 13 19 31 37 43 61 67

Np 9 9 27 36 27 36 63 63

Table 3: The first 8 values of Np computed with Algorithm 2.

By analysing in greater detail the values given in the above Table 3, we observe that

N7 = 9 = 7 + 1 + 1, N13 = 9 = 13 + 1− 5,

N19 = 27 = 19 + 1 + 7, N31 = 36 = 31 + 1 + 4,

N37 = 27 = 37 + 1− 11, N43 = 36 = 43 + 1− 8,

N61 = 63 = 61 + 1 + 1, N67 = 63 = 67 + 1− 5.

Therefore, we can assume that Np is given by the formula

Np = p+ 1− a, where a ≡ 2 mod 3.
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Moreover, we have that for some integer b, a satisfies the equation

p =
1

4
a2 +

27

4
b2. (4)

Finally, we want to find a formula of Np that works for every prime p. Thus, we
rewrite (4) as follows

p =
a+ i

√
27b

2
· a− i

√
27b

2
.

Then, we set α :=
a+ i

√
27b

2
and remark that p = α · α. This decomposition gives

us a formula that works for all prime numbers p and is given by

Np = p+ 1− α− α.

Example 2.3. Consider the equation x3y+ y3z + z3x = 0 in P2 over F2 and let Nn

denote again the number of solutions of this equation over F2n , which is given by

Nn = #
{
(0, 0, 0) 6= (x, y, z) : x, y, z ∈ F2n , x

3y + y3z + z3x = 0
}
.

In order to find a general formula of Nn, we calculate the values of Nn and try to
find a pattern. Below follows a table, where we assemble the first eight values of Nn.

n 1 2 3 4 5 6 7 8

Nn 3 5 24 17 33 38 129 257

Table 4: The first 8 values of Nn computed with Algorithm 3.

We notice immediately that we have to consider the following two cases.

If n 6≡ 0 mod 3, then

N1 = 3 = 21 + 1 N4 = 17 = 24 + 1 N7 = 129 = 27 + 1

N2 = 5 = 22 + 1 N5 = 33 = 25 + 1 N8 = 257 = 28 + 1

From this, we can assume that a closed formula of Nn is given by

Nn = 2n + 1.

If n ≡ 0 mod 3, then

N3 = 24 = (23 + 1)− (−15︸︷︷︸
=a1

)

N6 = 38 = (26 + 1)− ( 27︸︷︷︸
=a2

)

N9 = 528 = (29 + 1)− (−15︸︷︷︸
=a3

)

N12 = 4238 = (212 + 1)− (−141︸ ︷︷ ︸
=a4

)

N15 = 31944 = (215 + 1)− ( 825︸︷︷︸
=a5

)
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Let us try find a relation between ak+2, ak+1 and ak, by expressing ak+2 as a linear
combination of ak+1 and ak. Thus, let us consider the following system{

a3 = x · a1 + y · a2
a4 = x · a2 + y · a3.

By solving the above system, we obtain x = −8 and y = −5. So, we suppose that

ak+2 = −8ak − 5ak+1, where a1 = −15 and a2 = 27.

Indeed, this recursion holds for a5 and a6. Hence, we can assume that, if n ≡ 0
mod 3 and k is such that n = 3k, then

N3k = 23k + 1− ak,

where ak is defined recursively by ak+2 = −8ak − 5ak+1 with a1 = −15 and a2 = 27.

In the previous examples, we were able to find a formula for Nn that is of the form

Nn = 2n + 1− α− α, where αα = 2.

So let us try to do the same in this example. After doing the calculations, we find
that it is impossible to find one α that satisfies this relation. The same happens if
we try to find α1 and α2 such that for i ∈ {1, 2}, αiαi = 2 and

Nn = 2n + 1− α1 − α1 − α2 − α2.

Hence, we need to find α1, α2 and α3 such that for i ∈ {1, 2, 3}, αiαi = 2 and

Nn = 2n + 1− α1 − α1 − α2 − α2 − α3 − α3.

Thus, we set a := α1 + α1, b := α2 + α2 and c := α3 + α3. From N1, N2 and N3, we
obtain the following system 

a+ b+ c = 0
a2 + b2 + c2 = 12
a3 + b3 + c3 = −15.

However, this system is difficult to solve, that is why we try to find α1, α2 and α3

in an easier way. By definition of a, b and c, we have that α1, α2 and α3 as well as
their complements are respectively solutions of

x2 − ax+ 2 = 0, x2 − bx+ 2 = 0, x2 − cx+ 2 = 0.

Hence, they are all solutions of the equation

(x2 − ax+ 2)(x2 − bx+ 2)(x2 − cx+ 2) = 0,

which is equivalent to

x6 − (a+ b+ c)x5 + (ab+ ac+ bc+ 6)x4 − (4(a+ b+ c) + abc)x3

+ 2(ab+ ac+ bc+ 6)x2 − 4(a+ b+ c)x+ 8 = 0.
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Thus, instead of solving the above system for a, b and c, we solve it for a + b + c,
ab+ ac+ bc and abc. After some easy calculations, we find

a+ b+ c = 0, ab+ ac+ bc = −6, abc = −5.

Hence, we need to solve the equation

x6 + 5x3 + 8 = 0. (5)

It is easy to check that the solutions of equation (5) are given by

x = ζk
3

√
−5± i

√
7

2
, where ζ = e

2πi
3 and k ∈ {0, 1, 2}.

In addition, for every k ∈ {0, 1, 2},ζk 3

√
−5 + i

√
7

2

 = ζk
3

√
−5− i

√
7

2
.

Since α1, α2 and α3 and their complements are solutions of (5), we can choose

α1 :=
3

√
−5 + i

√
7

2
, α2 := ζ

3

√
−5 + i

√
7

2
, α3 := ζ2

3

√
−5 + i

√
7

2
.

We conclude that

Nn = 2n + 1− α1 − α1 − α2 − α2 − α3 − α3,

where α1, α2 and α3 are given above and αiαi = 2 for i ∈ {1, 2, 3}.

Example 2.4. Consider the equation y2 + y = x5 + 1 over F2 and the number of
solutions of this equation over F2n , which is given by

Nn = #
{
(x, y) : x, y ∈ F2n , y

2 + y = x5 + 1
}
+ 1.

We proceed as in the previous examples to calculate the values of Nn, which gives
the following table.

n 1 2 3 4 5 6 7 8

Nn 3 5 9 33 33 65 129 193

Table 5: The first 8 values of Nn computed with Algorithm 4.

We see the following pattern:

N1 = 3 = 21 + 1, N6 = 65 = 26 + 1, N11 = 2049 = 211 + 1,
N2 = 5 = 22 + 1, N7 = 129 = 27 + 1, N12 = 4353 = 212 + 1 + 256,
N3 = 9 = 23 + 1, N8 = 193 = 28 + 1− 64, N13 = 8193 = 213 + 1,
N4 = 33 = 24 + 1 + 16, N9 = 513 = 29 + 1, N14 = 16385 = 214 + 1,
N5 = 33 = 25 + 1, N10 = 1025 = 210 + 1, N15 = 32769 = 215 + 1.

12



It is clear that, if n is divisible by 4, then the formula we want to find is different
than for every other n. That is why in a first step, we will consider the case, where
n is odd, because then we can be sure that we have no multiples of 4. It is clear
that in this case, we can assume that

Nn = 2n + 1. (6)

Let us now consider the case, where n is even. As observed before, in this case we
have to distinguish between the following two cases.

• If n 6≡ 0 mod 4, then we can suppose that

Nn = 2n + 1. (7)

• If n ≡ 0 mod 4, then we can assume that

Nn = 2n + 1 + (−4)
n
4
+1 = 2n + 1− 2

(
(−4)

n
4 + (−4)

n
4

)
. (8)

We found formulas for the even multiples of 4 and the even numbers that are not
multiples of 4, so let us now try to find a formula that works for all even numbers.
From (7) and (8), we observe that we have to find xn such that

Nn = 2n + 1− 2xn
(
(−4)

n
4 + (−4)

n
4

)
, where xn =

{
0 if n 6≡ 0 mod 4,
1 if n ≡ 0 mod 4.

Notice that in = 1 if n ≡ 0 mod 4 and that in = −1 if n ≡ 2 mod 4 and n is even.
Thus, we can write

Nn = 2n + 1− 2
(
(−4)

n
4 + in(−4)

n
4

)
. (9)

Finally, let us try to find a general formula that works for all n. If we compare
(6) and (9), we observe that we must find x′n such that

Nn = 2n + 1− 2x′n

(√
−4

n
2 + in

√
−4

n
2

)
where x′n =

{
0 if n is odd,
1 if n is even.

We can easily see that

√
−4

n
2+in

√
−4

n
2+(−1)n

(√
−4

n
2 + in

√
−4

n
2

)
=

{
0 if n is odd,

2
(√
−4

n
2 + in

√
−4

n
2

)
if n is even.

Thus, we obtain

Nn = 2n + 1−
(√
−4

n
2 + in

√
−4

n
2 + (−1)n

(√
−4

n
2 + in

√
−4

n
2

))
= 2n + 1−

(
4
√
−4
)n − (− 4

√
−4
)n − (i 4

√
−4
)n − (−i 4

√
−4
)n
.

We can also rewrite Nn so that

Nn = 2n + 1− αn
1 − α1

n − αn
2 − α2

n,

where α1 =
4
√
−4 = 1 + i and α2 = i 4

√
−4 = −1 + i.
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Example 2.5. Consider the equation y2 + y = x3 + x+ 1 over F2 and

Nn = #
{
(x, y) : x, y ∈ F2n , y

2 + y = x3 + x+ 1
}
+ 1.

With the same calculations as before, we find the first eight values of Nn, which are
given in the table below.

n 1 2 3 4 5 6 7 8

Nn 1 5 13 25 41 65 113 225

Table 6: The first 8 values of Nn computed with Algorithm 5.

We make the following observations

N1 = 1 = 21 + 1− 2, N6 = 65 = 26 + 1 + 0, N11 = 2113 = 211 + 1 + 64,
N2 = 5 = 22 + 1 + 0, N7 = 113 = 27 + 1− 16, N12 = 4225 = 212 + 1 + 128,
N3 = 13 = 23 + 1 + 4, N8 = 225 = 28 + 1− 32, N13 = 8321 = 213 + 1 + 128,
N4 = 25 = 24 + 1 + 8, N9 = 481 = 29 + 1− 32, N14 = 16385 = 214 + 1 + 0,
N5 = 41 = 25 + 1 + 8, N10 = 1025 = 210 + 1 + 0, N15 = 32513 = 215 + 1− 256.

This time, it is not that easy to find a relation between all the numbers, therefore
we try another method to find a formula for Nn. In all the previous examples, Nn

was always of the form Nn = 2n + 1 + "some α’s". Let us now try to find a similar
formula, by finding an algebraic number α such that

Nn = 2n + 1− αn − αn.

From N1 and N2, we observe that α+α = 2 and α2 +α2 = 0. If we choose x, y ∈ R
such that α = x+ yi, then we obtain the following system{

x+ yi+ x− yi = 2
x2 + 2xyi− y2 + x2 − 2xyi− y2 = 0

⇐⇒
{
x = 1
x2 − y2 = 0

Solving this system gives α = 1 + i. Finally, we obtain

Nn = 2n + 1− αn − αn,

where α = 1 + i with |α| = 2. It is easy to check that this formula holds for all n.

Example 2.6. We now go back to Example 2.2 and this time, we consider the
number of solutions of the equation over the field Fpn , which is given by

Nn = #
{
(0, 0, 0) 6= (x, y, z) : x, y, z ∈ Fpn , x

3 + y3 + z3 = 0
}
.

In all the previous examples, we always found a formula for Nn that is of the form
Nn = pn + 1 − αn − αn, with αα = p, so let us try to do the same here. We start
with the cases for p = 7 and p = 13.
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Note that in Example 2.2, we have already done all the work for n = 1 and we found

N1 = p+ 1− α− α, where α =
a+ i

√
27b

2
,

with αα = p.

Let us take a look if α =
a+ i

√
27b

2
with the condition αα = p satisfies

Nn = pn + 1− αn − αn

for p = 7 and p = 13. We first begin with p = 7. Below follows a table, where we
assemble the first six values of Nn.

n 1 2 3 4 5 6

Nn 9 63 324 2331 17019 117936

Table 7: The first 6 values of Nn computed with Algorithm 6.

In order to check that α satisfies Nn = 7n + 1 − αn − αn, let us first find a and b.
Since αα = 7 and N1 = 9, we obtain after some computations

α =
−1 + i

√
27

2
.

After some calculations, we notice that the formula

Nn = 7n + 1− αn − αn, where α =
−1 + i

√
27

2
,

holds for every n ∈ {0, . . . , 6}. Therefore, it seems reasonable that it holds for all n.

Let us now look at the case, where p = 13. First, we give a table of the first six
values of Nn with the help of Sage.

n 1 2 3 4 5 6

Nn 9 171 2268 28899 372069 4826304

Table 8: The first 6 values of Nn computed with Algorithm 6.

If we proceed with the same calculations as for p = 7, we find that α satisfies
Nn = 13n + 1− αn − αn with αα = 13 if a = 5 and b = 1.

After computations for n ∈ {0, . . . , 6} of

Nn = 13n + 1− αn − αn, where α =
5 + i

√
27

2
,

we can see that it holds, so we can suppose that the formula holds for every n.
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Let us now examine the case, where p = 2 and p = 5. We begin with the case p = 2.
In the above table, the first six values of Nn are represented.

n 1 2 3 4 5 6

Nn 3 9 9 9 33 81

Table 9: The first 6 values of Nn computed with Algorithm 6.

Then, α satisfies Nn = 2n + 1 − αn − αn with αα = 2 if a = 0 and b =
2
√
6

9
.

Therefore, we get α =
√
2i and we easily check that the formula

Nn = 2n + 1− αn − αn, where α =
√
2i,

holds for every n ∈ {0, . . . , 6}. Thus, we can assume that it holds for every n.

Let us now look at the case, where p = 5. As for the previous cases, we first give a
table of the first six values of Nn.

n 1 2 3 4 5 6

Nn 6 36 126 576 3126 15876

Table 10: The first 6 values of Nn computed with Algorithm 6.

Again, α satisfies Nn = 5n + 1 − αn − αn with αα = 5 if a = 0 and b =
2
√
15

9
.

Therefore, we obtain α =
√
5i and with some computations, we see that the formula

Nn = 5n + 1− αn − αn, where α =
√
5i,

holds for every n ∈ {0, . . . , 6}. Hence, we can assume that it holds for all n.

In general, we can assume that for p ≡ 2 mod 3, a closed formula for Nn is

Nn = pn + 1− αn − αn, where α =
√
pi,

with αα = p.

For the case, where p ≡ 1 mod 3, we can assume that a closed formula for Nn is

Nn = pn + 1− αn − αn, where α =
a+ i

√
27b

2
,

with αα = p and a ≡ 2 mod 3.

Example 2.7. Consider the equation y2 + y = x7 over F2 and the number of
solutions of this equation over F2n is given by

Nn = #
{
(x, y) : x, y ∈ F2n , y

2 + y = x7
}
+ 1.

In order to find a formula for Nn, let us first compute N1 and N2.
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• We have N1 = # {(x, y) : x, y ∈ F2, y
2 + y = x7} + 1. The solutions of the

equation y2 + y = x7 over F2 are given by

S = {(0, 0), (0, 1)}.

Therefore, N1 = 2 + 1 = 3.

• We have N2 = # {(x, y) : x, y ∈ F4, y
2 + y = x7} + 1. We proceed as for N1

and solve the equation y2 + y = x7 over F4 and we obtain N2 = 5.

However, two values are not enough to make an experimental conclusion, that is
why we calculate the first eight values of Nn and assemble them in the table below.

n 1 2 3 4 5 6 7 8

Nn 3 5 3 17 33 101 129 257

Table 11: The first 8 values of Nn computed with Algorithm 7.

We observe the following pattern

N1 = 3 = 21 + 1, N6 = 101 = 26 + 1 + 36,
N2 = 5 = 22 + 1, N7 = 129 = 27 + 1,
N3 = 3 = 23 + 1− 6, N8 = 257 = 28 + 1,
N4 = 17 = 24 + 1, N9 = 633 = 29 + 1 + 120,
N5 = 33 = 25 + 1, N10 = 1025 = 210 + 1.

From similar calculations as in Example 2.3 we get that

Nn = 2n + 1− αn
1 − α1

n − αn
2 − α2

n − αn
3 − α3

n,

where α1, α2 and α3 are given by

α1 =
3

√
1 + i

√
7, α2 = ζ

3

√
1 + i

√
7, α3 = ζ2

3

√
1 + i

√
7.

2.2 Generalisations

In the previous Subsection 2.1, we looked at some examples of equations over finite
fields and tried to find a general formula for the number of solutions. Since the
formulas were all of the same type, it seems reasonable to assume that the number
of solutions of an equation over a finite field Fpn is of the form

Nn = pn + 1−
g∑

k=1

αn
k + αn

k ,

where αkαk = p and g is a measure for the complexity of the equation, called the
genus. In fact, this formula only holds for complete or projective curves that are
smooth, that is without singular or multiple points.
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Having found the general formula above, means that, if we are given a complete,
smooth curve over some finite field, then we only need g and the αk’s to find the
number of solutions of this equation over a finite field Fpn .

Now, we consider the polynomial P of the form

P (t) =

g∏
k=1

(1− αkt) (1− αkt) .

Let us calculate P for the following equations.

a) Consider the equation y2+y = x3 over F2. Note that the number of solutions of
this equation over F2n is the same as the number of solutions of y2+y = x3+1
over F2n . So from Example 2.1, we have that g = 1 and α = i

√
2. Hence,

P (t) = (1− i
√
2t)(1 + i

√
2t) = 2t2 + 1.

b) Consider the equation y2+y = x5 over F2. As in the previous case, the number
of solutions of this equation over F2n is the same as the number of solutions
of y2 + y = x5 +1 over F2n . Therefore, Example 2.4 gives us g = 2, α1 = 1+ i
and α2 = −1 + i. Thus, we obtain

P (t) = (1− (1 + i)t)(1− (1− i)t)(1− (−1 + i)t)(1− (−1− i)t) = 4t4 + 1.

c) Consider the equation x3y + y3z + z3x = 0 in P2 over F2. Going back to
Example 2.3, we get g = 3 and

α1 =
3

√
−5 + i

√
7

2
, α2 = ζ

3

√
−5 + i

√
7

2
, α3 = ζ2

3

√
−5 + i

√
7

2
.

Thus, we obtain
P (t) = 8t6 + 5t3 + 1.

d) Lastly, we consider the equation y3−y = x4 over F3. After some computations,
we find α1 =

√
3, α2 = −

√
3 and α3 = i

√
3, so that g = 3. This implies that

P (t) = (1−
√
3)(1−

√
3)(1+

√
3)(1+

√
3)(1−i

√
3)(1+i

√
3) = 27t6−9t4−3t2+1.

From the polynomial P , we obtain the so called Zeta function of the curve, which
is given by

Z(t) =
P (t)

(1− t)(1− pt)
.
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Let us show that the Zeta function satisfies

Z

(
1

pt

)
= p1−gt2−2gZ(t).

This follows by simply using the definition of P and from the following computation.
Thus,

Z

(
1

pt

)
=

P ( 1
pt
)

(1− 1
pt
)(1− 1

t
)
=

∏g
k=1(1− αk

1
pt
)(1− αk

1
pt
)

(1− 1
pt
)(1− 1

t
)

=

∏g
k=1

1
pt2
− αk

1
pt
− αk

1
pt
+ 1

(1− 1
pt
)(1− 1

t
)

=

∏g
k=1

1
pt2

(1− αkt− αkt+ pt2)
1
pt
(1− pt)1

t
(1− t)

=
(pt2)−g

∏g
k=1(1− αkt)(1− αkt)

(pt2)−1(1− t)(1− pt)
= p1−gt2−2gZ(t).

In addition, we can also show that

log(Z(t)) =
∞∑
n=1

Nn
tn

n
.

We prove it by simply doing some calculations and using the Taylor series expansion.
Hence,

log(Z(t)) = log

(
P (t)

(1− t)(1− pt)

)
= log(P (t))− log(1− t)− log(1− pt)

=

g∑
k=1

(log(1− αkt) + log(1− αkt))− log(1− t)− log(1− pt)

=

g∑
k=1

(
−
∞∑
n=1

αn
k t

n

n
−
∞∑
n=1

αn
kt

n

n

)
+
∞∑
n=1

tn

n
+
∞∑
n=1

pntn

n

=
∞∑
n=1

(
pn + 1−

g∑
k=1

αn
k + αn

k

)
tn

n

=
∞∑
n=1

Nn
tn

n
.

Let us now look at some examples, where we calculate g and Z.
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Example 2.8.

a) Let us consider the equation y2 = x7 + 1 over F3 and let

Nn = #
{
(x, y) : x, y ∈ F3n , y

2 = x7 + 1
}
+ 1.

In order to find the genus g, we calculate the first few values of Nn with Sage.

n 1 2 3 4 5 6

Nn 4 10 28 82 244 892

Table 12: The first 6 values of Nn computed with Sage.

After trying to find α such that Nn = 3n + 1 + αn + αn and α1, α2 such
that Nn = 3n + 1 + αn

1 + αn
1 + αn

2 + αn
2 , we always get that the formula

fails for a certain n. However, we are lucky to find α1, α2 and α3 such that
Nn = 3n + 1 + αn

1 + αn
1 + αn

2 + αn
2 + αn

3 + αn
3 and they are given by

α1 = i
√
3, α2 =

3 + i
√
3

2
, α3 =

−3 + i
√
3

2
.

Hence, g = 3 and the polynomial P is equal to P (t) = 27t6 + 1 after some
calculations. Finally, the Zeta function Z of the curve is given by

Z(t) =
27t6 + 1

(1− t)(1− 3t)
.

b) Consider now the same equation y2 = x7 + 1, but this time over F5 and let

Nn = #
{
(x, y) : x, y ∈ F5n , y

2 = x7 + 1
}
+ 1.

As before, we need to calculate the first few values of Nn in order to find the
genus g of the curve. Hence, we obtain the following table.

n 1 2 3 4 5

Nn 4 26 126 626 3126

Table 13: The first 5 values of Nn computed with Sage.

First, we try to find α such that Nn = 5n +1+ αn +αn, but the formula does
not hold for the first values of n. The same happens if we try to find α1 and
α2 such that Nn = 5n + 1 + αn

1 + αn
1 + αn

2 + αn
2 . Nevertheless, for

α1 = i
√
5, α2 =

√
15 + i

√
15

2
, α3 =

−
√
15 + i

√
15

2
,

the formula Nn = 5n + 1 + αn
1 + αn

1 + αn
2 + αn

2 + αn
3 + αn

3 holds for the first
values of n. Therefore, we conclude that g = 3 and using α1, α2 and α3 from
above, we obtain P (t) = 125t6 + 1, so that the Zeta function is equal to

Z(t) =
125t6 + 1

(1− t)(1− 5t)
.
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3 Implementations
In this section, we will explain the algorithms we implemented on Sage and used
for the calculations of the number of solutions in the examples of Section 2.

3.1 Algorithm for Example 2.1

1 def N(n):
2 F = GF(2**n)
3

4 E = EllipticCurve(F, [0,0,1,0,1])
5

6 return E.cardinality ()

Algorithm 1: Sage code used for Table 1.

Below follows a short description of every line in Algorithm 1.

• Lines 2 - 4: We first define F as the finite field of size 2n using the predefined
command GF, which takes the prime power 2n as a parameter and generates
the finite field of size 2n.

Then, we define E to be the curve of equation y2+y = x3+1 over F using the
predefined command EllipticCurve. In Sage, EllipticCurve

(
[a1, a2, a3, a4, a6]

)
returns the elliptic curve of equation y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.
That is why we use the function EllipticCurve, which takes F and [0, 0, 1, 0, 1]
as parameters to generate the curve of equation y2 + y = x3 + 1 over F .

• Line 6: We finally return the number of solutions of the equation over F using
the predefined command cardinality. Note that since the point at infinity is
taken into considerations in this command, we do not add one at the end.

3.2 Algorithm for Example 2.2

1 def N(p):
2 F = GF(p)
3

4 P.<x,y,z> = ProjectiveSpace (2, F)
5

6 C = Curve(x**3 + y**3 + z**3)
7

8 S = C.rational_points ()
9

10 return len(S)

Algorithm 2: Sage code used for Table 2 and Table 3.

Next follows a short description of every line in Algorithm 2.

• Lines 2 - 8: As before, we start by defining F as the finite field of size p and P
the projective space of dimension 2 over F using the command ProjectiveSpace.
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Moreover, we let C be the curve of equation x3 + y3 + z3 = 0 in P over F
using the predefined command Curve. Additionally, we define S to be a list
containing the solutions of C using the predefined command rational_points.

• Line 10: Finally, in order the obtain the number of solutions, we return the
length of S using the predefined command len.

3.3 Algorithm for Example 2.3

1 def N(n):
2 F = GF(2**n)
3

4 P.<x,y,z> = ProjectiveSpace (2, F)
5

6 C = Curve(y*x**3 + z*y**3 + x*z**3)
7

8 S = C.rational_points ()
9

10 return len(S)

Algorithm 3: Sage code used for Table 4.

It is easy to see that this algorithm is the same as Algorithm 2, except that we
replace the fuction that describes the curve.

3.4 Algorithm for Example 2.4

1 def N(n):
2 F = GF(2**n)
3

4 A.<x,y> = AffineSpace (2, F)
5

6 C = Curve(y^2 + y + x^5 + 1)
7

8 S = C.rational_points ()
9

10 return len(S) + 1

Algorithm 4: Sage code used for Table 5.

Below follows a short description of every line in Algorithm 4.

• Lines 2 - 8: We start by defining F as the finite field of size 2n and let
A be the affine space of dimension 2 over F using the predefined command
AffineSpace.

As in the previous last two algorithms, we let C be the curve of equation
y2 + y = x5 + 1 over F and S be defined as the set of solutions of C over F.

• Line 10: We finally return the length of S in order to obtain the number of
solutions of C over F and this time, we have to add one since the command
rational_points does not include the point at infinity.
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3.5 Algorithm for Example 2.5

1 def N(n):
2 F = GF(2**n)
3

4 E = EllipticCurve(F, [0,0,1,1,1])
5

6 return E.cardinality ()

Algorithm 5: Sage code used for Table 6.

This is the same as Algorithm 1, we simply replace the variables of the curve.

3.6 Algorithm for Example 2.6

1 def N(n, p):
2 F = GF(p**n)
3

4 P.<x,y,z> = ProjectiveSpace (2, F)
5

6 C = Curve(x**3 + y**3 + z**3)
7

8 S = C.rational_points ()
9

10 return len(S)

Algorithm 6: Sage code used for Table 7 and Table 8.

This is again the same algorithm as Algorithm 2 and 3, with the simple change that
we use a different function.

3.7 Algorithm for Example 2.7

1 def N(n):
2 F = GF(2**n)
3

4 A.<x,y> = AffineSpace (2, F)
5

6 C = Curve(y**2 + y + x**7)
7

8 S = C.rational_points ()
9

10 return len(S) + 1

Algorithm 7: Sage code used for Table 9.

See Algorithm 4 for explanations, it is the same, except that we replace the curve.
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4 Conclusion
In conclusion, we found experimentally a measure for the complexity of an equation
in two variables and it is reasonable to assume that for any complete or projective,
smooth curve, the number of zeroes over a finite field Fpn is of the form

Nn = pn + 1−
g∑

k=1

αn
k + αn

k ,

where αkαk = p and g is a measure of the complexity of the curve, called the genus
of the curve, which is an integer. In addition, the Zeta function of the curve is given
by

Z(t) =
P (t)

(1− t)(1− pt)
,

where P is defined by

P (t) =

g∏
k=1

(1− αkt)(1− αkt).

Moreover, the Zeta function Z satisfies

Z

(
1

pt

)
= p1−gt2−2gZ(t) and log(Z(t)) =

∞∑
n=1

Nn
tn

n
.

We can also see that in order to determine Z, we need at least g Nn’s. This is
because we need to know all the g αk’s. To find them, we need to solve a system,
where the Nn’s are the equations, given by Nn = pn + 1−"Newton power sum in
α1, α1, α2, α2, ..., αg, αg" and the αk’s are the variables. We also know that in order
to solve such a system, we need as many equations as variables, hence we require g
Nn’s.
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