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Abstract

The following paper is a detailed summary of our research about voter models
and the impact of influencers in social networks. Based on our findings, we will
establish some conjectures. Our main goal is to broaden our and our readers’ un-
derstanding of the evolutionary behaviour of voter models.

We would like to thank Dr. Campese for all of his help and support throughout our
project.
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1 Introduction

The voter model (abbr. VM) can be defined as an ideal system or network of elements,
such as people, particles, et al., interacting with one another, combined with a set of
well-defined rules, which determine how the system evolves over time. Each of these ele-
ments has one or multiple attributes, e.g., an opinion, a colour, a political view, that can
be influenced by its surroundings. The main role of the model is to help understand the
development of these attributes over time, on an individual level, as well as on a global one.

Considering the classic voter model, these elements, also known as ”voters”, can be repre-
sented as nodes or vertices of a connected static graph. Each node has one of two possible
opinions or states. The connection of two nodes, which can be illustrated by edges, indi-
cates a certain interaction between both, allowing them to influence each other. A simple
update rule of the opinion evolution can be defined as following:

1. randomly select a voter from the graph
2. randomly select a neighbour, who shares an edge, of different opinion

3. change this voter’s opinion (if there is no such neighbour, then nothing happens,
however this still counts as a step)

Mathematically, this evolution rule can be expressed as follows:

Let (x1, 1) be the coordinates of a chosen square and let (x2, y2) be the coordinates of one
of its neighbours of different opinion. If 04, 4}, O(zs,4) € {0, 1} represent their respective
opinions, then the update rule will have the subsequent effect:

O(z2,y2) = 1— O (z1,y1)

An interesting thing to analyse is, how this voter model will evolve over time, if we re-
peatedly apply these same rules. Will a consensus, where the proportions of the different
opinions no longer vary more than a given percentage, eventually be reached, and if so,
how long will it take? Does this depend on the initial set-up or proportions of the graph?
What happens if we change the selection rules or add a third opinion to the mix?

On the other hand, another important model to consider is one, where initially all the
voters of the graph share the same ”"neutral” opinion. Next, we can place so called ”in-
fluencers”, who have their own non-neutral opinion, in a specific position of the graph.
By applying similar rules as above, we can then ask ourselves: is there a position that
favours the success of an influencer’s opinion? What happens if we change the rules, by
instead of selecting randomly, choosing the next voter based on a set of probabilities?

These are all questions we asked ourselves at the beginning of our research phase and
ones for which we have come up with experimental answers and results, some of which
were quite predictable, others rather surprising.

Over the last century the study of voter models has become an increasingly relevant
topic, part of the mathematical theory of probability and statistical physics. Nowadays,
it has become essential for big companies, political parties, et al., to fully comprehend the
impact that influential advertising and campaigning can have on our society.
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To help understand the functionality and evolution of such a voter model, we will first
give several examples of how these graphs can be represented visually, as well as some
modern-day use cases. Next, we will focus on explaining all the details of the basic case
of the voter model, followed by an analysis of what happens, if the number of opinion-
s/colours in the grid and the grid’s dimension are changed. Furthermore, we will also
take a closer look at the so-called ”clustering” phenomenon, a special behaviour of the
voter model, which reoccurs regularly. Moreover, we will examine a different set-up of
the classical voter model, namely one, where so-called ”influencers” play a vital role in
the propagation of the opinions/colours. Finally, we will give a short summary of some
already well-known mathematical results and theorems, before presenting our final con-
clusion. Last but not least, we will exhibit the Python codes we used for our simulations
in the appendix, followed by our references.

2 Different graphical representations of networks

Although there are many ways to visually represent these network graphs, we have chosen
three particular examples, to explain more precisely.

2.1 Network diagrams

In graph theory, a network diagram is considered to be a network, where nodes (i.e.,
voters) are represented by dots and their interconnections or edges by lines running from
one node to the other.

Figure 1: Example of a network diagram

Furthermore, the complexity of the network diagram can be altered, by adding supple-
mentary features to both the nodes, as well as the edges. For example, the nodes can be
given certain values and the edges can be given specific weights and directions.
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Figure 2: Example of a weighted & directed network diagram

In general, it is an ideal way to map the layout of a network, as its visual representation
makes it easier for the outside observer to understand how elements are connected.



2.2 DMatrices

Another straightforward way of representing a network can be done by using matrices. If
we consider a n X m matrix (n, m € N), then we can regard the positions of the coefficients
of the matrix as the positions of our voters, while the values of the coefficients represent
that voter’s opinion. Here the influenceable neighbours of a voter can be seen as the
surrounding coefficients, which add up to no more than 8 neighbours. One of the simplest
and most common cases is when the entire matrix is filled with the values 0 and 1, both
standing for different opinions. Here we show an easy example of how the evolution of a
3 x 3 matrix, applied with the update rule we defined above, could look like (simulated
using one of our programs):

1
1
0

_ o O

1 1 00 1 00 1 10 1 10 1 10 1 11
0Ol —=11 0 Of =1 OOl —=11 O Of—=1f1 01l =11 1 1] =11 1 1
1 011 1 11 1 11 1 11 1 11 1 11

2.3 Grids

Finally, a third way to represent networks graphically is by using grids of size n x m
(n,m € N). Each square of the grid can be seen as a voter and is therefore filled with
a specific colour, which stands for their opinion. Similar to the case of matrices, each
voter can have a maximum of 8 surrounding neighbours, whose interactions can lead to a
change of opinion.

Moreover, we chose this type of graph for most of our visual simulations, as the switch
of opinions stands out colourfully and as it is quite simple to code a program to be able
to return such a grid, applied with divergent variations of the evolution rule mentioned
above. Hence, there will be many examples of this sort of graph throughout our paper.

3 Real-world use cases of network analysis

Let us mention some of the most popular real-world use cases of network analysis.

3.1 Electrical network analysis

In an electrical sense, a network is considered to be a collection of connected elements,
which essentially form an electrical circuit. In this case, network analysis is mainly used to
understand how and with what properties the electric current flows through the circuit, as
well as finding out the exact voltages. This type of circuit analysis is especially important
when it comes to setting up and evaluating the efficiency of electric circuits or networks.

3.2 Biological network analysis

Throughout the last century, scientists have been able to gather important scientific data,
which has led to an increase of biological network analysis. Biological systems can often be
represented by networks, built up of complex connections between two separate entities.
The main goal of this research is to find repetitive patterns, as well as abnormalities, to
better our understanding of these interconnections. As these interactions happen on all
sorts of levels, from microscopic to universal, there are a huge amount of different network



models, such as "ecological, neurological, metabolic or molecular interaction networks”
([10], para. 1). This can be seen in the image below:

Metabolic

Neurological

Molecular
interactions
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Figure 3: Examples of biological network models

3.3 Social network analysis

Finally, social network analysis focuses on the structure of relationships between social
groups. In a world where all of humanity is as connected as never before, it is not surprising
that the implementation of social networks has gained of importance in almost every
branch (e.g., politics, sociology, geography, economics). By collecting as much data from
citizens as possible, governments and companies can become aware of social connections
between people. Thanks to social network analysis, many of these social structures, like
social media networks, friendship and family networks, and business networks, can be
represented visually by graphs as seen below, often referred to as ”sociograms”.
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Figure 4: Example of a sociogram

Next, we will take a closer look at different variations of the evolution of the voter
model, while using the grid mentioned above for our visual representations. These alter-
ations will for example consist of changing:



e the initial set-up of the grid
e the number of used opinions/colours
e the size & dimension of the grid

To improve the readability of our document, we have chosen to order our experimental
results into logical groups.

For all of our simulations, we used the programming language Python, including the plugin
"Pygame”, to run through our simulations and gather data for our detailed analysis.

4 Basic case

Let us start off with the basic case, to which we will refer to regularly throughout our
paper. Consider a square grid of size n x n (n € N), filled with squares of two different
colours, which can be seen as our voters attributed with a specific opinion. We then get
a voter model, by repetitively applying the update rule, mentioned above, to our grid.

Naturally, there were a few simple questions we asked ourselves at the beginning, re-
garding the evolution of the voter model:

e Given a certain initial set-up, meaning given a specific proportion of voters of ”good”
opinion or squares of the colour red at the start, will our voter model eventually
reach a state of equilibrium/consensus?

e In the case where an equilibrium is achieved, is it always a unanimous one?

e Does the outcome depend on the initial proportion of a certain opinion/colour or
on the size of the grid?

To fully understand our experimental results, we first need to lay the groundworks, by
giving some necessary definitions. It is important to notice that we came up with these
definitions ourselves and that these are by no means the "unique correct” definitions of
these terms.

4.1 Definitions

Definition 4.1.1 (Neighbours). A neighbour of a square is considered to be any other
square that is directly connected to that square, meaning that it either shares an edge
or a corner with that square. In the 2-dimensional case, each square can have up to 8
neighbours in total.

Definition 4.1.2 (Update rule). The update rule, as already mentioned above, is the
main rule, which determines the evolution of the voter model. It may be changed from
case to case; however, it always has to be clearly defined.

Definition 4.1.3 (Step). A step can be defined as one execution of the update rule.
Definition 4.1.4 (nD). We use nD as the abbreviation for n-dimensional, for n € N.

Definition 4.1.5 (Dominant opinion/colour). An opinion/colour is defined as dominant,
if it holds a larger proportion of the grid than another opinion.



Definition 4.1.6 (Eliminated opinion/colour). An opinion/colour has been eliminated,
if there is no longer a voter/square, who has this opinion/colour.

Definition 4.1.7 (Unanimous grid). A grid is unanimous, if all the voters/squares share
the same opinion/colour.

Definition 4.1.8 (Equilibrium/consensus). An equilibrium/consensus can be defined as
the state of the grid, when the proportions of the different opinions/colours no longer
vary more than a given percentage. For our programs, we decided that an equilibrium is
reached if the grid is unanimous or if the proportions of the opinions/colours do not vary
more than a specific threshold for at least a certain number of steps. Here, it is important
to choose the number of steps (our default value: 10 x the number of squares in the grid),
as well as the threshold (our default value: 1%) adequately.

Definition 4.1.9 (Clustering). Clustering can be defined as the grouping of voters/squares
who share the same opinion/colour. These tend to form clusters of different shapes and
sizes, from where the name originates.

4.2 Visual simulations vs analytical simulations

In order to gather conclusive data, we had to run through two different types of simula-
tions, visual and analytical ones. (The main Python codes of these two programs can be
found at the end of our paper.)

On the one hand, the visual simulations allowed us to make some first pre-assessments.
By taking screenshots of the grid over regular step intervals, we were able to get a first
understanding of how the grid would evolve over time. Moreover, the statistics, concern-
ing the evolution of the visual simulations, were saved in EXCEL files, in order to refer
to any data if needed.

On the other hand, the purpose of the analytical simulations was to run through each
scenario a certain amount of times (our default value: 100 times) and then to work with
the average behaviour of our voter model, to see if this overlapped with our initial assess-
ments. By storing this data in EXCEL files, we were able to look for reoccurring patterns.

(Note: In general, when describing the visual simulations, we use the terms squares and
colours, whereas for the analytical ones we use the terms voters and opinions. However,
these can be interchanged without loss of meaning.)

4.3 Visual examples

The following images were taken from concrete simulations we ran, for different initial
set-ups of the squares and their colours (in these examples, all the grids are of the size
100 x 100):



Figure 5: Initial proportions: 50% red & 50% blue

Figure 6: Initial proportions: 65% red & 35% blue

Figure 7: Initial proportions: 95% red & 5% blue

4.4 First observations

After having looked closely at the images with different initial set-ups (initial ”good”
percentage varied from 50% to 95%) and grid-sizes (varied from 100 x 100 to 500 x 500)
and comparing the outcomes with the data from our analytical simulations, we were able
to come up with our first observations:

e In the case, where the proportions of both opinions were initially equal (so in this
case with 2 opinions, 50%/50%), the outcome was inconclusive. Occasionally, one
opinion would gather momentum and start to dominate the grid, by gradually grow-
ing its proportion. In this case, the opinion having gained momentum early on,
would usually go on to fill the grid unanimously. However, the most common case
for this initial set-up was that, although both proportions fluctuated randomly, they
tended to stay close to their initial proportions of 50%/50%. This can be seen if we
check the analytical simulation of this case:
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Grid-size  Steps until equilibrium % at equilibrium

100 36541.94 49.9821
150 47287.88 49.4856
200 64748.87 49.85108
250 74599.23 50.23037
300 595451.93 50.14
350 66120.8 49.89491
400 71403.84 49.965
450 101281.2 50.005
500 67551.43 49.985

Here we can observe that, on average, the percentage of the "good” opinion at our
defined equilibrium was around 50%, meaning that the percentage of the "bad”
opinion was also around 50%. However, we can see that the number of steps until
our consensus was reached, was quite random and unpredictable. (Remember that
in this case an equilibrium can also be achieved, if the proportions of the opinions
no longer vary more than a given threshold, for a certain number of steps.)

In all the other cases, where the initial proportions of the opinions were not equal, the
opinion which held the bigger initial proportion of the voters tended to be superior to
the other opinion, meaning that more often than not this opinion would eventually
fill the grid unanimously. Here are some of our analytical results confirming this:

Table 1: Initial proportions: 70% red & 30% blue
Grid-size  Steps until equilibrium % at equilibrium

100 28198.34 99.414
150 64234.11 99.49462
200 109661.3 99.46635
250 173986.8 99.49211
300 244709.7 99.49
350 339986.6 99.51908
400 431680.3 99.5
450 557307.5 99.51457
500 675512.8 99.5

Table 2: Initial proportions: 90% red & 10% blue
Grid-size  Steps until equilibrium % at equilibrium

100 11728.58 99.8228
150 15637.54 99.54222
200 33518.24 99.59
250 42591.29 99.5152
300 63317.65 99.515
350 82854.85 99.50776
400 107668.8 99.5
450 136688 99.50469
500 168487.7 99.5
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Furthermore, we found out that the probability of this happening grew, when the
difference between the two proportions became bigger, e.g., in the case 95%/5%,
the chances of a unanimous grid occurring, were higher than in the case 55%/45%.

e A further observation was that, for those cases where the initial proportions of opin-
ions were not equal, the number of steps until an equilibrium occurred depended on
both the initial proportions, as well as the size of the grid. On the one hand, the
bigger the difference between the two percentages, the fewer amount of steps were
needed to reach a unanimous state. On the other hand, the larger the grid-size was,
the higher the number of steps needed to reach a unanimous state was. Both these
claims can be seen by analysing our analytical results individually, like we already
did for the tables above, as well as comparing them with each other:

F0000
2500000

2000000

G0

Figure 8: Comparison of the number of steps to reach an equilibrium as a function of the
grid-size

In this graph, the dark green function represents the case where the initial propor-
tions of the opinions were 55%/45%. Afterwards, the functions become flatter and
more inferior, as the difference between the initial proportions grows, all the way to
the pink function, which stands for the case 95%/5%.

Furthermore, by curve fitting the plotted data, we were able to observe that the
growth of the number of steps until the equilibrium with regard to the grid-size
is quadratic. After having tried to approximate our curve with different types of
functions (i.e., linear, exponential), we concluded that a quadratic function gave us
a precise enough approximation. Additionally, we can clearly see that the coefficient
of the quadratic term of our functions diminishes, as the difference between the two
percentages grows. Hence, by curve plotting all of the collected data, we came up
with a ”general equilibrium function” of two variables x and y, which represent the
grid-size and the initial percentage of the ”good” opinion respectively (equilibrium
threshold: 1%):

For x € [100, 500],y € [0, 1]:

f(x,y) = (1037y* —3477.1y3+4366.7y%? —2439.8y+513.68)-2:2+(—246322y* + 771570y —895948y> +456249y —85774) -
Here, it is important to note that this general equilibrium function depends on the

number of repetitions, which were executed for each separate scenario. As indicated
before, we chose to run each single case 100 times and then work with the averages,
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however fewer or more repetitions could lead to variations of this equilibrium. Fur-
thermore, it also depends on the chosen threshold for our equilibrium. For example,
we could also look at the general equilibrium function for a threshold of 0.5% and
notice that it varies slightly compared to the one above:

For x € [100, 500],y € [0, 1]:

fx,y) = (3837.7y* —12436y5+15056y% —8078.7y+1624.3)-2:2+(—535729y* +2 E+06y> —2 E+06y> + 1 E+06y—200394)-

e Finally, for the visual simulations, we were able to see that in all of our cases, the
coloured squares tended to form sorts of ”groups” or ”colonies”, a process called
"clustering”. Particularly, for the cases where one colour was eliminated in the end,
we saw that the last ”surviving” squares of the inferior proportion were usually
grouped into clusters. The formation of these clusters seemed to be essential for
the dominance/survival of the opinions, as they, on the one hand, made the capture
of single surrounded squares by the opposition easier, and, on the other hand, of-
fered protection for those squares lying in the core of the clusters. The concept of
clustering will be further analysed later on in the paper.

Figure 9: Grid-size: 150 x 150 / Initial proportions: 60% red & 40% blue

4.5 Conjectures

As a result, we have come up with the following conjectures with regards to our observa-
tions:

e If the initial proportions of the two opinions are equal, it takes an indeterminate
number of steps to reach an equilibrium, at which, on average, we have the same
proportions as at the beginning.

e If the initial proportions of the two opinions are not equal, the dominant opinion
tends to eventually fill the grid unanimously, with the probability of this happening
increasing, when the difference between the initial proportions grows.

e In those cases, where the initial proportions of the opinions are not equal, the
amount of steps to reach a state of equilibrium grows, as the difference between the
initial proportions diminishes.

e In those cases, where the initial proportions of the opinions are not equal, the
number of steps to reach a state of consensus grows quadratically with regard to
the grid-size.

e In all of the cases, the voters tend to group into clusters over time.
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5 Variation of the number of opinions/colours

After having come up with our first observations and conjectures for the basic case of the
voter model, we continued our research by asking ourselves: would the evolution of the
voter model be fundamentally different, if our model had more than two opinions/colours
at the start? To answer this question, we took a closer look at the following cases.

5.1 3 opinions/colours

First of all, in total, we tested 4 initial set-ups based on different proportions of the three
opinions, each for grid-sizes ranging from 100 x 100 to 500 x 500. Let us enumerate these
cases:

1. proportions of all three opinions are the same (relative proportions: (1,1,1))
2. one dominant opinion & two weaker opinions (relative proportions: (2,1,1))
3. two dominant opinions & one weaker opinion (relative proportions: (2,2,1))

4. regular decreasing dominance of the opinions (relative proportions: (3,2,1))

Figure 10: Ordered examples of the 4 cases at the start (grid-size: 100 x 100)

Let us go through the different cases:

e In case 1., we saw a similar outcome as with the 2-opinions case, where the ini-
tial proportions were equal. Although the behaviour of our voter model was quite
unpredictable and the number of steps to reach a state of equilibrium fluctuated
randomly, on average, the proportions at the equilibrium were equivalent to those
at the beginning.

Grid-size  Steps until equilibrium  Opinion 1 % at equilibrium  Opinion 2 % at equilibrium  Opinion 3 % at equilibrium

100 10933.78 33.6965 32.8439 33.4596
150 10982.16 33.22964 33.37013 33.40022
200 12519.51 32.98913 33.4799 33.53098
250 3252.1 33.27797 33.35584 33.36619
300 638.62 33.29257 33.33422 33.37321
350 4760.11 33.32479 33.36329 33.31192
400 2776.12 33.30058 33.36456 33.33486
450 4567.2 33.33637 33.39167 33.27196
500 9812.1 33.32086 33.28961 33.38953
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e In case 2., we know that the dominant opinion occupies 50% of the grid at the start,
whereas the two weaker opinions each occupy 25% of the grid. At first one might
think that the evolution of this case should be similar to the one of two opinions
with equal initial proportions, as the dominant opinion and the two weaker opinions
combined both cover half of the grid. However, we immediately observed that there
was no type of coalition between the weaker opinions, as they not only had to protect
themselves from the dominant opinion, but also from each other, which inevitably
lead to the equally timed elimination of both in the end. As a result, it is interesting
to see that even without occupying over 50% of the grid, an opinion can still fill the
grid unanimously over time.

Grid-size  Steps until equilibrium  Opinion 1 % at equilibrium  Opinion 2 % at equilibrium  Opinion 3 % at equilibrium

100 57436.15 97.8837 1.022 1.0943

150 122823.9 98.01907 0.956711 1.024222
200 218720.7 98.07745 0.942725 0.979825
250 347990.6 98.13101 0.920144 0.948848
300 505053.5 98.2019 0.927133 0.870967
350 682399.4 98.1779 0.925829 0.896269
400 894126.2 98.29222 0.8533 0.854481
450 1118539 98.16727 0.918731 0.913995
500 1371900 98.17864 0.917292 0.904064

e In case 3., we have that the dominant opinions both possess 40% of the grid, while
the weaker opinion only possesses 20%. Here, we were able to observe that the
majority of the time, the weaker opinion was eliminated over time, leaving the two
dominant opinions to battle it out between each other. From then onwards, on
average, the voter model evolved similarly to the case of two opinions with equal
initial proportions. This shows that most of the time, the two dominant opinions
were equally as responsible for the elimination of the weaker opinion, otherwise they
would not both have a proportion of around 50% at the state of equilibrium.

Grid-size  Steps until equilibrium  Opinion 1 % at equilibrium  Opinion 2 % at equilibrium  Opinion 3 % at equilibrium

100 27464.98 48.6943 47.9969 3.3088

150 62276.37 48.69956 48.24391 3.056533
200 114646.3 48.8424 48.48265 2.67495
250 180635.8 48.66736 48.64357 2.689072
300 256013.2 48.74803 48.57873 2.673233
350 355238 48.97673 48.4497 2.573576
400 448565.9 48.56604 48.77615 2.657806
450 585873.9 48.90412 48.49016 2.605719
500 707765.7 48.64669 48.73488 2.618428

e In case 4., the initial percentages of the three opinions are around 50%, 33.3% and
16.6%. We saw that this case evolved similarly to case 2., in the sense that the most
dominant opinion, which occupied half of the grid at the start, could eventually
eliminate the other two weaker opinions and fill the grid unanimously. However,
there was one main difference, namely the fact that, on average, the opinion with
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an initial percentage of 33.3% was able to survive for a longer period than the
opinion with an initial percentage of 16.6%.

Grid-si
100
150
200
250
300
350
400
450
500

ze  Steps until equilibrium

65917.8
156351.6
270535.9
436329.7
623886.8
841572.8

1093568

1388146

1749352

Opinion 1 % at equilibrium  Opinion 2 % at equilibrium

94.8901
95.55547
95.5536
95.58258
95.7671
95.72924
95.65631
95.847
95.7943

4.9967
4.371556
4.3725
4.355344
4.174867
4.203869
4.27595
4.087901
4.146108

Opinion 3 % at equilibrium

0.1132
0.072978
0.0739
0.06208
0.058033
0.06689
0.067744
0.065096
0.059592

(Note: In all four of these cases, we ran through each single scenario 100 times, while
using a consensus threshold of 1%. By running through each individual case more often
and by reducing the threshold, the obtained results become even more precise.)

5.2 4 opinions/colours

Similarly, to the previous case, we also experimented with 4 initial set-ups based on
different proportions of four opinions (each for grid-sizes ranging from 100 x 100 to 500 x

500).

Again, we can enumerate these cases:

1. proportions of all four opinions are the same (relative proportions: (1,1,1,1))

2. one dominant opinion & three weaker opinions (relative proportions: (2,1,1,1))

3. two dominant opinions & two weaker opinions (relative proportions: (2,2,1,1))

4. regular decreasing dominance of the opinions (relative proportions: (4,3,2,1))

Figure 11: Ordered examples of the 4 cases at the start (grid-size: 100 x 100)

Let us go through the different cases shortly:

e In case 1., we came up with the exact same results as for the 3-opinions case 1., only
that our initial and equilibrium percentages were around 25% each, which makes
sense as we are working with four different opinions here.

16



Grid-size

100
150
200
250
300
350
400
450
200

Steps until equilibrium  Opinion 1 %

5307.98
8330.89
4850.92
1935.33
3247.81
2783.22
3456.72
5238.04
6347.39

24.7669
25.09218
25.08008
24.98427
24.97142
24.95894
25.01014
24.99998
24.97425

Opinion 2 %

25.1842
24.89427
24.95948
25.04059
24.93052
24.98477
25.01117
25.00319
25.01211

Opinion 3 %

24.7191
24.97884
24.9454
24.95227
25.04339
25.00426
24.98869
25.00778
25.01642

Opinion 4 %
25.3298
25.03471
25.01505
25.02286
25.05467
25.05203
24.99
24.98905
24.99723

e In case 2., our conclusions were similar to the 3-opinions case 2.. Although this time,
the three weaker opinions combined (3 x 20%) held a larger proportion of the grid
than the dominant opinion alone (40%), on average, the dominant opinion was still
able to eliminate the three weaker opinions equally as fast, leading to a unanimous
grid eventually.

Grid-size

100
150
200
250
300
350
400
450
200

Steps until equilibrium  Opinion 1 %

83735.53
191257.2
343151.2
536773.8
776336.6
1058307
1381098
1750268
2169658

95.5138
95.97276
96.3605
96.25944
96.36452
96.30841
96.45833
96.56842
96.52827

Opinion 2 %

1.5241
1.292978
1.146375
1.27848
1.206533
1.252367
1.192675
1.155151
1.199808

Opinion 3 %

1.5538
1.399822
1.270325
1.198576
1.241178
1.242155
1.162269
1.118316
1.141232

Opinion 4 %
1.4083
1.334444
1.2228
1.263504
1.187767
1.197069
1.186731
1.158109
1.130688

e In case 3., again, we came up with an almost identical outcome as for the 3-opinions
case 3., namely that the two dominant opinions would eliminate both weaker opin-
ions and then battle it out evenly between each other. This then led back to the
equally proportioned 2-opinions case, which we have already described in detail.

Grid-size

100
150
200
250
300
350
400
450
200

Steps until equilibrium  Opinion 1 %

42673.94
97133.75
167049.3
266243.7
394436.2
523497.1
684553.1
855703.4
1072385

47.8213
47.45249
46.88138
46.96472
47.47612
47.33715
47.26323
47.33466
47.35888

Opinion 2 %

45.6059
46.98133
47.50263
47.41883
47.16757
47.30411
47.35659
47.27869
47.33962

Opinion 3 %

3.4518
2.797956
2.7742
2.85624
2.6921
2.649249
2.682469
2.675398
2.636588

Opinion 4 %
3.121
2.768222
2.8418
2.760208
2.664211
2.709494
2.697706
2.711259
2.664908

e In case 4., we came up with the same interpretation as for the 3-opinions case
4.. Over time, the weaker opinions tended to be eliminated one by one, while the
proportion of the dominant opinion grew. We were also able to see that, on average,
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the disappearance of the weaker opinions happened in an increasing order of their
initial proportion.

Grid-size  Steps until equilibrium Opinion 1 % Opinion 2 % Opinion 3 %  Opinion 4 %
100 93075.54 86.6964 12.1777 1.0443 0.0816
150 226996.8 87.80644 11.17044 0.981556 0.041556
200 410076.2 88.32623 10.8546 0.764075 0.0551
250 649234.8 87.88166 11.24325 0.834384 0.040704
300 930594.7 87.97989 11.1393 0.852233 0.028578
350 1291916 88.4623 10.72762 0.780547 0.029527
400 1679137 88.2917 10.85999 0.819031 0.029275
450 2177885 88.4781 10.70764 0.784277 0.02998
500 2671358 88.55875 10.65568 0.758992 0.026576

5.3 Conjectures

As a result, we have come up with the following conjectures for a grid with n opinions
initially (n € Nx3), with regards to our observations:

6

e If the initial proportions of the opinions are equal, then, on average, an equilibrium

state will occur after an unpredictable number of steps, with the different opinions
all still holding equal proportions of the grid.

If there is one single dominant opinion in the voter model, without necessarily
covering more than 50% of the grid, then, on average, it will be able to obtain a
unanimous grid eventually, after eliminating the weaker opinions.

If there are multiple equally dominant opinions in the voter model, then, on average,
all the weaker opinions (if there are any) will be eliminated over time, leaving the
dominant opinions to battle it out evenly among each other. In this case, we tend
to have the exact same scenario as explained in our first conjecture.

If the different opinions have decreasing dominance in the voter model, meaning
if the initial percentages of the opinions can be ordered in a decreasing way (e.g.,
40%, 30%, 20% & 10%), then, on average, the most dominant opinion will eventually
become unanimous, while the opinions with the lowest initial proportions tend to
be the first to be eliminated.

Variation of the grid’s dimension

Following the conjectures based on the variation of the number of opinions/colours in the
voter model, we asked ourselves a further interesting question: would the evolution of
the voter model be fundamentally different, if we considered our grid to have a different
dimension (i.e., 1, 3 or 4 dimension(s))? Therefore, we took a closer look at the following
cases. As it is extremely hard, or even impossible in some cases, to represent the grid,
if its dimension is greater than 2, we decided to primarily use our analytical program to
collect our data.
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6.1 1 dimension

Let us start off by considering a 1-dimensional grid, which can also be represented by a
simple line segment of squares. In a mathematical sense, this means that we are working
with a coordinate system, where every square only has one coordinate. As it is still
possible to simulate this case visually, we decided to do so for grid-sizes ranging from 100
to 500 and for initial opinion proportions ranging from 50%/50% to 95%/5%. Hence, we
came up with the following observations:

e In most cases, we were able to see the formation of 1D clusters, represented as
continuous line segments, where all squares share the same opinion. These line
segments were of arbitrary lengths, with the dominant opinion usually having the
longest clusters.

e In the majority of the cases, after letting the simulation run for over 10 x the total
number of squares, the initial proportions remained almost preserved, with the only
change coming from the distribution of the squares.

— —_—

Figure 12: Grid-size: 100 / Initial proportions: 50% red & 50% blue

— —_—

Figure 13: Grid-size: 100 / Initial proportions: 90% red & 10% blue

Following some first visual observations, we ran our analytical program, working with
grids of different set-ups of 2 opinions and of grid-sizes ranging from 10°000 to 100000,
while using a consensus threshold of 1% and repeating each single case 50 times. Let us
go through the obtained results:

e The cases, where the opinions held close to equal proportions initially, behaved in a
similar way to the same cases of the 2D voter model. In general, the percentages of
the opinions remained almost identical at the equilibrium, however, the number of
steps it took to reach this state was quite random, as we can see in the table below.

Table 3: Initial proportions: 50%/50%
Grid-size  Steps until equilibrium % of dominant opinion at equilibrium

10000 3261.55 49.9932
20000 2052.49 49.97995
30000 1969.21 49.97
40000 1821.5 49.98
50000 696.35 50.02
60000 1204.98 50.01
70000 25.21 49.99
80000 120.21 20.03
90000 36.23 49.99
100000 17.88 50.02
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e The major differences could be seen for the cases, where the opinions did not pos-
sess the same proportions at the beginning and where the dominant opinion initially
occupied over 55% of the grid. First of all, we were able to observe that, on aver-
age, a state of equilibrium was reached, while both opinions had close to the same
proportions as at the start.

Table 4: Initial proportions: 80%/20%
Grid-size  Steps until equilibrium % of dominant opinion at equilibrium

10000 11492.23 83.9185
20000 22209.97 83.82
30000 32498.69 83.76
40000 44956.04 83.81
50000 57451.95 83.81
60000 67824.28 83.79
70000 79319.14 83.78
80000 91189.22 83.82
90000 106506.7 83.81
100000 117183.9 83.84

Furthermore, the number of steps it took to reach an equilibrium as a function of
the grid-size grew linearly in general, meaning it could be approximated optimally
by a linear function.

140000
120000 y=1.1807x-1877.3
100000
80000
60000

40000

Steps until equilibrium

20000

0
0 20000 40000 60000 80000 100000 120000

Grid-size

Figure 14: Initial proportions: 80%/10%

6.2 3 dimensions

Next, let us consider a 3-dimensional grid, which can also be seen as a basic cube, filled
with smaller cubes.
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Mathematically, this means that each single voter simply has an additional third coordi-
nate. As the number of voters in our grid is no longer the side-length of the grid squared,
but cubed, we were forced to work with grids of smaller side-length. Nonetheless, the
actual number of cubes in our grid roughly stays the same as for the number of squares
in the 2D cases.

Overall, we worked with grids of different initial set-ups of 2 opinions and of sizes ranging
from 50 x 50 x 50 to 90 x 90 x 90, while using a consensus threshold of 1% and repeating
each single case 50 times. As a result, we found out the following properties:

e By looking at the gathered data and graphs, we can conclude that for the cases
where the opinions are initially equally proportioned, as well as for those, where
they are not, we get almost identical results as for the 2D model in general.

Table 5: Initial proportions: 75%/25%
2D grid-size 2D % at equilibrium 3D grid-size 3D % at equilibrium

250 99 20 100
300 99 60 100
350 99 70 100
400 99 30 100
450 99 90 100
200 99 100 99.9

Here we can see that the average percentages at the equilibrium of the dominant
opinion for the 3D voter model are close to those of the 2D model.

e The only main difference one can observe, is that generally, it takes the 3D voter
model a larger amount of steps to reach a state of equilibrium, if we compare the
2D and 3D models using grids with a similar number of voters. We can only assume
that this is because the 3D grid has more edges (12) and faces (6), which essentially
means that a larger proportion of voters, which lie on these edges and faces, have
a weakened probability of finding a neighbour of different opinion to influence, as
there are fewer neighbours to choose from. Let us show with an example that the
proportion of these deprived voters is in fact larger than the one for the 2D grid:
Consider a 2D grid of size 300 x 300 and a 3D grid of size 45 x 45 x 45. We can see
that the total number of voters in both grids are close to each other (300 ~ 453).
Hence, we can calculate the proportion of squares lying on the respective boundaries
(edges for the 2D model, edges & faces for the 3D model) in both grids:

2D: # of voters lying on edges — 30022982 ~ 0.0133 ~ 133%

total # of voters 3002
. # of voters lying on edges & faces __ 453—433 ~
3D: total # of voters 453 7 0.1275 &~ 12.75%
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e Finally, by curve fitting the plotted results, we were able to conclude that a quadratic
function no longer approximates the average number of steps to reach a consensus
as a function of the grid-size precisely enough, as the average relative error is above
3%. However, cubic functions and polynomials of higher degree approximate this
function with an average relative error of less than 1%.

2500000
y = 4.5064x3 - 543.32x? + 38648x - 886404
2000000

1500000

1000000

Steps until equilibrium

500000

0 20 40 60 80 100 120
Grid-size

Figure 15: Initial proportions: 55%/45%

6.3 4 dimensions

Finally, we can consider a 4-dimensional grid, which one can also imagine to be a tesseract,
filled with smaller tesseracts. Adding a forth coordinate to each voter, we worked with
grids of different initial set-ups of 2 opinions and of sizes ranging from 5 x 5 X 5 x 5 to
25 x 25 x 25 x 25, while using a consensus threshold of 1% and repeating each single case
50 times. Let us enumerate our assessments:

e Comparing this case to the 2D and 3D case, we hardly saw any differences. On
average, the general evolution of the 4D voter model was almost identical to the
other cases, with the average proportions of the dominant opinion at the consensus
being similar again.

Table 6: Initial proportions: 75%/25%
2D grid-size 2D % at equilibrium 4D grid-size 4D % at equilibrium

300 99 5 99.68
350 99 10 100
400 99 15 99.03407
450 99 20 100
500 99 25 99.00442

e The only dissimilarity came, yet again, from the larger number of steps to reach
a state of consensus. Here we can make a similar assumption as for the 3D voter
model, specifically that this average larger number of steps is related to the in-
creased number of edges, faces and cubic cells of our 4D grid, which has the exact
same consequence as mentioned in the 3D case.
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Hence, we can see that as the dimensions increase, so to do the amount of ”bound-
aries” of the grids, which have an immediate knock-on effect, when it comes to the
number of steps it takes to achieve a state of equilibrium.

e Last but not least, by curve fitting the plotted data, we were able to observe that a
cubic function performs poorly, when it comes to approximating the average number
of steps to reach an equilibrium as a function of the grid-size. However, a quartic
function (forth degree polynomial) and polynomials of higher degree perform ideally,
having an average relative error below 1%.

Steps until equilibrium

140000
120000 y =-2.1527x% + 132.57x3 - 2412.6x% + 17615x - 42204
100000
80000
60000
40000

20000

30

Figure 16: Initial proportions: 80%/20%

6.4 Conjectures

Following the detailed analysis of our observations, we would like to make some conjec-
tures, concerning the variation of the grid’s dimension:

e In the case, where our grid is 1-dimensional, the initial and final proportions of the
two opinions commonly lie close to each other.

e If the grid’s dimension is greater than 1, the variation of its dimension generally
does not change the overall evolution of the voter model, all behaving in a similar
way to the basic 2D case.

e The one main difference is that, on average, the number of steps it takes to reach a
state of consensus becomes larger as the grid grows in dimensions. This is presum-
ably due to the fact, that the number of edges, faces and further hindering obstacles
increases with the rising dimensions, which deprives a growingly larger proportion
of voters lying on these boundaries.

e If the dimension of the grid is equal to n (n € N), then in general, after curve fitting
the plotted data, we can see that the average number of steps it takes to reach a
state of equilibrium as a function of the grid-size can be optimally approximated by
a polynomial function of degree n or higher.
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7 Clustering analysis

As already briefly mentioned in the basic case, for every single scenario we simulated
visually, no matter the initial set-up of the grid, we were always able to observe the
formation of so-called clusters. To show that this process, known as ”clustering”, is a
common behaviour of the voter model, we decided to further analyse the 2D model, to
understand as much as possible about these clusters.

7.1 First observations of formations of clusters

In order to gather some first observations concerning the formation of clusters, we decided
to keep track of the number and sizes of these groups for all types of single cases of the
2-opinions 2D voter model, with the help of a program that simulated each individual
scenario analytically.

After having run through each individual case several times, with the initial propor-
tions of the two opinions ranging from 50%/50% to 95% /5% and with grid-sizes ranging
from 50 x 50 to 85 x 85, we were able to observe some frequent patterns.

Generally, we found that at the very beginning of each simulation, there tended to be
a few bigger clusters and many smaller clusters or single squares. The sizes of these, as
well as their frequency largely depended on the grid-size and initial proportions of the
opinions. However, apart from the sizes and the frequency of these clusters, on average,
their overall behaviour was quite similar over time. The majority of the smaller groups
tended to attach themselves to the larger ones of same opinion or were influenced by
larger clusters of different opinion, allowing these to grow significantly in size.

Figure 17: Grid-size: 150 x 150 / Initial proportions: 50% red & 50% blue

Here we can see that after a certain amount of steps, our grid began to almost look like
a map of 2 colours. Meanwhile, the existence of smaller or even single isolated clusters
became less common over time, a topic which we will further analyse in our next para-
graph.

Let us now take a closer look at a few examples of the evolution of clusters for some
specific cases for the grid-size 75 x 75:
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Table 7: Example of clusters at the start for initial proportions 50%/50%, 70%/30% &

90%/10%

Cluster size Frequency Cluster size Frequency Cluster size Frequency
1247 1 1797 1 2247 1
1218 1 35 1 6 2
6 1 34 1 5 1
4 1 27 1 4 6
3 1 25 1 3 9
3 2 22 2 2 30
2 2 19 2 1 125
2 2 18 1
1 6 17 1
1 2 13 4

12 2
11 1
10 5
9 3
8 3
7 5
6 9
5 6
4 4
3 16
2 21
1 52

At first it might be surprising that for almost equally proportioned cases, the grid is
initially filled with a couple of clusters of such a large size. For example, if we look back
at Figure 17, overall, we seem to see very few clusters in the grid at the start, while almost
all the squares seem to be fully isolated, having nearly no neighbours of the same opinion.
However, it is important to keep our definition of a "neighbour” in mind, as we stated
earlier that two squares are also considered as neighbours if they share a corner.

Figure 18: All squares surrounding the centred square are its neighbours
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Table 8: Example of clusters after 5625 steps for initial proportions 50%/50%, 70%/30%
& 90%/10%

Cluster size Frequency Cluster size Frequency Cluster size Frequency

2895 1 5223 1 5621 1

2312 1 48 1 2 1

190 1 26 2 1 2
38 1 22 1
93 1 20 1
11 1 19 1
8 1 14 2
7 1 12 1
6 1 10 1
5 2 9 2
3 2 8 2
2 4 7 4
2 3 6 1
1 18 5 6
1 7 4 )
3 6
2 10
1 35

(Note: The reason why we work with smaller grid-sizes here, is because the code we used
for our program counted the sizes of the clusters in a recursive way. Therefore, we were
forced to work with smaller grid-sizes, to avoid a "RecursionError”.)

7.2 Average cluster occurrence frequency

After having collected some first assessments based on multiple single cases, we wanted
to have a better understanding of the average frequency with which a cluster of size n
would appear after k steps (n, k € N) in general.

Therefore, we decided to simulate each single case of the 2-opinions 2D voter model
50 times, counting the number of clusters of different sizes after regular step intervals and
then working with the average results. Here our initial proportions ranged from 50% /50%
to 95%/5% and our grid-sizes from 50 x 50 to 85 x 85 once more.

Comparing the obtained outcome with our previous assessments, we can see that they
overlap. First of all, we were able to observe that, on average, at the beginning of our
simulations, there is a large number of smaller clusters and only very few bigger clusters.
In most cases, if we plot the average occurrence frequency of a cluster with regard to
its size after 0 steps, we get a function whose graph resembles the graph of the inverse
exponential function.
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Figure 19: Example of clusters at the start for grid-size 50 x 50 & initial proportions
80%/20%

As our voter model continued to evolve, we were able to observe that, on average, the
clusters of smaller size became less and less frequent, while larger and middle-sized clus-
ters tended to appear more often. In terms of the graph of our data, we realised that this
curve started to flatten down over time in general. After curve fitting the plotted data,
we still found the inverse exponential function to represent the optimal approximation for
our data, but this time with a slightly bigger negative exponent of the exponential.
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Figure 20: Example of clusters after 2°500 steps for grid-size 50 x 50 & initial proportions
80%/20%

Once the voter model for our different scenarios approached a state of equilibrium, we
found that the clusters of larger size were as common, if not even more common, than
those of smaller size. This is the exact clustering phenomenon we already discussed before
and which we have now been able to support even further.

In terms of the graphical representation of our data, as we approach a state of consensus,
we can see that the function we used beforehand is no longer relevant. By reflecting our
previous graph with regard to the y-axis, we get a more appropriate graph to approximate
our plotted data, namely the standard exponential function.
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Figure 21: Example of clusters after 7°500 steps for grid-size 50 x 50 & initial proportions
80%/20%

7.3 Special cluster scenarios

Finally, we were interested in, if instead of filling the grid randomly, we would predeter-
mine the initial configuration of the clusters of different sizes and shapes, and then see
how the voter model would develop over time. At first one might think that this would
have little to no impact on our results, however, we did come up with some interesting
observations.

Using the basic 2-opinions 2D voter model with sizes ranging from 100 x 100 to 500 x 500,
we simulated the following cases visually:

e First of all, we started off by considering the case, where all the squares in the left
half of our grid have one colour (in our case red) and all the squares in the other
half have another colour (in our case blue). Similarly, we looked at the case, for
which a diagonal splits our grid into two halves of different colours (red & blue).
For both cases, we came up with similar results, namely that the proportions of
the two colours hardly vary at all, while the border line is pretty much preserved
throughout the entire simulation. One could almost compare it to a battlefield,
where two equally matched armies are fighting each other on the front line, with
neither one of them gaining an advantage over the other.

Here are some examples for both cases (grid-size: 100 x 100), of how our grid evolved
over time:

28



e Next, we considered the case, where our grid is filled with square clusters of sizes
10 x 10, as well as 50 x 50. In this sense, our grid looks very similar to a chessboard,
only with squares of the colours red and blue. As the simulations evolved, we
noticed that, although the squares lost their shape and transformed into randomly
configured clusters, their cores tended to survive for a certain number of steps.
Furthermore, by looking at the analytical report of these simulations, we could also
see that the initial proportions, which are 50%/50%, were preserved most of the
time.

Here are some examples for both cases (grid-size: 100 x 100), of how our grid evolved
over time:

e Last but not least, we wanted to test a couple of disproportional cases, meaning
cases where one colour is clearly more dominant. Therefore, we chose the following
two cases, whose initial set-ups look like this:



In both cases, we saw that, although the weaker colour had an obvious proportional
disadvantage, it was able to maintain its initial shape for a long period of time. By
looking at the analytical report, we can see that the proportion of the weaker colour
only shrunk minimally over time, which means that the dominant colour struggled
to break down the border line rapidly.

Here are some examples for both cases (grid-size: 100 x 100), of how our grid evolved

over time:

— ! —

7.4 Conjectures

Following the observations explained in the previous paragraphs, we came up with our
very own conjectures, concerning the clustering process of the 2D voter model:

e If we consider an initial random set-up of our grid, then after a certain amount of
time, clusters usually will begin to form. In addition, smaller clusters tend to attach
to larger clusters of both opinions.

e Over time, the occurrence frequency of smaller clusters decreases in general, while
larger clusters become more frequent. This is simply known as the ”clustering”
phenomenon.

e At the beginning of a randomly configurated grid, the average occurrence frequency
of different clusters as a function of their size generally behaves like the inverse
exponential function, whereas as the grid approaches a state of equilibrium, it tends
to behave like the standard exponential function.

30



e Once a cluster with a solid core has formed, it generally takes a large number of
steps to break down the outer layer of the cluster and dissolve it. The larger the
cluster is, the harder this becomes. Moreover, larger clusters are favoured to growth,
as opposed to smaller clusters.

8 Influencers in social networks

After having experimented and analysed multiple variations of the basic voter model, we
wanted to study one final type of voter model, slightly different from all the others seen
so far. Let us change the dynamics of our model a bit.

8.1 Basic set-up

Consider a model, where all the voters share the same opinion at the beginning. One
could also simply see this as a ”"blank” grid. Next, we are allowed to choose k voters
(k € Nxg), who all have their own unique opinion and are positioned in the grid in a
predetermined way. These voters can be referred to as "influencers”, as initially they are
the only voters able to influence the other neutral voters. Afterwards, we apply the same
update rule as for the basic model, however with one slight difference. Instead of choosing
any voter at random, we need to choose a non-neutral voter, meaning someone who shares
the same opinion as an initial influencer, based on a given probability. This voter can
then influence one of his neighbours of different opinion (neutral or non-neutral). If they
do not have a neighbour to influence, then the last influenced voter of the same opinion,
who has a neighbour they can influence, is selected to influence one of their neighbours.
Finally, we can apply this rule until there are no neutral voters left. Therefore, we can
also give a new definition of what an ”equilibrium” means.

Definition 8.1.1 (Equilibrium/consensus). An equilibrium/consensus has occurred, if
the grid no longer has any neutral voters.

A natural question we asked ourselves was the following: is there a certain position of
the grid, which favours the dominance of an influencer?

Interestingly, we found out that the initial placement of the different influencers is impor-
tant, however, it is not the only ruling factor. The final outcome also heavily depends on
the selection process, which determines how the next voter, who can influence one of his
neighbours, is chosen.

8.2 Different selection processes

Although there infinitely many ways to select the next voter of our grid, we have decided
to concentrate on two specific manners.

On the one hand, we can choose the next voter corresponding to the proportions of
the different opinions in the grid. By this we mean that the relative probability of a voter
being selected is linked to the proportion of the grid that is filled by the opinion of that
same voter. Let us explain with a simple example:

If we consider a grid with two influencers at the beginning, then at the very first step,
each influencer has a 50% chance of being selected. Then after a certain amount of
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steps, if for example one opinion has 25 voters and the other opinion has 75 voters, the
first opinion is chosen with a probability of 25% and the second with a probability of 75%.

On the other hand, we can select the next voter corresponding to the number of neu-
tral neighbours. In that sense, the relative probability of a voter being selected is based
on the total amount of neutral neighbours the voters of that opinion have. Let us consider
another simple example:

Consider a grid with two influencers at the start. If after a certain number of steps,
the cluster of one opinion has 25 adjacent neutral neighbours and the other one has 75
adjacent neutral neighbours, the first opinion is chosen with a probability of 25% and the
second with a probability of 75%.

In the next paragraphs, the first selection process will be referred to as ”square area”,
whereas the second one will be referred to as ”blank neighbours”.

8.3 Simulations for ”square area”

Let us start off by analysing the ”"square area” case. For this case, we used both visual
simulations, to gather some first observations, as well as analytical simulations, to help
make conjectures. In total, we chose 7 different initial set-ups, while mainly using grid-
sizes ranging from 10 x 10 to 50 x 50 and simulating each case 100 times. Let us take a
closer look at these 7 cases (for grid-size: 50 x 50):
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As one can see, we selected both symmetric and anti-symmetric cases, while also varying
the overall number of initial influencers. The names we attributed to these cases, in the
same order as above, are: 2 centres, 2 corners, 2 anti-symmetric, 3 anti-symmetric, 4
centres, 4 corners & 4 anti-symmetric. We came up with the following results:

e First of all, we noticed that in general the number of steps it took, until all the
neutral voters had disappeared, grew as the number of initial influencers grew. This
can be somewhat surprising, as one might think that, because initially there are
already fewer neutral voters in the grid, it should take even fewer steps to reach an
equilibrium. We also saw that on average the amount of steps it took to reach a
state of consensus seemed not to depend on the initial placement of the influencers.

Table 9: Steps until equilibrium for each case
Grid-size 2 centres 2 corners 2 anti-symmetric 3 anti-symmetric 4 centres 4 corners 4 anti-symmetric

10 136.38 | 137.22 136.22 152.75 198.21 | 214.86 197.21
20 527.34 | 550.15 519.43 697.85 865.57 | 860.76 831.97
30 1171.81 | 1228.18 1213.31 1586.61 1733.81 | 1893.83 1834.57
40 2108.11 | 2151.33 2223.34 2863.57 3237.05 | 3556.79 3526.23
50 3293.49 | 3520.91 3306.8 4254.99 4858.17 | 5691.32 5449.09

e Furthermore, by looking at the graphs again, we could see that the number of steps
it took to reach a consensus as a function of the grid-size can be approximated
precisely by a quadratic function.

6000

5000 y =1.8161x2 + 7.9489x - 57.598

N
o
o
o
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e ] o

1000

0 10 20 30 40 50 60
Grid-size

Figure 22: Case: 4 centres

Hence, we can claim that this variant of the voter model behaves similarly to the
basic 2D model in that way.

e Finally, we were able to observe that in all 7 cases, there was no repetitive pattern,
in terms of which placement of the influencers gave the best chances of becoming
the dominant opinion of the grid in the end. We can see by the following charts,
that the number of wins of each influencer in the 7 cases was quite random and
unpredictable, with an almost even distribution of wins among the influencers.
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Figure 23: Case: 4 anti-symmetric

This leads to the conclusion that the ”square area” selection process does not favour
one position of the grid over another, which is quite logical because at the start every
single influencer has exactly the same probability of being selected first and as a
result gaining momentum.

8.4 Simulations for ”blank neighbours”

Next, let us move on to the ”blank neighbours” case. Here, we simulated, both visually
and analytically, the exact same seven cases as already mentioned above. We ran through
these symmetric and anti-symmetric cases, while using grid-sizes ranging from 10 x 10 to
50 x 50 and simulating each case 100 times. Let us enumerate our assessments:

e Similarly, to the other case, the number of steps it took to reach an equilibrium
generally increased, as the amount of initial influencers increased. However, this
number tended not to depend on the placement of these influencers at the beginning.

Grid-size
10
20
30
40
50

2 centres
188.36
868.72
2070.92
3585.41
5537.09

Table 10: Steps until equilibrium for each case

2 corners
182.41
853.37
1912.72

3162

4934.23

2 anti-symmetric

163.99
622.9
1469.19
2857.21
3858.45

3 anti-symmetric
254.76
1132.04
2747.72
5214.03
7253.97

4 centres
289.25
1450.15
3531.32
6496.09
10394.96

4 corners
280.84
1448.83
3460.55
6484.19
9057.69

4 anti-symmetric
280.81
1409.46
3041.42
0428.58
9394.44

e Moreover, we were able to see in these graphs, that likewise to the other selection
process, the number of steps it took to reach a consensus as a function of the grid-size
can be approximated precisely by a quadratic function.

e The main difference between this selection process can be found, when looking at
which influencers had the most success. On the one hand, we observed that for most
of the symmetric set-ups, the number of wins was pretty evenly distributed among
all the influencers.
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Figure 24: Case: 2 corners
On the other hand, the anti-symmetric cases behaved fundamentally differently.
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Figure 25: Case: 4 anti-symmetric

By looking at these charts, we can see that for smaller grid-sizes, the win distribution
between the influencers still seemed to be quite random. However, as the grid-sizes
grew, we noticed a clear pattern evolving, where the anti-symmetric influencers,
placed closer to the centre of the grid, tended to claim more wins on average.
Another interesting property we found out, was that the closer an influencer was
initially placed to the centre, the more likely they were to dominate the grid. This
is exactly the situation for the case 73 anti-symmetric”.
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Figure 26: Case: 3 anti-symmetric

This can be explained by the fact that the influencers situated closer to the centre
are also automatically further away from the edges. In this sense, the edges can
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be seen as obstacles, which slow down the growth of an influencer. Due to the
lower amount of blank neighbours, the voters lying on the edges are not as efficient
when it comes to contributing to the overall count of adjacent neutral neighbours.
Therefore, the probability of eventually winning rises, as an influencer is positioned
more central.

8.5 Conjectures

Following the detailed observations explained above, we can now state some final conjec-
tures:

e For both selection processes, the number of steps it takes to reach a state of equi-
librium on average, grows with the number of initial influencers placed in the grid,
however, does generally not depend on how these influencers are placed.

e For both selection processes, a quadratic function can approximate the number of
steps it takes to reach a state of consensus as a function of the grid-size precisely.

e For the selection process ”square area”, the initial positioning of the influencers
usually does not have a direct impact on their success, with the probability of each
influencer winning being almost equal.

e For the selection process ”blank neighbours”, the initial placement of the influencers
tends to play an important role, when it comes to their win frequency. Here in
general, the closer an influencer is to the centre of the grid, the likelier they are to
win.

9 Mathematical background

One of the first known introductions of the basic voter model was made by Richard A.
Holley and Thomas M. Liggett in 1975, in their research paper ” Ergodic Theorems for
Weakly Interacting Infinite Systems and the Voter Model” [4]. Over the years, it has re-
mained a central research topic in the mathematical theory of probability, leading to many
complex variations of the basic voter model.

Let us look at two particular types of voter models, as well as a few interesting theo-
rems related to them:

Consider a continuous voter model in a state space § = {0,1}%" with a transition rate
function c(z,n), where Z4 is a d-dimensional grid and where 1 € S is called a configura-
tion. Here n(z) stands for the value (e.g, opinion) of a site z € Z? and changes from 7(x)
to 1 —n(x) at a predetermined rate c(z,n).
Then an example of the so-called linear voter model can be defined, by using the following
conversion rate:

clwn) = Y. luwene)

ly—zl|<N

This voter model is referred to as linear because the transition rate at x is a linear function
of the number of neighbours y, such that n(y) # n(z). (Note: Here, ||-|| is an arbitrary
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norm and N € N.)[6]

Using the same notations as above, we can also give an example of the so-called threshold
voter model, a non-linear model which has gained a lot of attention in recent years:

(z.1) 1 if there is a y with ||z —y|| < N and n(z) # n(y)
clz,n) = .
" 0 otherwise

In 1985, P. Clifford and A. Sudbury were able to prove one of the most basic theorems
about the linear voter model, namely that it becomes unanimous if d < 2 and coexists if
d > 3 [1]. In other terms, this means that in a voter model of grid-dimension d, multiple
values (e.g., opinions) can only survive simultaneously (coexist) over time, if d > 3. So,
if d =1 or d = 2, eventually there will only be one single value remaining.

At first, this might seem to be a contradiction with the conjectures we made before, con-
cerning the basic case with initial proportions of 50%/50%. Here, we found out that,
on average, a sate of equilibrium would occur, while both opinions retained the same
percentage of the grid as at the start, meaning that both opinions did coexist. However,
in 1998, D.J. Watts and S. Strogatz were able to prove, that if the voter model is run on
a "small-world network”, it can temporarily be trapped in a "metastable” state, where
different values/opinions can coexist [9]. Nevertheless, they showed that eventually the
system would escape this metastable state and allow one value to occupy the entire grid
unanimously. Here, the grids we used for our voter model simulations can be regarded as
small-world networks, due to the modest grid-sizes we worked with.

On the other hand, in 1991, J.T. Cox and R. Durrett were able to show, that, regarding
the threshold voter model, it can coexist in one dimension if N > 4, in two dimensions if
N > 2 (when ||-|| is the [ norm) or N > 3 (when ||-|| is the /; norm) and in three or more
dimensions if N > 1 [2]. Following this breakthrough, T.M. Liggett was then able to give
a computer assisted proof, showing that the threshold voter model coexists in all cases,
except for when N =d =1 [6]. These threshold voter models have become an especially
popular research topic, as mathematicians have been intrigued to find or modify voter
models, such that a state can be reached, where more than one opinion is able to survive
long-term.

(Note: As the proofs of these theorems are fairly complicated and require a certain level

of mathematical knowledge, we decided to leave them out of our paper. However, they
can be found in full detail in the specific papers, listed in the references.)

37



10 Conclusion

All in all, we can conclude that the simplest versions of the basic voter model lead to as-
tounding results. We found out that the evolution of our model depends on many factors,
such as the grid-size, the grid-dimension, the number of different opinions and their initial
proportions, as well as the starting configurations of the voters/influencers. Furthermore,
we were able to observe repetitive patterns in the behaviour of the voter model in many
cases, like the formation of clusters after a certain amount of steps.

The main goal of the course ” Experimental mathematics” is to allow young curious math-
ematicians like us, to gather their first proper experiences of organising and conducting
a research paper. Thanks to the creative and imaginative freedom given to the students,
we are able to explore unknown topics of mathematics, both with assistance and inde-
pendently, which makes the end product even more rewarding.

Finally, we would like to encourage anybody, who has some mathematical and program-

ming knowledge, to experiment with these types of voter models themselves and to come
up with their very own conjectures.
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11 Appendix

The following two Python codes represent the programs used to simulate the visual and
analytical versions of the basic voter model. The majority of the other codes that we used
were based on these two codes and were obtained by simply changing minor details.
import pygame

from pygame.locals import *

from random import choice, choices
from xlwt import Workbook

class Square:

def __init__(self, x, y, size, opinion):
self.x = x
self.y =y
self.size = size
self .opinion = opinion

def change_opinion(self, new_opinion):
self .opinion = new_opinion

def draw_square(self, screen):
pygame .draw.rect (screen, Color(self.opinion), (self.size * self.
x, self.size * self.y, self.size, self.size))

def different_neighbours(self, squares, size):
outcome = []
index = size * self.x + self.y
for a in range(-1, 2):
for b in range(-1, 2):

if 0 <= index + a * size + b <= size *x*x 2 - 1:
if self.y == 0 and b == -1 or self.y == size - 1 and
b ==1
pass
elif squares[index + a * size + b].opinion != self.
opinion:

outcome . append (squares [index + a * size + b])
return outcome

class Grid:

def __init__(self, size, manipulation):
self .size = size
self .manipulation = manipulation
self.squares = []

self.info = {’red’: 0, ’blue’: 0}
for x in range(0, self.size):
for y in range (0, self.size):
¢ = choices([’red’, ’blue’], [self.manipulation, 100 -
self .manipulation]) [0]

size = 800 // self.size if self.size < 300 else 2
self.add_square (Square(x, y, size, c))
self.info[c] += 1

def add_square(self, square):
self .squares.append(square)
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49 def draw_grid(self, screen):

50 screen.fill(Color ("white"))
51 for s in self.squares:

52 s.draw_square (screen)

54 def execute(self):

55 chosen_one choice(self.squares)

56 neighbours chosen_one.different_neighbours (self.squares, self.
size)

57 if neighbours:

58 n = choice(neighbours)

59 self.info[chosen_one.opinion] += 1

60 self.info[n.opinion] -= 1
61 n.change_opinion(chosen_one.opinion)

63 def unanimous (self):
64 return len(self.squares) in self.info.values ()

67 def auto_pygame(grid_size, manipulation, repetitions, step, FPS):
68 grid = Grid(grid_size, manipulation)

70 clock = pygame.time.Clock ()

72 pygame .init ()

73 size = (800 // grid_size) * grid_size if grid_size < 300 else 2 x*
grid_size

74 screen = pygame.display.set_mode ((size, size))

75 pygame .display.set_caption("Voter models")

76 screen.fill (Color ("white"))

78 grid.draw_grid(screen)
79 pygame .display.update ()

81 rect = pygame.Rect (0, O, size, size)

82

83 counter = 0

84 constant = 100 / (grid_size *x 2)

85 red, blue, steps = [grid.info[’red’] * constant], [grid.info[’blue’]
* constant], [0]

86 done = False

87

88 while not done:

89 for event in pygame.event.get():

90 if event.type == QUIT:

91 done = True

92 grid.execute ()

93 counter += 1

94 if counter Y step == 0 or counter > repetitions or grid.
unanimous () :

95 grid.draw_grid(screen)

96 pygame .display.update ()

97 clock.tick (FPS)

98 red.append(grid.info[’red’] * constant)

99 blue.append(grid.info[’blue’] * constant)

100 steps.append (counter)

101 print(’’, counter, sep=’\n’)

102 sub = screen.subsurface(rect)
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screenshot = pygame.Surface((size, size))

screenshot .blit (sub, (0, 0))

pygame .image .save (screenshot,
f’({grid_size}x{grid_size},{manipulation

}%-{100 - manipulation}%){counter // stepl}.jpg’)

if counter > repetitions or grid.unanimous():
done = True

pygame .quit ()

wb

Workbook ()

sheetl = wb.add_sheet(’Sheet 1)
sheetl.write (0, 0, ’Steps’)
sheetl.write (0, 1, ’Red %’)
sheetl.write (0, 2, ’Blue %7’)

for i in range(len(red)):

sheetl.write(i + 1, 0, steps([i])
sheetl.write(i + 1, 1, redl[il)
sheetl.write(i + 1, 2, bluelil)

wb.save (f’Pygame stats for ({grid_sizel}x{grid_size},{manipulation
}%-{100 - manipulation}%) .xls’)

; for grid_size in range (100, 501, 50):

for manipulation in range (50, 96, 5):

auto_pygame (grid_size, manipulation, 10 * grid_size **x 2,

grid_size *x 2 // 10, 100)

Listing 1: Code of visual program

from random import choice, choices
from xlwt import Workbook

class Square:

def

def

def

__init__(self, x, y, opinion):

self .x = x

self.y =y

self .opinion = opinion
change_opinion(self, new_opinion):

self .opinion = new_opinion
different_neighbours (self, squares, size):

outcome = []
index = size * self.x + self.y
for a in range(-1, 2):

for b in range(-1, 2):

if 0 <= index + a * size + b <= size *x*x 2 - 1:
if self.y == 0 and b == -1 or self.y == size - 1 and
b == 1:
pass
elif squares[index + a * size + b].opinion != self.
opinion:

outcome . append (squares [index + a * size + b])
return outcome
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class Gr
def

self.

def

def

size)

def

id:

__init__(self, size, manipulation):
self.size = size

self .manipulation = manipulation
self.squares = []

self.info = {’good’: 0, ’bad’: 0}
for x in range(0, self.size):
for y in range (0, self.size):
o = choices([’good’, ’bad’], [self.manipulation,
manipulation]) [0]
self.add_square (Square(x, y, 0))
self.info[o] += 1

add_square (self, square):
self .squares.append(square)

execute (self):
chosen_one = choice(self.squares)

100 -

neighbours = chosen_one.different_neighbours (self.squares, self.

if neighbours:
n = choice(neighbours)
self.info[chosen_one.opinion] += 1
self.info[n.opinion] -= 1
n.change_opinion(chosen_one.opinion)

unanimous (self):
return len(self.squares) in self.info.values ()

sl, s2, constant = 0, 0, 100 / (i *x*x 2)
for t in range(repetitions):
grid = Grid(i, manipulation)
counter, reset, p = 0, 0, manipulation
while True:
grid.execute ()
counter += 1
reset += 1
if abs(p - grid.info[’good’] * constant) < perc:
if reset > i ** 2:
sl += counter - reset
s2 += p
print (t)
break
elif grid.unanimous () :
sl += counter
s2 += grid.info[’good’] * constant
print (t)
break
else:
p, reset = grid.info[’good’] * constant, O
values.append(sl / repetitions)
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5 def auto_equilibrium(manipulation, repetitions, perc, start, end, step):
gridsizes, values, percentages = [i for i in range(start, end + 1,
step)]l, [1, [I
for i in range(start, end + 1, step):



99

100

101

percentages.append(s2 / repetitions)
print(’’, i, ’’, sep=’\n’)

print (gridsizes, values, percentages, ’’, sep=’\n’)

wb = Workbook ()

sheetl = wb.add_sheet(’Sheet 1°)
sheetl.write (0, 0, ’Grid-size’)

sheetl.write(0, 1, ’Steps until equilibrium’)
sheetl.write(0, 2, ’Percentage at equilibrium’)

for i in range(len(gridsizes)):
sheetl.write(i + 1, 0, gridsizes[i])
sheetl .write(i + 1, 1, wvalues[i])
sheetl.write(i + 1, 2, percentages([i])

wb.save (f’Equilibrium function for {manipulation}’)-{100 -
manipulationl}’,.x1ls’)

for i in range (50, 96, 5):
auto_equilibrium(i, 100, 0.5, 100, 501, 50)

Listing 2: Code of analytical program

As we are unable to showcase all of the data collected during our research period, we have
decided to upload all of our results and Python codes to an online folder, which is linked
down below:

https://drive.google.com/drive/folders/15q9PoEtrrSEKAU]jt0f2bqN2XnJpvPX547usp=
sharing
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