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Introduction

The arctic circle theorem of Jockusch, Propp, and Shor states that uniformly random domino tilings of
an Aztec diamond of high order are frozen with asymptotically high probability outside the �arctic circle�
inscribed within the aztec diamond.
Let us de�ne the di�erent mathematical objects that are involved but also the inutuiton behind the theorem.

De�nition 0.1. An Aztec Diamond An of order n ∈ N∗ is de�ned as the union of all the lattice squares
[a, a+ 1]× [b, b+ 1] ⊂ R2 (a, b ∈ Z) that lie completely inside the tilted square:

|x|+ |y| ≤ n+ 1 (1)

De�nition 0.2. A domino is a closed 2× 1 rectangle in R2 with corners in Z2, oriented either horizontally
or vertically.

De�nition 0.3. Suppose we have an aztec diamond of order n that we can cover with dominoes without
overlapping. There will be several possible tilings. A randomly chosen tiling among the set of all the possible
tilings, is de�ned as a random tiling.

Before considering random tilings on aztec diamonds, let us have a look at a random tiling on a tilted square:

Figure 1: The Random Tiling of the Square of Side 40

By looking at the random tiling of the square of side 40, we observe that there are not any kind of organization
inside of it. In contrast, let us now consider an aztec diamond of order 20 and let us uniformly choose 2
random tilings. Assume that we get the two following tilings.
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Figure 2: Two Random Tilings of a 20-Order Aztec Diamond

One can notice that, for both of the tilings, the four regions adjacent to the corners of the Aztec diamond,
also known as the polar regions, are organized. By organized, we mean that each corner of the random tiling
have the same orientation. Indeed, the upper and the lower polar regions of the aztec diamond are both
horizontally tiled whereas the left and right polar regions are vertically tiled. The circle delimited by the
polar region is called the arctic circle.
We could keep choosing random tilings of that 20−order aztec diamond, and we will almost certainly end
up with similar organized tilings. This is the intuition behind the Arctic Circle theorem.
Now that we have an idea on what the theorem state, let us explain what will be done throughout in that
report.
On the one hand, we will study theoretical properties of the random tilings by de�ning them as Markov
chains. We will also show that there are 2n(n+1)/2 possible tilings for an Aztec diamond of order n ∈ N∗.
On the other hand, we will explain the technichal implementation of the random tilings code. Then, we will
run several simulations to point out some phenomena. We will especially consider the mixing time of the
organized tiling (a tiling in which all the dominoes are laid horizontally). We will give an approximation of
the needed number of rotations in order to get a tiling whose polar regions are well-tiled.

Figure 3: The Organized Tiling of A20
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1 Theory on Random Tilings

When running some simulations for several aztec diamonds An and interpret the results, we will need to
know the number of possible domino tilings. This leads us to the aztec diamond theorem stated as follows.

Theorem 1.1. Let Tn denote the number of the possible domino tilings of the aztec diamond An. Then:

Tn = 2n(n+1)/2 (2)

Remark 1.2. One can notice that the number of possible con�gurations can rapidly become really large.
Hence, when considering aztec diamonds of high order, it is computationally impossible to determine all
possible con�gurations and uniformly choose one at random.

In order to prove that theorem, let us introduce some intermediate results.

1.1 Proof of the Aztec Diamond Theorem

De�nition 1.3. Let An ⊂ An+1 be two Aztec diamonds. We de�ne a node of An as a point (i, j) ∈ An+1

satisfying i+ j ≡ 0 mod (2). We call:

� interior nodes, the nodes contained in An

� closure nodes, the extreme points of An+1

De�nition 1.4. We de�ne a lattice square of An as a 1× 1 square whose corners are lattice points in An+1.
We call boundary square, a square contained in An +1 but not in An.

Let us give a visual example of what nodes and lattice squares are.

Example 1.5. In the �gure below, the red dots represent the closure nodes and the black ones the interior
nodes of the aztec diamond A2.
In order to point out that the closure nodes are the extreme points of A3, we used dashed line to draw A3.
The lattice squares of A2 solely are the 1× 1 squares in A3 de�ned by the dotted lines of the grid.
We colored in green all the boundary squares.

Figure 4: A2 and its Nodes Figure 5: A2 and its Boundary Squares

Now that we know what a node and a lattice square are, let us de�ne the �elds of arrows.

De�nition 1.6. We call �eld of arows, the collection of arrows pointing from one node's corner to another
satisfying the arrow �eld condition.
The arrow �eld condition states that each interior node N is either:

� attracting all adjacent arrows point towards N
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� repelling all adjacent arrows are point away from N

� transient any two collinear arrows adjacent to N point in the same direction

De�nition 1.7. Any domino of a tiling can be de�ned with nodes and arrows. It satis�es the domino
condition stated as follows:

� two corners of the domino are nodes

� the two arrows inside the domino point towards these corner nodes

Proposition 1.8. Following the arrow �eld condition and the domino condition, we can associate to each

tiling of An a �eld of arrows by building the arrows domino by domino with n ∈ N∗.

Example 1.9. Let us represent with �elds of arrows each of the eight possible tilings of the aztec diamond
of order 2 A2.
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Figure 6: Random Tilings of A2 and their Respective Representation with Field of Arrows

One can remark that a �eld of arrows can represent 2 di�erent random tilings. This raises the following
question about �elds of arrows. What is the number of tilings for a �xed �eld of arrows?
In order to show that, let us introduce a few more de�nitions.

De�nition 1.10. We qualify of outward pointing (respectively inward pointing) a �eld of arrows whose all
arrows in boundary squares point outward (respectively inward).

Figure 7: An Inward Pointing Field of Arrows and an Outward Pointing Field of Arrows of A2

Notation 1.11. We will denote by:

� Tn a tiling of an aztec diamond of order n

� Fn(Tn) a pointing �eld of arrows on An for each tiling Tn of An

� r(Fn), the number of repelling nodes for a �eld of arrows Fn

� a(Fn), the number of attracting nodes for a �eld of arrows Fn

Also, from now on we will use the following color code:

� blue for repelling nodes

� grey for transient nodes

� green for attracting nodes

� red for closure nodes

� black for an interior node that can be transient, repelling or attracting

We are now ready to show the following lemma, which gives us the number of tilings for a �xed �eld of
arrows.

Lemma 1.1. Given an inward pointing �eld of arrows Fn, there are precisely 2r(Fn) domino tilings Tn of

An satisfying Fn(Tn) = Fn.

Respectively, given an outward pointing �eld of arrows Fn+1, there are precisely 2r(Fn+1) domino tilings Tn+1

of An+1 satisfying F (Tn+1) = Fn+1.
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Proof. Let us prove the second statement of the lemmma.
First of all, let us consider an outward pointing �eld of arrows Fn+1. For each lattice square, let us draw
the corners of the square that lie in direction of its arrow. If the �eld of arrows is associated to a tiling,
note that the corners we just drew are nothing else but the corners of the dominoes. The two images below
describe a �eld of arrows on which we drew the corners of the lattice squares.

Figure 8: A �eld of arrow with its corners drawn

We can now draw all the lines (dotted lines on the image below) that lie in between the corners by extending
the corners we just drew as follows:

We now claim that each component of An+1 can be:

� a 2× 1 rectangle

� a 1× 2 rectangle

� a 2× 2 square where each square have a repelling node at its center

Let us show that claim.
Let us consider a lattice square S. Any lattice square either have an arrow that exactly is a diagonal whose
endpoints are nodes. Then, without loss of generality, let us assume that:

� the lower left corner L and the upper right corner R of S are nodes

� the arrow of the square S goes from R to P.

Since we assumed Fn+1 to be an outward pointing �eld, it follows that the node R is an interior node which
is either transient or repelling. Hence, let us discern the two following cases:
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1. R is repelling. It forces all the arrow to point away from R and hence S is contained in the 2 × 2
square centered at R. (see �gure 9)

2. R is transient. There are two possibilities for the arrows described in the �gure 10. In both cases,
the square S is either contained in a 1× 2 or a 2× 1 rectangle.

Figure 9: The single scenario in case R is repelling Figure 10: The two scenarios in case R is transient

The claim being proven, it implies that the outward pointing �eld of arrows Fn+1 determines the tilings
Tn+1 except for the squares. Indeed, each square can either be two 1 × 2 dominoes or two 2 × 1 dominoes.
Since each square can induce two possible tilings and recalling that each square's center is a repelling node,
the number of tilings for a �xed �eld of arrows Fn+1 is thus equal to 2r(Fn+1). The lemma is proven in the
case of an outward pointing �eld F .
Following the same reasoning, one can prove the former case in which the �eld Fn is assumed to be inward
pointing.

Example 1.12. Let us get back to the example 1.9.

Figure 11: An Inward Pointing Field of Arrows of A2

By the lemma (1.1), since there are only one repelling node, it follows that there are two tilings associated
to that �eld. Indeed:
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Figure 12: The Two Tilings of A2 Associated to the Inward Pointing Field of Arrows above

The second result that we will need in order to prove the aztec diamond theorem is the following lemma.

Lemma 1.2. For any outward pointing �eld of arrows Fn+1 on the aztec diamond An+1, we have:

r(Fn+1) = a(Fn+1) + (n+ 1)

Proof. First of all, let us point out the two following remarks:

� all the interior nodes of An+1 lie on n+ 1 lines running from bottom left to top right

� we count n+ 2 arrows on each of these lines

In order to prove the lemma, since there are n+ 1 lines, we just need to show that for any line there always
is one more repelling node than there are attracting ones.

Figure 13: The Outward Pointing Field on A2+1

To each line, we associate a binary sequence of length n+2 that describes the directions of the arrows where:

� 1 stands for forward

� 0 stands for backward

Since the �eld of arrows is supposed to be outward pointing, we know that for each line l, its sequence Sl is
of the form: Sl = {0, · · · , 1︸ ︷︷ ︸

n+2

}.

There are three possible combinations depending on the type of node:
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� repelling node: {0, 1}

� attracting node: {1, 0}

� transient node: {0, 0} or {1, 1}

Hence, since the �rst value of the sequence is 0 and the last value is 1, there must be one more combination
of the form {0, 1} than there are combinations of the form {1, 0}. Otherwise, it would not be possible to
have 1 as the �nal value.
Therefore, we just showed that on each line there is always one more repelling node than there are attracting
nodes. Since there are n+1 lines, it follows that r(Fn+1) = a(Fn+1) + (n+1) which proves the lemma.

We are now ready to prove the aztec diamond theorem!

Proof. Let us prove the theorem 1.1 by induction on n.

� Base Case: There are two possible tilings of the aztec diamond of order 1 which are the following:

Figure 14: The Two Possible Tilings of A1

It is straightforward to see that 2 = 21(1+1)/2.

� Induction: Let On+1 and In+1 respectively denote the sets of outward and inward pointing �eld of
arrows on An+1.

On the one hand, reversing the direction of all the arrows of An+1 still satis�es the arrow condition. On
the other hand, reversing twice in a row the direction of all the arrows is equivalent to doing nothing.
Hence, we can de�ne the following bijection:

f : On+1 −→ In+1

For any outward pointing �eld Fn+1 ∈ On+1 of An+1, the attracting nodes of Fn+1 clearly are the
repelling nodes of f(Fn+1). Now, applying lemma 1.2, we have:

r(Fn+1) = r
(
f(Fn+1)

)
+ n+ 1

We can rewrite the latter equality as:

2r(Fn+1) = 2r
(
f(Fn+1)

)
+(n+1)

= 2n+1 · 2r
(
f(Fn+1)

)
= 2n+1 · 2r

(
Fn

)
By the lemma 1.1, we now know that the number of tilings of An+1 is equal to 2n+1 · 2r(Fn).
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Now, summing over all the inward pointing �elds of arrows on An and using the induction hypothesis,
we �nally get:

Tn+1 =
∑
F∈In

2n+1 · 2r(Fn)

= 2n+1
∑
F∈In

2r(Fn)

= 2n+1 · Tn

= 2n+1 · 2n(n+1)/2

= 2(n+1)(n+2)/2

This proves the Aztec diamond theorem.

We can now use the fact that there are 2(n+1)(n+2)/2 possible domino tilings of the Aztec diamond An ∀n ∈ N∗.
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1.2 Random Tilings as Markov Chains

The idea we wish to implement in order to generate an aztec diamond Am is to start with a tiling with a
default con�guration, and then perform a number of rotations to its dominoes. We want the end result of
the process to be representative of the uniform distribution: any tiling must have about the same probability
to be generated.
To do so, we will construct a Markov chain ((XAm

)n)n∈N associated to the random tilings so that (XAm
)n

converges towards the uniform distribution U(2m(m+1)/2).
Hence, let us de�ne basic notions peculiar to Markov chains.

De�nition 1.13. An indexed sequence X = (Xn)n∈N of random variables Xn with state space I is called a
discrete-time stochastic process.

De�nition 1.14. A discrete-time stochastic process X is a Markov chain if ∀n ∈ N and i0, · · · , in, in+1 ∈ I:

P (Xn+1 = in+1 | X0 = i0,X1 = i1, · · · ,Xn−1 = in−1,Xn = in) = P (Xn+1 = in+1 | Xn = in)

In other words, it means that the stochastic process does not depend on the past.

When rotating any random tiling of order m ∈ N∗, the outcome only depends on the last tiling we have. It
follows that the discrete-time stochastic process (XAm

)n with state IAm
= {all possible tilings of order m}

is a Markov chain.

De�nition 1.15. A Markov chain X = (Xn)n∈N is called time-homogeneous if the transition probabilities
pij(n) = P (Xn+1 = j | Xn = i) are independent of n. We call P = (pij)i,j∈I the transition matrix of (Xn)n∈N.

Then, the Markov chain (XAm)n is also time-homogeneous. Its transition matrix PAm = (pTiTj )Ti,Tj∈IT
only

depends on the number of 2 × 2 squares that can be rotated. In other words, for any two tilings Ti, Tj , we
get that pTi,Tj > 0 if and only if all but (possibly) two dominoes of the tilings are laid the same way.

Example 1.16. Let us de�ne the Markov chain associated to the aztec diamond of order 2 and its graph.
For a matter of readability, we rather draw its graph than writing its transition matrix.
By the Aztec diamond theorem, we know that there are 8 = 2−2(2+1)/2 possible tilings. Hence, IA2

=
{T1, T2, · · · , T8}.
To compute the transition probabilities, we consider all the 2× 2 squares inside the aztec diamond (for A2

there are 5 of them) that we can pick with probability:

1/#{Number of 2× 2 squares inside the aztec diamond}

(in our case with probability 1/5).
For instance, let us compute pT1Tj∀j ∈ IA2 . We have:

pT1Tj =


3/5 if j = 1

1/5 if j ∈ {2, 3}
0 otherwise

The graph of XA2 is then:
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Figure 15: Graph of XA2
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For any order of a aztec diamond of order n and any state (i.e. any possible tiling) Ti, let us denote by S
the number of 2 × 2 squares, and Ni the number of adjacent states, that is any tiling Tj ̸= Ti such that
Tj can be obtained from Ti by rotating exactly 2 dominoes. Then we can generalize the transition matrix
P = (PTiTj

)Ti,Tj∈I
as follows:

pTiTj
=


1
S if Ti and Tj are adjacent and Ti ̸= Tj
S−Ni

S if Ti = Tj
0 otherwise

We can remark that
∑

Tj∈I pTiTj = 1, which is expected since the sum corresponds to the probability

P (Xn+1 ∈ I | Xn = Ti). Additionally, rotations are reversible, so adjacency is a symmetric property and we
have pTiTj = pTjTi . Thus, the number of states adjacent with a state Ti is also Ni, and so:

∑
Tj∈I pTjTi = 1.

Now that we have de�ned the random tilings of an aztec diamond of order m as a Markov chain, let us de�ne
three properties we are interested in.

De�nition 1.17. A Markov chain X is said to be:

� irreducible if it is possible to go from any state to any other

� aperiodic if it is possible to return from any state i to itself after an arbitrary number of steps m,
if m is large enough. In particular, there exists a positive integer Mi such that, for all m ≥ Mi,
P (Xn+m = i | Xn = i) > 0.

� positive recurrent if starting from i ∈ I we are certain to return to that same state i with �nite
average time

We also need to de�ne invariant probability distributions.

De�nition 1.18. Let X be a Markov chain with state space I with transition matrix P . A probability
distribution π = (πi)i∈I is said to be invariant if π = π. In particular, we have the following equivalence

πi =
∑
j∈I

πjpji

If we are able to show that the Markov chain (XAm
)n with state space IAm

satisfy these properties for
any m ∈ N∗, we could then use the following result to show that (XAm

)nconverges towards the uniform
distribution U(2n(n+1)/2).

Theorem 1.19. If a Markov Chain X is:

1. irreducible

2. aperiodic

3. positive recurrent

Then there exists a unique invariant probability distribution π on the state space and Xn converges in dis-

tribution towards π when n → ∞.

The proof of the irreducibility of the tiling is somewhat techical. It consists in de�ning a function r which
assigns a positive integer to any tiling in a way that if T , T ′ are adjacent, r(T ) = r(T ′) ± 1 and such that
r admits its unique minimum for the all-horizontal tiling. By showing that it is always possible to perform
a rotation in order to decrease the value of the function r up to its minimum, we can demonstrate that it is
possible to reach the minimal con�guration from any tiling. The complete demonstration of the irreducibility
can be found in the references [2].
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Since the probability of remaining still P (Xn+1 = i | Xn = i) is not null for any state, it is clear that the
chain is aperiodic. Indeed, it is possible (while unrealistic) to remain in the same state for any arbitrary
length of time. Moreover, since the state space is �nite and that the chain is irreducible, the chain is also
positive recurring.
Let us now remark that the uniform distribution is an invariant probability distribution. Indeed, if N =
2n(n+1)/2 denotes the number of possible states for a random tiling of order n, then for any state i we get
πi =

1
N , and: ∑

j∈I

πjpji =
1

N

∑
j∈I

pji =
1

N
= πi

Therefore, the uniform distribution is the unique invariant probability distribution, and Xn converges in
distribution towards it.
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2 Simulations and Observations

2.1 Technical Implementation of the Random Tilings

We will discuss in this section our implementation of the random tilings. The full implementation can be
found in the appendix. We decided to use object oriented programming in Python, for the sake of simplicity
and usability.

2.1.1 Creation of an �Organized� Tiling

Let us make a few remarks before presenting the code. A tiling of order n can be seen as a 2n× 2n grid of
1× 1 squares.

(-4,4) (-3,4) (-2,4) (-1,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (1,1) (2,1) (3,1) (4,1)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure 16: On the left, random tiling of order 4. On the right, representation of the tiling as dominoes laid
onto a grid of 1× 1 squares

For any tiling T , every domino is placed on two adjacent squares, so that each �active� square (squares that
are not greyed out in the above �gure) holds exactly one half of a domino. We can encode the domino
con�guration as an attribute of the squares on which it lays: we say that the square itself is horizontal if the
(half) domino placed onto it is oriented horizontally, and vertical otherwise. Let us add an additional bit of
information: let the �dominant� part of the domino be the top half when oriented vertically, or the left half
when laid horizontally. By adding this data point, the con�guration of the domino can be deduced from the
information contained in a single square. For example, if we know that a given case holds the dominant part
of a domino oriented vertically (i.e. its top half), we know that the domino is placed onto this square and
the one right below. By doing so, we do not need to implement the domino themselves as a class.
Let us construct such a grid from the ground up. The �rst class that we need to create is the Square class.
The squares are identi�ed by a coordinate system (±x,±y) such that x, y ∈ N2, 1 ≤ x ≤ n, 1 ≤ y ≤ n.
Let us note that we do not attribute any coordinate of the form (0, x) or (y, 0). This create some complication
when trying to determine its adjacent squares, but it ensures a form of symmetry that will simplify the tiling
of an empty grid.
Squares are considered active if they can (and will) hold a domino square. This attribute is computed based
on condition (3)

|x|+ |y| ≤ n+ 1 (3)

The con�guration of the domino laid onto the square is also implemented as an attribute of the square, as
discussed above.
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The code for the square class is quite straightforward:

1 class Square:
2 def __init__(self, x, y, n, horizontal, dominant):
3 self.x = x # X axis
4 self.y = y # Y axis
5 self.is_active = (abs(x) + abs(y) <= n +1) # is square in grid ?
6 self.horizontal = horizontal # orientation of the domino in grid
7 self.dominant = dominant # based on orientation, does grid hold dominant side

of domino ?

Two squares of coordinates (x, y) and (x′, y′) are adjacent in the following cases

x = x′, y = y′ ± 1 if y ̸∈ {−1, 1}
x = x′, y = y′ + 2 if y = −1

x = x′, y = y′ − 2 if y = 1

y = y′, x = x′ ± 1 if x ̸∈ {−1, 1}
y = y′, x = x′ + 2 if x = −1

y = y′, x = x′ − 2 if x = 1

Therefore, the creation of every square of coordinates (±x,±y) for x, y ∈ N such that 1 ≤ x ≤ n, 1 ≤ y ≤ n
is equivalent to generating an empty grid.

(-4,4) (-3,4) (-2,4) (-1,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (1,1) (2,1) (3,1) (4,1)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure 17: An empty grid of order 4. Grey squares are deactivated and cannot hold dominoes.

Before discussing the implementation of the grid, we shall introduce the concept of rotation boxes. Two
dominoes can be rotated only if they are placed onto a 2 × 2 box, which is precisely four active squares
sharing a corner. Let us call such a structure a Rotation_Box

The following condition allows us to verify if a rotation is possible on a box, based on the attributes of its
squares.

Proposition 2.1. It is possible to perform a rotation on a 2× 2 box if, and only if:

1. The top left square and the bottom right square of the box have the same orientation.

2. The top left square is dominant and the bottom right square is nondominant.

Proof. It is clear that if the top left and bottom right square do not share the same orientation, it is not
possible to rotate the box.
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Assume that the square can be rotated. If both squares are oriented horizontally, the top left square must
hold the left side of a domino, and the bottom right square must hold the right side of another domino. If
both dominoes are oriented vertically, the upper left square must hold the top side of the �rst domino and
the bottom right square must hold the bottom half of the second domino. In both cases, the dominance
condition is respected. Moreover, this con�guration requires that both the top right and bottom left squares
share the same orientation as the top left and bottom right.
Now, assume that both square share the same orientation but the dominance condition 2. is not respected.
If they are oriented vertically, we can assume that the top left square is nondominant. Then it holds that
the bottom side of a domino, and the top side will be one the square located above it, which is outside the
box. It remains 3 squares for a single domino, which contradicts the fact that the box holds exactly two
dominoes, and thus rotation is not possible. The same argument holds if the bottom right corner does not
respect the dominance condition, but also in the horizontal case since, if the top left square is nondominant,
it holds the left side of a domino, whose left half will be placed outside the box.

We can perform a rotation within the box as follows:

1. We swap the orientation of every square in the box. Horizontal becomes vertical, vertical becomes
horizontal.

2. We swap the dominance attribute of the top right and bottom left squares. Dominant becomes non-
dominant, non-dominant becomes dominant.

Indeed, it is required to update the orientation of all the squares in the box. Since the rotation can be
reverted, the dominance attributes of the top left and bottom right squares must remain the same. However,
if the top right corner was holding the right side of a vertical domino, it will hold after rotation the top side
of a vertical domino. Therefore its dominance only needs to be swapped, and for the same reason, so does
the dominance attribute of the bottom left square.
We can therefore implement an object called Rotation_Box which consists in a 2 × 2 box. Its attributes
will be the four squares it is composed of, a boolean variable which will con�rm if the box can or cannot be
rotated, and the functions described above to verify the possibility of a rotation, and to perform the rotation
within the box. . The Rotation_Box objects will also be given coordinates based on the coordinate of their

top left square.
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Based on the information discussed abouve, we implemented the Rotation_Box class as:

1 class Rotation_Box:
2 def check_rotatability(self): # resets can_be_rotated value
3 self.can_be_rotated = ( # can square be rotated ?
4 (self.UL.horizontal == self.BR.horizontal) and
5 (self.UL.dominant) and
6 (not self.BR.dominant) and
7 self.is_active
8 )
9 return self.can_be_rotated

10

11 def __init__(self, UL, UR, BR, BL):
12 self.UL = UL #upper left square
13 self.UR = UR #upper right square
14 self.BR = BR #bottom right square
15 self.BL = BL #bottom left square
16 self.Squares = {self.UL,self.UR,self.BR,self.BL} # Set containing all squres

of box
17 self.can_be_rotated = self.check_rotatability()
18 self.is_active = all([C.is_active for C in self.Squares])
19

20 def rotate(self): # updates orientation and dominance
21 if self.can_be_rotated:
22 ns = not self.UL.horizontal
23 self.UL.horizontal = self.UR.horizontal = self.BR.horizontal = self.BL.

horizontal = ns
24 self.UR.dominant = not self.UR.dominant
25 self.BL.dominant = not self.BL.dominant
26 return True
27 else:
28 return False

We can now discuss the implementation of the Grid object. First of all, an object of this class will contain
the following informations:

� a collection of Square objects with coordinates (±x,±y), x, y ∈ N, 1 ≤ x ≤ n, 1 ≤ y ≤ n.

� a collection of Rotation_Box objects which correspond to all 2× 2 boxes.

We will design the class Grid so that upon creation, all the objects of class Square and Rotation_Box will
be generated. This requires to compute the orientation and the dominance for all squares in the grid. As
we want all dominoes to be oriented horizontally in the initial con�guration, we simply set the orientation
of each active square to Horizontal = True.
Let us focus on the top left quadrant of the grid with coordinates (−x, y) to identify a pattern which will
allow us to compute the dominance. The top-most square located in (−1, n), always needs to be dominant.
In particular, we observe the following relation: the square is dominant if x+ y−n is odd and so, regardless
of the parity of n.
We observe that this relation is reversed on the top right quadrant (squares of coordinates (x, y).) Therefore,
on the top half of the grid, the dominance can be computed as follows:

f(x, y) =


1 if x+ y − n ≡ 1 [2] and x < 0

1 if x+ y − n ≡ 0 [2] and x > 0

−1 otherwise

This function was implemented as follows:
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1 def f(x,y,n): # Defines the logic for dominance attribute
2 if (x + y - n) % 2:
3 return - sign(x)
4 return sign(x)

This dominance of the square of coordinates (x, y) can therefore be computed on the upper half of the grid
by evaluating f(x, y): it is dominant if f(x, y) = 1. We can then use the use the symmetry along the central
vertical line to show that the same logic is valid for squares of coordinates (±x,−y).

(-3,3) (-2,3) (-1,3) (1,3) (2,3) (3,3)

(-3,2) (-2,2) (-1,2) (1,2) (2,2) (3,2)

(-3,1) (-2,1) (-1,1) (1,1) (2,1) (3,1)

(-3,-1) (-2,-1) (-1,-1) (1,-1) (2,-1) (3,-1)

(-3,-2) (-2,-2) (-1,-2) (1,-2) (2,-2) (3,-2)

(-3,-3) (-2,-3) (-1,-3) (1,-3) (2,-3) (3,-3)

(-4,4) (-3,4) (-2,4) (-1,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (1,1) (2,1) (3,1) (4,1)

(-4,-1) (-3,-1) (-2,-1) (-1,-1) (1,-1) (2,-1) (3,-1) (4,-1)

(-4,-2) (-3,-2) (-2,-2) (-1,-2) (1,-2) (2,-2) (3,-2) (4,-2)

(-4,-3) (-3,-3) (-2,-3) (-1,-3) (1,-3) (2,-3) (3,-3) (4,-3)

(-4,-4) (-3,-4) (-2,-4) (-1,-4) (1,-4) (2,-4) (3,-4) (4,-4)

Figure 18: Computation of dominant squres in odd (here n = 3, on the left) and even (n = 4, on the right)
ordered tilings. The orange squares are computed as dominant based on the function de�ned above.
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We can now implement the class Grid. When creating an object of this class, it will create all square and
Rotation_box objects, and store them in dictionaries. Additionally, it also creates a set containing all boxes
for which a rotation is possible.

1 class Grid:
2 def __init__(self, n:int, m:int):
3 self.n = n
4 self.m = m
5 self.Squares = {} # dictionary of grid’s tiles
6 self.Rotation_Boxes = {} # dictionary of grid’s squares
7 self.Turnable_Boxes = set() # set of all rotatable squares
8

9 for j in range(-m,m+1): # Generates the squares
10 if j==0: # tiles with null y axis are not defined
11 continue
12 for i in range(-n,n+1):
13 if i == 0: # tiles with null x axis are not defined
14 continue
15 self.Squares[i,j] = Square(i,j,n, True, (f(i,j,n) == 1)) # populate

Tiles dictionary
16

17 for j in range(n,-n,-1): #Generates the boxes
18 if j == 0: #squares with null y axis are not defined
19 continue
20 for i in range(-m, m):
21 if i==0: #squares with null x axis are not defined
22 continue
23 self.Rotation_Boxes[i,j] = Rotation_Box( # populate Squares dictionary
24 self.Squares[i,j], # upper left tile
25 self.Squares[i+1+(i==-1), j], # upper right tile
26 self.Squares[i+1+(i==-1), j-1-(j==1)], # bottom right tile
27 self.Squares[i, j-1-(j==1)] # bottom left tile
28 )
29 if (self.Rotation_Boxes[i,j].can_be_rotated):
30 self.Turnable_Boxes.add(self.Rotation_Boxes[i,j]) # populates

rotatable set

2.1.2 Representation of the Grid

Let us consider the following matrix (Mi,j) where i, j ∈ {−n,−n+ 1, . . . ,−2,−1, 1, 2 . . . ,m− 1, n} are the
coordinates such that (i, j) is a square on the grid:

Mi,j =



2 if the square (i, j) is vertical dominant.

1 if the square (i, j) is horizontal dominant.

0 if the square (i, j) is inactive.

−1 if the square (i, j) is horizontal non-dominant.

−2 if the square (i, j) is vertical non dominant.

Any tiling can be uniquely represented as such a 2n × 2n matrix. We can save this matrix as a comma
separated value (csv) �le for further manipulation and graphic representation.
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0 0 0 1 -1 0 0 0

0 0 1 -1 1 -1 0 0

0 2 1 -1 2 2 2 0

2 -2 2 2 -2 -2 -2 2

-2 2 -2 -2 1 -1 2 -2

0 -2 2 1 -1 2 -2 0

0 0 -2 1 -1 -2 0 0

0 0 0 1 -1 0 0 0

Figure 19: Matrix representation of a tiling

We can use the following snippet to encode the orientation and dominance of a square. Considering that the
orientation and dominance are stored as a boolean horizontal, dominant ∈ {True, False}.

1 def render(C:Square): # Defines value when generating CSV
2 return C.is_active * (C.dominant*1 - (not C.dominant)*1) * (1+ (not C.horizontal)

*1)

We can now add the function save within the class Grid to save the Grid as a comma seperated value (csv)
document. The paramater path is used to indicate the location and name of the csv �le.

1 def save(self,dest):
2 """ stores the grid as as CSV file """
3 f = open(dest,’w’)
4 for j in range(self.m,-self.m-1,-1):
5 if j == 0:
6 continue
7 for i in range(-self.n, self.n+1):
8 if i == 0:
9 continue

10 f.write(str(render(self.Squares[i,j])))
11 if i < self.n:
12 f.write(",")
13 f.write(’\n’)
14 f.close()

From this csv �le, we can create a visual representation of the tilings using scalar vector graphics (svg). For
each dominant square in the tiling (i.e. coe�cients of the matrix Mi,j which are either 1 or 2), a line is added
to a svg �le, with the following pattern:

1 <rect x="482" y="2" width="36" height="16" fill="orange"/>

Let us detail how the values are calculated. Allow some padding around tiling and between each domino of
a variable p, and condiser the width of a square Sqsize we loop through each value of the csv document.
Let i, j be value in i-th column of the j-th line.

1. x = p + i * Sqsize

2. y = p + j * Sqsize

22



3. The width and height are calculated as Sqsize*k -2*spacing, with the value of k depending on
the orientation of the domino: if a domino is oriented horizontally, k = 2 for the width and k = 1 for
the height, and inversely for vertically oriented dominoes.

4. The color attribute fill is computed based on the position of the dominant half of the domino, and
its orientation. For example, horizontal dominoes will either be orange or crimson if the domino is
oriented horizontally. The choice between the two is computed as the sum of the coordinates of its
dominant domino, modulo 2.

2.1.3 Rotations

For the moment we can perform the rotation of dominoes on a single Rotation_Box. Moreover, we introduced
a set Turnable_Boxes containing all the Rotation_Box for which a rotation is possible. The process now
consists in:

1. Pick at random one of the Rotation_Box from the Turnable_Boxes set.

2. Perform a rotation on this box.

3. Update the Turnable_Boxes set to add Rotation_Box objects that could not be rotaded previously,
but now; or remove the ones that could be rotated but for which a rotation is no longer possible.

We can demonstrate that, after a rotation, it su�ces to verify if a rotation is possible on the Rotation_boxes
located directly above, below, to the left and to the right of it.

Figure 20: Rotation Boxes update

The following functions were added to the Grid class, which allow for a deterministic number of rotations.

1 def check_if_turnable(self,i:int,j:int): # after rotation, checks if adjacent squares
can be rotated

2 """ After rotation, checks if adjacent squares can be rotated """
3 tile = self.Rotation_Boxes.get((i,j)) # prevents out of bound.
4 if tile:
5 if tile.check_rotatability(): # adds square to rotatable set if possible
6 self.Turnable_Boxes.add(tile)
7 else:
8 if tile in self.Turnable_Boxes: # remove square from rotatable set if not

possible
9 self.Turnable_Boxes.remove(tile)

10

11 def rotate(self, i:int ,j:int):
12 """ Performs rotation on square with top left square in (i,j), then updates

rotatability of adjacent squares. """
13 n = self.n; m = self.m
14 if (self.Rotation_Boxes[i,j].rotate()): # attempts rotation and updates rotatable

set
15 # print("Rotation of square (",i,j,") completed.")
16 self.check_if_turnable(i+1+(i==-1),j) # right box
17 self.check_if_turnable(i-1-(i==1),j) # left box
18 self.check_if_turnable(i,j+1+(j==-1)) # above box
19 self.check_if_turnable(i,j-1-(j==1)) # below box
20 else:
21 print("Rotation of square (",i,j,") is not possible")
22

23 def randomize(self,n:int):
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24 for i in range(1,n+1):
25 Sq = sample(self.Turnable_Boxes,1)[0]
26 x = Sq.UL.x
27 y = Sq.UL.y
28 self.rotate(x,y)

Let us note that the implementation does not technically correspond to an aperiodic Markov chain, since
we do not allow the tilings to stay constant when calling the function randomize. Each call will result in
(at least) one rotation. It is however possible implement the aperiodicity, without causing loss in program
runtime. In order to do so, we introduce two new attributes for the Grid object:

� the actual_rotation attribute stores the number of times a rotation was actually completed. We
increment this attribute by 1 each time the rotate function is called.

� the rotation stores a virtual number of attempted rotations, which correspond to the time n of the
Markov chain X. After each rotation, this attribute is incremented by G where G is a random variable
following a geometric distribution G(p), where p is the probability of changing state. In particular,
G = k > 1 is equivalent to staying put k − 1 times, then moving to a di�erent state.

This alternative version of the randomize function was implemented:

1 def randomize_limit(self,s:int):
2 while self.rotations < s:
3 self.rotations += random.geometric(p=(len(self.Turnable_Boxes))/self.SqLen)
4 self.actual_Rotations += 1
5 Sq = sample(self.Turnable_Boxes,1)[0]
6 x = Sq.UL.x
7 y = Sq.UL.y
8 self.rotate(x,y)
9 return self.breakingPoint()

We can therefore generate a random tiling of order n using the command.

1 n = 20 #order of the tilings
2 r = 1000000 # We want X_r and attempt r=1,000,000 rotations.
3 from RTClass3 import *
4 K = Grid(n,n)
5 K.randomize_limit(r)
6 K.save(’data/Tilings_001.csv’)

The following command line in the terminal will then convert the csv into a svg:

1 python code/SVGwriter3.py [LOCATION_OF_CSV] [LOCATION_OF_SVG]

2.2 Some observations

We qualify a domino of well-tiled with respect to one of the corners of the aztec diamond if that domino
could be a part of a �brick wall� fashionned tiling. By �brick wall� fashionned, we mean that each corner of
the tiling have the same orientation the upper and lower polar regions are both horizontally tiled whereas
the left and right polar regions are vertically tiled. Red dominoes in �gure 3 are well tiled with regards to
the top, while orange dominoes are well tiled with regards to the bottom.
The dominoes laid on a case of the top left border (that is the ones with coordinates (−n + 1 − i, i) for
i ∈ {0, n}) are either the right side of an horizontal domino, or the top side of a vertical domino.
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Figure 21: Possible position for a domino on the �rst diagonal border. The transparent dominoes are
necessary in the sense that no other con�guration is possible.

The representation in �gure 21 shows that either of those con�gurations has a repercution on the rest of
the border: if the domino is laid horizontally (i.e. well tiled with regards to the top), then all dominoes on
the �rst diagonal border will also be well tiled from the top down to the domino. Conversely, if it is laid
vertically (i.e. well tiled with regards to the left base), the same disposition can be observed for all leftward
dominoes.
We can conclude that we have a limited number of possible cases. The �rst one is that all the dominoes on
the �rst diagonal border have the same disposition (either all vertical and well tiled with regards to the left,
or all horizontal and well tiled with regards to the top).
The second possibility is that they do not have the same disposition. In this case, the top and left side are
both well tiled with regards to their own base, and there exist a unique point in which the diagonal and
vertical dominoes meet. Such a point must be one of the cases displayed in �gure 22.

Figure 22: Point at which vertical and horizonal dominoes meet on the �rst diagonal border.

We can observe from this �gure that dominoes laid on this point cannot be well tiled with regards to the
top, nor to the left. They therefore create a �rst point at which the dominoes starts to deorganize. As stated
previously, if it exists, such a point is unique on each border.
The existence of this point is not guaranteed. However, we can compute the probability that this point does
not exist, which we shall do later.

Proposition 2.2. The probability that the top corner is not well tiled is 2−n.

Proof. Let us assume that the top corner is not well tiled. This implies that the dominoes laid on the
topmost cases of the tilings are set vertically. Then all the dominoes on the top left and top right dominoes
must be set vertically, down to the left and right corners.
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Figure 23: The top corner is not well tiled, thus the dominoes on the top borders are all laid vertically.

The remaining free cases compose a grid for a tilings of order n − 1. This is the unique possibility for a
tilings of order n. Therefore we have:

P {the top corner is not well tiled} =
2(n−1)n/2

2n(n+1)/2
= 2((n−1)n−n(n+1))/2

= 2n(n−1−n−1)/2

= 2−2n/2

= 2−n

Proposition 2.3. The probability that neither the top, nor the bottom corners are well tiled is 2−2n+1.

Proof. Let us assume that the top corner is not well tiled. By symmetry, the probability that the bottom
corner is also not well tiled is the same as the probability that the top corner is not well tiled in a n − 1
order tilings, that is:

P {Neither top nor bottom corners are well tiled} = 2−n · 2−(n−1) = 2−2n+1

3 Mixing time

Our �rst attempt to generate a random sample of large order was not satisfactory. A hundred million
rotations were not su�cient to deconstruct the organized tiling, and its polar circle was �atter than expected.
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Figure 24: Tiling of order 100, generated after 100 000 000 rotations

Clearly, we needed more than a hundred million rotations for a tiling of order 100. This raised the following
problem: how many rotations would be needed to generate a random tiling more representative of the uniform
distribution? Let us start with the following observation: we know that most of the possible con�gurations
will have a unique point on each border at which horizontal and vertical dominoes will revert. For a random
tiling T , let us denote the height (i.e. the y coordinate) of this point (we will refer to this point as the
�breaking point�) on the top left border by HTL(T ) ∈ {0, n} where n is the order of the tiling.
Suppose that HTL(T ) = k. By symmetry along the diagonal axis y = −x, we can construct another tiling T ′

whose height will be HTL(T ′) = n− k. We conclude that for any tiling of height k, there exists a symmetric
tiling of height n− k: the average height of a random tilings must therefore be on the center of the border:
E [HTL(T )] = n

2 .
We need to perform a large enough number of rotations so that the average height of this point will will lay
at half the order. Let us �nd a lower bound on the number of rotations to meet this requirement. We will
start by implementing a function which computes the height of the breaking point. The following snippet
was included within the Grid class de�nition:

1 def breakingPoint(self):
2 for i in range(1,self.n+1):
3 if (not self.Squares[-i,self.n+1-i].horizontal):
4 return abs(i-1)
5 return self.n

The function loops through all the the squares of the top left border and returns the y coordinate of the �rst
non-horizontal square. We note that if the �rst square is vertical, the function returns n that if all squares
of the border are horizontal, the function is set to return n.
Using this function, let us perform the following experiment:

1. We generate m organized tiling of order n, T (0)
1 , . . . , T (0)

m .
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2. We perform k rotations on each tiling, and measure the average height of the breaking point and get

T (k)
1 , . . . , T (k)

100 . Let us for example introduce the function Hn : N → R+

Hn(k) =
1

m

m∑
i=1

HTL

(
T (k)
i

)
The following �gure shows the evolution of Hn(k) for n ∈ {10, 15, 20, 25} and k ≤ 300000.
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Figure 25: Average height of breaking point for a random tilings of order 10, 100 tilings

We can observe that the average height of the breaking point stabilized around 5 for the tilings of order
n = 10, and so very early. Around 10,000 rotations were su�cient to obtain an observed average close to the
expected value. For tilings of order 20, it took over 10 times this number of rotations to reach H20 ≈ 10 = 20

2 .
We performed the same processus for tilings of larger orders (up to 45). The following table shows, for our
simulations, the number of actual rotation it took for the average height to stabilize at n

2 .

order number of rotations
10 10,000
15 50,000
20 100,000
25 220,000
30 450,000
35 750,000
40 150,000
45 250,000

Let us plot this data.
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Figure 26: Number of actual rotations needed to reach an average breaking point height of n
2

.

Based on the shape of the graph, it appears that the minimum number or rotations follows an exponential

function. The line in the above �gure above the graph of the function x 7→ 105 · exp
(x
8

)
.

Returnining to our initial problem, if we assume that the minimal number of rotations follows 105 ·exp
(
order

8

)
,

it would require over 2.5 billion actual rotations in order to obtain a representing tiling of order 100. Let
us emphasize that this is the number of actual rotations on a non-aperiodic Markov Chain. The number of
the aperiodic Markov chain equivalent must be even larger. Indeed, we need the state of the chain in Xn for
which n is large enough so that the actual number rotations k ≤ n exceeds 2.5 billion, which is unrealistic.
Finally, let us review the process to generate a random tiling following the aperiodic Markov Chain. We can
decide on a large number of rotations r so that the generated tilings represents Xn for a n >> r:

1. We start with X0 = T0, the all-horizontal tiling.

2. We start the random process de�ned for the aperiodic Markov Chain X1, X2, . . ., allowing the chain
to remain on the same state with some probability (as discussed in section 1.2). We ensure that the
number of actual rotations exceeds the lower bound de�ned above. Let us denote as T the �rst time
that this condition is met.

3. We then continue with r additional steps, and stop the process as soon as the time exceeds T + r. The
end result will be the state of Xn with n ≥ T + r.

The process de�ned above ensures that a su�cient number of rotations will be performed to satisfy an
expected height of the breaking point equivalent to expectation of the uniform distribution, while maintaining
the aperiodicity of the Markov chain. This last point is important since it is a necessary condition for the
limit distribution to be the uniform distribution.
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Appendixes

A Code

1 # import numpy as np
2 from numpy import sign, random
3 from random import sample
4

5 def dom(x,y,n): # Defines the logic for is_active status
6 if (x+ y - n) %2:
7 return - sign(x)
8 return sign(x)
9

10 def render(C): # Defines when value when generating CSV
11 return C.is_active * (C.dominant*1 - (not C.dominant)*1) * (1+ (not C.horizontal)

*1)
12

13 class Square:
14 def __init__(self, x, y, n, horizontal, dominant):
15 self.x = x # X axis
16 self.y = y # Y axis
17 self.is_active = (abs(x) + abs(y) <= n +1) # is square in grid ?
18 self.horizontal = horizontal # orientation of the domino in grid
19 self.dominant = dominant # based on orientation, does grid hold dominant side

of domino ?
20

21 class Rotation_Box:
22 def check_rotatability(self): # resets can_be_rotated value
23 self.can_be_rotated = ( # can square be rotated ?
24 (self.UL.horizontal == self.BR.horizontal) and #might not be needed
25 (self.UL.dominant) and
26 (not self.BR.dominant) and
27 all([C.is_active for C in self.Squares])
28 )
29 return self.can_be_rotated
30

31 def __init__(self, UL, UR, BR, BL):
32 self.UL = UL
33 self.UR = UR
34 self.BR = BR
35 self.BL = BL
36 self.Squares = {self.UL,self.UR,self.BR,self.BL} # Set containing all squares

of box
37 self.can_be_rotated = self.check_rotatability()
38 self.is_active = all([C.is_active for C in self.Squares])
39

40 def rotate(self): # updates orientation and dominance
41 if self.can_be_rotated:
42 ns = not self.UL.horizontal
43 self.UL.horizontal = self.UR.horizontal = self.BR.horizontal = self

.BL.horizontal = ns
44 self.UR.dominant = not self.UR.dominant
45 self.BL.dominant = not self.BL.dominant
46 return True
47 else:
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48 return False
49

50 class Grid:
51

52 def __init__(self, n:int, m:int):
53 self.n = n
54 self.m = m
55 self.rotations = 0
56 self.actual_Rotations = 0
57 self.Squares = {} # dictionary of grid’s tiles
58 self.Rotation_Boxes = {} # dictionary of grid’s squares
59 self.Turnable_Boxes = set() # set of all rotatable squares
60

61 for j in range(-m,m+1): # Generates tiles in grid
62 if j==0: # tiles with null y axis are not defined
63 continue
64 for i in range(-n,n+1):
65 if i == 0: # tiles with null x axis are not defined
66 continue
67 self.Squares[i,j] = Square(i,j,n, True, (dom(i,j,n) == 1)) # populate

Tiles dictionary
68

69 for j in range(n,-n,-1): #Generates the squares
70 if j == 0: #squares with null y axis are not defined
71 continue
72 for i in range(-m, m):
73 if i==0: #squares with null x axis are not defined
74 continue
75 self.Rotation_Boxes[i,j] = Rotation_Box( # populate Squares dictionary
76 self.Squares[i,j], # upper left tile
77 self.Squares[i+1+(i==-1), j], # upper right tile
78 self.Squares[i+1+(i==-1), j-1-(j==1)], # bottom right tile
79 self.Squares[i, j-1-(j==1)] # bottom left tile
80 )
81 if (self.Rotation_Boxes[i,j].can_be_rotated): self.Turnable_Boxes.add(

self.Rotation_Boxes[i,j]) # populates rotatable set
82

83 self.SqLen = sum([1 for k,v in self.Rotation_Boxes.items() if v.is_active
])

84

85 def check_if_turnable(self,i:int,j:int): # after rotation, checks if adjacent
squares can be rotated

86 """ After rotation, checks if adjacent squares can be rotated """
87 tile = self.Rotation_Boxes.get((i,j)) # prevents out of bound.
88 if tile:
89 if tile.check_rotatability(): # adds square to rotatable set if possible
90 self.Turnable_Boxes.add(tile)
91 else:
92 if tile in self.Turnable_Boxes: # remove square from rotatable set if

not possible
93 self.Turnable_Boxes.remove(tile)
94

95 def rotate(self, i:int ,j:int):
96 """ Performs rotation on square with top left square in (i,j), then updates

rotatability of adjacent squares. """
97 n = self.n; m = self.m
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98 if (self.Rotation_Boxes[i,j].rotate()): # attempts rotation and updates
rotatable set

99 # print("Rotation of square (",i,j,") completed.")
100 self.check_if_turnable(i+1+(i==-1),j) # right square
101 self.check_if_turnable(i-1-(i==1),j) # left square
102 self.check_if_turnable(i,j+1+(j==-1)) # above square
103 self.check_if_turnable(i,j-1-(j==1)) # below square
104 else:
105 print("Rotation of square (",i,j,") is not possible")
106

107 def display(self):
108 """ Print the grid in the terminal """
109 for j in range(self.m,-self.m-1,-1):
110 if j == 0:
111 continue
112 # print([(Tiles[i,j].x,Tiles[i,j].y) for i in range(-self.n, self.n+1) if

i != 0])
113 print([render(self.Squares[i,j]) for i in range(-self.n, self.n+1) if i !=

0])
114

115 def save(self,dest):
116 """ stores the grid as as CSV file """
117 f = open(dest,’w’)
118 for j in range(self.m,-self.m-1,-1):
119 if j == 0:
120 continue
121 for i in range(-self.n, self.n+1):
122 if i == 0:
123 continue
124 f.write(str(render(self.Squares[i,j])))
125 if i < self.n:
126 f.write(",")
127 f.write(’\n’)
128 f.close()
129

130 def randomize(self,n:int):
131 # SqLen = len(self.Rotation_Boxes)
132 for i in range(1,n+1):
133 self.rotations += random.geometric(p=(len(self.Turnable_Boxes))/self.SqLen

)
134 self.actual_Rotations += 1
135 Sq = sample(self.Turnable_Boxes,1)[0]
136 x = Sq.UL.x
137 y = Sq.UL.y
138 self.rotate(x,y)
139

140 def breakingPoint(self):
141 # BK = 0
142 for i in range(1,self.n+1):
143 if (not self.Squares[-i,self.n+1-i].horizontal):
144 return abs(self.n+1-i)
145 return 0
146

147 def randomize_limit(self,s:int):
148 # SqLen = len(self.Rotation_Boxes)
149 while self.rotations < s:
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150 self.rotations += random.geometric(p=(len(self.Turnable_Boxes))/self.SqLen
)

151 self.actual_Rotations += 1
152 Sq = sample(self.Turnable_Boxes,1)[0]
153 x = Sq.UL.x
154 y = Sq.UL.y
155 self.rotate(x,y)
156 return self.breakingPoint()
157

158 if __name__ == ’__main__’:
159 K = Grid(4,4)
160 K.rotate(-4,1)
161 print(K.Turnable_Boxes)
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1

2 def addDomino(x,y,horizontal=True):
3 col = (horizontal and Hcol) or Vcol # assign relevant color palette
4 mod = (horizontal and [1,0]) or [0,1] # assign relevant modifier
5 f.write(’\t<path \n\t\td="’)
6 # Draw a rectangle from start position M and subsequent points
7 f.write(’M ’ + str(cWid*x +spacing) + " " + str(cWid*y + spacing))
8 f.write(’ L ’ + str(cWid*(x+1+mod[0])-spacing) + " " + str(spacing+cWid*y))
9 f.write(’ L ’ + str(cWid*(x+1+mod[0]) - spacing) + " " + str(cWid*(y+1+mod[1])-

spacing))
10 f.write(’ L ’ + str(cWid*x + spacing) + " " + str(cWid*(y+1+mod[1])-spacing))
11 f.write(’ Z" \n \t\tfill="’+col[(x+y)%2]+’" /> \n ’)

1 # Generates a SVG file based on source CSV file
2 import csv
3 import sys
4 # from svglib.svglib import svg2rlg
5 # from reportlab.graphics import renderPDF, renderPM
6

7 # import Surface
8

9 # manual entries for source and dest files, relative path from RandomTilings folder
10 source = ’data/Test25.csv’
11 dest = ’images/svg/Test25.svg’
12 pdfdest = ’images/svg/Test25.pdf’
13 convert2pdf = True
14 # BK = Surface.BK(source)
15

16 cWid = 10 # set width of a case
17 Hcol = ["orange","crimson"] # set color pair for horizontal dominos
18 Vcol = ["darkviolet","green"] # set color pair for vertical dominos
19 spacing = 1 # set space between dominos
20

21

22 def addDomino(x,y,horizontal=True):
23 col = (horizontal and Hcol) or Vcol # assign relevant color palette
24 mod = (horizontal and [1,0]) or [0,1] # assign relevant modifier
25 f.write(’\t<path \n\t\td="’)
26 # Draw a rectangle from start position M and subsequent points
27 f.write(’M ’ + str(cWid*x +spacing) + " " + str(cWid*y + spacing))
28 f.write(’ L ’ + str(cWid*(x+1+mod[0])-spacing) + " " + str(spacing+cWid*y))
29 f.write(’ L ’ + str(cWid*(x+1+mod[0]) - spacing) + " " + str(cWid*(y+1+mod[1])-

spacing))
30 f.write(’ L ’ + str(cWid*x + spacing) + " " + str(cWid*(y+1+mod[1])-spacing))
31 f.write(’ Z" \n \t\tfill="’+col[(x+y)%2]+’" /> \n ’)
32

33

34 with open(dest,’w’) as f:
35 with open(source,’r’) as input:
36 nrow = sum(1 for line in csv.reader(input))
37 ncol = nrow
38 f.write(’<svg xmlns="http://www.w3.org/2000/svg" height="’ + str(nrow*cWid) +’

" width="’ + str((ncol)*cWid) + ’">\n’)
39 f.write(’\t<g stroke="gray" stroke-width="1">\n’)
40 input.close()
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41 with open(source,’r’) as input:
42 y = 0
43 for line in csv.reader(input):
44 x = 0
45 for n in line:
46 if int(n) == 1:
47 addDomino(x,y,True)
48 elif int(n) == 2:
49 addDomino(x,y,False)
50 x+=1
51 y += 1
52 # for k in BK:
53 # f.write (’<circle cx="’ + str(k[0]*cWid + cWid/2) + ’" cy = "’ + str(k

[1]*cWid + cWid/2) + ’" r="’ + str(cWid/2) + ’" fill = "black" /> \n’)
54 f.write("\t</g>\n</svg>")
55

56 # if convert2pdf:
57 # drawing = svg2rlg(dest)
58 # renderPDF.drawToFile(drawing, pdfdest)
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1

2 def addDomino(x,y,horizontal=True):
3 col = (horizontal and Hcol) or Vcol # assign relevant color palette
4 mod = (horizontal and [1,0]) or [0,1] # assign relevant modifier
5 f.write(’\t<path \n\t\td="’)
6 # Draw a rectangle from start position M and subsequent points
7 f.write(’M ’ + str(cWid*x +spacing) + " " + str(cWid*y + spacing))
8 f.write(’ L ’ + str(cWid*(x+1+mod[0])-spacing) + " " + str(spacing+cWid*y))
9 f.write(’ L ’ + str(cWid*(x+1+mod[0]) - spacing) + " " + str(cWid*(y+1+mod[1])-

spacing))
10 f.write(’ L ’ + str(cWid*x + spacing) + " " + str(cWid*(y+1+mod[1])-spacing))
11 f.write(’ Z" \n \t\tfill="’+col[(x+y)%2]+’" /> \n ’)
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