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1 Introduction

The influence and precocity of the work of Evariste Galois (1811-1832) lead
some to recognize the mathematician as the Rimbaud of mathematics.
Especially since Galois died very early, at the age of 20, from the tragic con-
sequences of a duel. His work laid the foundation of Galois Theory which
can be used to transform problems of field theory into problems of group
theory which is often a simpler way of solving them.

In this project, we will start by giving a short introduction to Galois theory
followed by its relation to the solvability by radicals of polynomials. After
a short discussion on the inverse Galois problem, we will study the distribu-
tion of Galois groups on finite sets of polynomials. This study joins recent
developments on van der Waerden’s conjecture, since it was demonstrated
by Manjul Bhargava in an article [1] published on November 15, 2021.
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2 Theoretical Part

2.1 Galois Theory

The goal in this section is to remind the important results of Galois theory.
However, some basic notions, such as the definition of an algebraic field
extension, are supposed to be known by the reader. No proof will be given
but every results are well known and can be found in the literature.
This section is inspired by the lecture notes of Gabor Wiese [4].

First of all we define a Galois extension as an algebraic field extension that
is normal and separable.
Let us remind that an algebraic field extension L/K is:

• normal if every irreducible polynomial with a root in L splits into linear
factors over L.

• separable if for every a in L its minimal polynomial in K is separable,
that is every root of the polynomial is of multiplicity 1.

The final notion we need for the definition of a Galois group is the one of
K-automorphism which is essentially an automorphism f of a field extension
L/K but with the additional condition that f(x) = x for every x in K.

We now possess all the needed notions to give a formal definition of the
Galois group of a Galois extension:

Definition 2.1. The Galois group of a Galois extension L/K is the group
of K-automorphism of L and is denoted Gal(L/K).

Here a straightforward example:

• C/R is a Galois extension with Gal(C/R) = AutR(C) = {idC; c} with
c being the complex conjugate.

Additionally we define the Galois group of a polynomial to be the Galois
group of its splitting field, which is the notion that we will work with in this
project.
Essentially what the elements of the Galois group do is leave all the elements
of the original field unchanged and swap the roots in the field extension.
Let us for example take the rational polynomial f(X) = X2 − 2 ∈ Q[X].
Clearly its splitting field is Q(

√
2). We have Gal(Q(

√
2)/Q) = {id, σ} where

σ is uniquely determined by σ(
√
2) = −

√
2.

An interesting property for Galois groups of finite Galois extensions L/K is
that #Gal(L/K) = [L : K] which is the degree of the field extension.
Our two first examples were field extensions of degree 2 so probably not the
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most interesting ones. For this reason let us consider the rational polynomial
f(X) = X3 − 2 ∈ Q[X] which has splitting field Q( 3

√
2; ζ3) where ζ3 = e

2πi
3 .

This is a Galois extension of degree 6. So there are 6 elements in the Galois
group of f . Let us start by looking at the Q-automorphism in Q(ζ3). The
minimal polynomial of ζ3 is X2 +X + 1 ∈ Q and has roots ζ3 and ζ23 . This
gives us 2 automorphism σi given by σ1(ζ3) = ζ3 and σ2(ζ3) = ζ23 . Now our
polynomial f is still irreducible on Q(ζ3), so for each i ∈ 1, 2 we can find 3
Q-automorphism in Q( 3

√
2; ζ3) defined by:

• σi,1(
3
√
2) = 3

√
2

• σi,2(
3
√
2) = ζ3

3
√
2

• σi,3(
3
√
2) = ζ23

3
√
2

Thus giving us the 6 elements of the Galois group.

The following notion is very important for our upcoming observations. Take
a separable polynomial in K[X] for K a field. Then its splitting field L is
a Galois extension of K. Let a1, ..., an ∈ L be the roots of the polynomial
then the following application is injective:

φ : Gal(L/K) −→ Sn; σ −→ φ(σ) where σ(ai) = aφ(σ)(i)

This is interesting as it allows us to identify the Galois groups of polynomials
of degree n with subgroups of the symmetric group Sn.
This actually makes sense since as we already mentioned the elements of the
Galois groups are swapping the n roots of the polynomials and Sn is the
group of permutations of n objects. So from here on we will always use the
symmetric group equivalent when observing the Galois group of polynomials.
Furthermore as we will work with irreducible polynomials we will only en-
counter transitive subgroups of Sn.

As an example let us try to identify the Galois group of the previous example
with such a subgroup. We summarise the elements of the group in the
following table:

σ1 σ2 σ3 σ4 σ5 σ6
3
√
2 3
√
2 3
√
2 ζ3

3
√
2 ζ3

3
√
2 ζ23

3
√
2 ζ23

3
√
2

ζ3 ζ3 ζ23 ζ3 ζ23 ζ3 ζ23

To determine the structure of this group we can recognise that it has three
elements of order 2: σ2, σ4, σ6 and two elements of order 3: σ3, σ5. Thus
it is isomorphic to S3 as the other group structure of six elements is ( Z

6Z ,+)
which has only one element of order 2.
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We will not show this result for every element as it is pretty simple to see,
but as an example here is the argument for the order of σ4:

• σ4(σ4(
3
√
2)) = σ4(ζ3

3
√
2) = ζ23 ∗ ζ3

3
√
2 = 3
√
2

• σ4(σ4(ζ3)) = σ4(ζ
2
3 ) = (ζ23 )

2 = ζ3

So if you relate each root ofX3−2 with the numbers 1 to 3 (for example: 3
√
2 =

1, ζ3 3
√
2 = 2 and ζ23

3
√
2 = 3) you can construct the isomorphism from the

Galois group to S3:

σ1 σ2 σ3 σ4 σ5 σ6
id (2 3) (1 2 3) (1 2) (1 3 2) (1 3)

Now to show an interesting fact let us recall that by the theorem on the
primitive element the expansion Q( 3

√
2; ζ3)/Q of degree 6 can be written as

a simple extension Q(ζ3 +
3
√
2).

This element has minimal polynomial of degree 6 but we have seen that the
Galois group of this polynomial is S3.
By this fact we can deduce that S3 is a transitive subgroup of S6. Finding
the transitive subgroups of Sn is not a straightforward task, especially as n
gets bigger, showing the helpfulness of this kind of observations using Galois
Theory.

This brings us to the experimental observations we will be trying to make
in this project. We will take a finite set of irreducible polynomials of degree
n and calculate their Galois groups to observe which subgroups of Sn are
appearing and how often. Through this we will among other things be able
to determine the transitive subgroups of Sn.
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2.2 Solvability by radicals

Another interesting application of Galois Theory is to observe if a polynomial
is solvable by radicals. To understand this notion, one could informally say
that a polynomial is solvable by radicals if its roots can be expressed by
using just the operations of addition, substraction, multiplication, division
and the extraction of roots.
The more rigorous definition is based on radical extensions. Let us remind
that a field L is a radical extension of a fieldK if there exist non-zero elements
ai and positive integers ni for i ∈ {1, ..., r} s.t.: L = K(a1, a2, ..., ar) and

an1
1 ∈ K,

an2
2 ∈ K(a1),

an3
3 ∈ K(a1, a2),

. . .

anrr ∈ K(a1, a2, ..., ar−1).

For example L = Q(
√
3,

5
√
4−
√
3) is a radical extension of Q. We just need

to take a1 =
√
3 and a2 =

5
√

4−
√
3 to see:

• L = Q(a1, a2),

• a21 = 3 ∈ Q,

• a52 = 4−
√
3 = 4− a1 ∈ Q(a1).

This brings us to our formal definition:

Definition 2.2. A polynomial P ∈ K[X] is solvable by radicals on K if
there exists a radical extension L of K containing the splitting field of P .

Of course we know that every polynomial of degree 2 is solvable by radicals
in Q[X] giving us the well-known general solutions for their roots.
The same is true for polynomials of degrees 3 and 4 even if their general
solutions might not be as simple.

Let us illustrate this with an example of degree 4:
f(X) = X4 + 6X2 − 4 ∈ Q is solvable by radicals since its roots are
±
√
−3±

√
17. So its splitting field:

L = Q
[√
−3 +

√
17,

√
−3−

√
17

]
= Q

[√
17,

√
−3 +

√
17,

√
−3−

√
17

]
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is a radical extension of Q.

Now to show the relation of all this with Galois Theory we need one more
notion which is the solvability of a group. A group G is solvable if there is
a sequence of subgroups s.t.:

• H0 = G ⊃ H1 ⊃ . . . ⊃ Hn = {e};

• ∀i : Hi−1 D Hi;

• ∀i : Hi
Hi−1

is abelian.

A straightforward example of a solvable group is the one of an abelian group
G, as {e} E G and G

{e}
∼= G which clearly is abelian.

Also S3 is an example of a solvable group as we have:

• {(1)} D A3 D S3,

• A3
{(1)}

∼= A3 which has order 3 thus is abelian,

•
∣∣∣ S3
A3

∣∣∣ = |S3|
|A3| =

6
3 = 2 and a group of order 2 is again abelian.

We will find a whole set of solvable groups using this useful theorem involving
Galois Theory:

Theorem 1. Let K be a field contained in C and P ∈ K[X] with splitting
field N . If P is solvable by radicals then Gal(N |K) is solvable.

So essentially if we know that a polynomial is solvable by radicals we also
know that its Galois group is solvable. As we have already mentioned before
every polynomial of degree 2, 3 or 4 is solvable by radicals thus through this
theorem we can deduce that every subgroup of S2, S3 and S4 that appear as
Galois groups of such polynomials are solvable.
To deduce that every subgroup of S2, S3 and S4 is solvable using this the-
orem we would have to prove that for each of those groups there exists a
polynomial having them as a Galois group. This is an open problem for
general Sn, called the Inverse Galois Problem, and we will be addressing it
further in the next section.
However for n ≤ 4 this has already been proven showing that ∀n ≤ 4 every
subgroup of Sn is solvable.

The other interesting way of using this theorem is that if a polynomial has
a non-solvable Galois group then it can not be solvable by radicals.
For example S5 is not solvable so every polynomial possessing it as a Galois
group is not solvable by radicals.
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For instance the polynomial P (X) = X5−10X+5 is not solvable by radicals
as its Galois group is S5.
This also explains why there is only a general solution for the roots of poly-
nomials of degree less than 4, as for degrees 5 or more, not every polynomial
is solvable by radicals.

2.3 Inverse Galois Problem

The Inverse Galois Problem is an unsolved problem that concerns whether
every finite group is a Galois group of some Galois extension of Q. This
problem has first been brought up in the early 19th century. As seen above
the study of the Galois groups of polynomials of degree 2, 3 or 4 shows that
any subgroup of S2, S3 or S4 is a Galois group of an extension of Q.
As mentioned their has been no prove, neither for a positive nor a negative
answer of this question, however for a few family of groups it has been showed
that they can be achieved as Galois groups:

• Abelian groups;

• The symmetric groups Sn and the alternating groups An (shown by
Hilbert in 1892);

• The solvable groups (Shafarevitch 1954)

Those are of course not all the results that have been found to this day but
mentioning them here would go further than our capacities. However this
results can of course be found in the literature.

As a conclusion even tough a lot of work has been done on this problem we
are yet to answer this question. No matter what the answer is, having a
proof for this problem would help making advancement on the classification
of finite groups.
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3 Experimental Part

3.1 Computations

In this section, we will experiment with finite sets of polynomials that are
defined as follows: For n,N ∈ N, let

Fn,N = {f =
n∑
i=0

aiX
i ∈ Z[X]|an = 1, |ai| ≤ N, f is irreducible}

We created 1 these sets for different values of n and N . Then, for each
set, we computed the Galois group of every polynomial and determined the
frequency with which each group appears. We gathered all data in the
following tables.

Table for n = 3

N=3 N=4 N=5 N=6 N=7

S3 216 496 976 1668 2670
C3 10 18 26 36 48

Table for n = 4

N=3 N=4 N=5 N=6 N=7

S4 1382 4204 10382 21318 39660
D4 188 444 774 1258 1834
C2 x C2 9 32 46 73 94
A4 8 12 16 28 62
C4 4 20 28 52 60

Table for n = 5

N=3 N=4 N=5 N=6 N=7

S5 11324 43464 126396 302258 638004
D5 78 116 198 282 430
A5 32 56 126 230 338
C5 : C4 14 44 94 130 174
C5 0 4 8 8 8

1We made the experiments in Sage. We limited our computations to these values of n
and N because of runtime duration. The code can be found in the appendix.
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Table for n = 6

N=3 N=4 N=5 N=6

S6 79596 395428 1406600 3982144
(S3 x S3) : C2 1056 3900 7616 15024
C2 x S4 819 2070 4367 7833
S4 155 360 623 999
D6 108 236 402 627
C2 x A4 48 96 192 336
A6 46 126 264 684
S3 x S3 36 112 170 278
C3 x S3 28 90 124 162
A5 22 120 264 462
S3 10 21 25 34
A4 6 12 18 30
S5 6 82 160 294
C6 4 8 12 20
(C3 x C3) : C4 0 4 18 36

3.2 Observations

The first observation we can make is that for n ∈ N at least 86% of poly-
nomials in FN,n have Sn as Galois group. To reinforce this fact, we can ask
ourselves how the proportion of Sn evolves as n and N increase.
For some positive integer N , let PN (Sn) denote the proportion of polyno-
mials in FN,n that have Sn as Galois group. To observe the evolution of
PN (Sn), we made the following table2 of values for PN (Sn).
For example, P7(S4) = 0.950851.

n=3 n=4 n=5 n=6

N=3 0.955752 0.868636 0.989168 0.971394
N=4 0.964981 0.892190 0.994964 0.982027
N=5 0.974052 0.923173 0.996641 0.989967
N=6 0.978873 0.937921 0.997854 0.993310
N=7 0.982340 0.950851 0.998513 NaN

We see in the table that for any n the proportion of Sn increases with N
and when n grows, that proportion gets closer to 1. The biggest proportion
we have is P7(S5) = 0.998513.
We may expect that for any positive integerN , PN (Sn) converges against 1 as
n→∞. These observations are confirmed by van der Waerden’s conjecture

2The NaN value denotes a missing value because we don’t have data for n = 6 and
N = 7.
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that has been proved recently by Manjul Bhargava [1]. Let En(N) = #{f ∈
FN,n| the Galois group of f is not Sn}.
Then, the van der Waerden’s conjecture which is now Bhargava’s theorem
states as follows:

Theorem 2 (Manjul Bhargava). En(N) = O(Nn−1)

Indeed by the theorem, for any N ∈ N

PN (Sn) =
#FN,n − En(N)

#FN,n
= 1− En(N)

(2N + 1)n
= 1− O(Nn−1)

(2N + 1)n
−→ 1

when n→∞.

Remark 1. Let us remind that the big O notation is used to describe the
asymptotic behaviour of functions, telling us how fast it grows or declines.
For example take the function f(X) = 7X3 − 2X2 + 75, if we ignore the
constants and the slower growing terms, we could say that f grows at the
order X3 and thus f(X) = O(X3).
Formally for some real or complex valued function f and a real valued func-
tion g which is strictly positive for large enough values we say: f(X) =
O(g(X)) if ∃C ∈ R≥0 and X0 ∈ R s.t.:

|f(X)| ≤ Cg(X) ∀X ≥ X0.

Essentially this means that f does not grow faster than g.

Another thing we can observe is that by looking at the tables we see the
different transitive subgroups of Sn, for instance S3 is a transitive subgroup
of S6. Such facts illustrate the power of Galois’ theory because it’s more
difficult to prove such things without using these notions.

Speaking of the table for n = 6, we can see that it contains 15 groups whereas
the other tables are smaller by a factor at least 3. Moreover, the groups in
the table for n = 6 are less familiar and maybe more surprising than in the
other tables. For example, the group S2

3oC2 (= (S3×S3) : C2) is a subgroup
of order 72 that is solvable. It’s the Galois group of x6 − 2x5 + x4 + 1.

One last thing we can ask ourselves is that for a given value of n, is there
a positive integer N and a Galois group of a polynomial in FN,n such that
this Galois group is not yet in our table? If we take bigger values of N will
we have more Galois groups in our tables?
Our tables indicate that for N ≥ 4, every Galois group that we encountered
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is already in the tables. One way to answer this question is to check that for
n ∈ {3, 4, 5, 6}, every transitive subgroup of Sn is in the table, as a Galois
group is necessarily a transitive subgroup of Sn.
We can do that by using the following function in Sage:

1 def trans_subgroups(n):
2 """ Returns a list of every transitive subgroups of Sn"""
3 G = SymmetricGroup(n)
4 H = [group.structure_description ()
5 for group in G.subgroups () if group.is_transitive ()]
6 return list(set(H))

With this function, we checked that ∀n ∈ {3, 4, 5, 6} every transitive sub-
group of Sn is already in our tables.
However, this question also rises another interesting one. If we had found a
transitive subgroup of Sn that is not in our table, would there be a polyno-
mial of degree n that has this subgroup as Galois group? This problem is
related to the Inverse Galois Problem introduced before.

4 Conclusion

After reminding the important notions of Galois Theory we dived into some
interesting theoretical applications of it, such as observing the transitive sub-
groups of the symmetrical group or the solvability by radicals of polynomials.
We shortly introduced the open Inverse Galois Problem before moving on
to the experimental part where we computed the Galois groups of finite sets
of irreducible polynomials. We observed the resulting groups and their fre-
quencies to make some interesting findings. For example we noticed that
the proportion of polynomials in our set that have Sn as a Galois group
converges to 1 when n grows, which has been proven a few months ago by
Manjul Bhargava. Additionally we observed that for n = 3, 4, 5, 6 every
transitive subgroup of Sn can be achieved as a Galois group which answers
the Inverse Galois Problem for those specific values of n.

Even though we did acquire a lot of new knowledge on Galois Theory and its
application through this project, we also realised that there is an abundance
of findings that we could still make on this subject. This is especially well
shown by the Inverse Galois Problem that has still not been solved. As
a conclusion we really enjoyed working on this project and think that, we
could still have kept it going by digging deeper into some of the topics or
even introducing other applications of the Galois theory.
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Appendices
Here is the functions we used to create the sets FN,n and make the tables in
section 3.1.

1 R.<x>= PolynomialRing(QQ)
2 gen_set_F = lambda N, n: [R(list(coef)+[1]) for coef in

cartesian_product ([range(-N,N+1)]*n)]
3 gen_F_irred = lambda F: [pol for pol in F if pol.is_irreducible

()]
4

5 def procedure(N,n):
6 """ Generates the set F_{N,n}, compute the Galois group for

every irreducible polynomial in this group
7 Return a dictionnary with every Galois group and their

occurences."""
8 F = gen_set_F(N,n)
9 F_irred = gen_F_irred(F)

10 groups = {}
11 for pol in F_irred:
12 G = pol.galois_group ().structure_description ()
13 groups[G] = groups.get(G,0)+1
14 return groups
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