
Balanced centrifuge problem

MARICHAL Jean-Philippe,
RODRIGUES COSTA André Manuel

Semester 3

1 Introduction

A centrifuge is a laboratory equipment used to separate fluids that have different
densities by spinning at high speed. Such a centrifuge has separate slots, equally
spaced around the center of the rotor, in which it can contain test tubes. It is
very important to place the test tubes in a balanced way, otherwise the machine
can be permanently damaged. They should be placed such that the center of
gravity of the tubes coincides with the center of gravity of the centrifuge itself.
We denote n as the number of available slots and k as the number of test tubes
we want to insert in the different slots. The video made by Numberphile on
the centrifuge problem gives you a good first understanding of the problem:
https://www.youtube.com/watch?v=7DHE8RnsCQ8

Understanding when a centrifuge is balanced comes down to knowing for which
k may we pick k distinct nth roots of unity whose sum is 0. It has been proven
by Gary Sivek in [1], that we can find k distinct nth roots of unity whose sum is
0 if and only if both k and n−k are expressible as linear combinations of prime
factors of n with non negative coefficients. When this is the case, the centrifuge
can be balanced. We get a set of solutions Sn ⊂ {2, · · · , n}, that contains the
different k for which it is possible to balance the centrifuge.
We cannot allow repetition of roots of unity because once a slot in the centrifuge
is filled, it is not possible to insert a second tube in that specific slot. So one
can find solutions that do not look like a obvious configurations, for example if
n = 24 and k = 11 the balanced centrifuge has this odd configuration, which
may not seem balanced.

Figure 1: 11 tubes

1

https://www.youtube.com/watch?v=7DHE8RnsCQ8

Solutions like this one are due to the overlap problem. When we are adding
configurations into the same centrifuge, we need to make sure that no tubes
overlap. Whenever we encounter a slot which is already occupied, we rotate
until we can insert the configuration.
In figure 1 we can see that 11 is a solution since 11 = 3 + 4 × 2. To ’compute’
the solution, first we insert the 3 balanced blue tubes that form an equilateral
triangle. Next we insert 4 times the 2 red tubes, which are placed on opposite
sides, by rotating to the next slot each time. Until the last 2 tubes are inserted,
we encounter no overlap but for the last 2 tubes we see that the slot is free but
the opposite slot is occupied, so we have to rotate one time.

In section 3, we will introduce a sequence representing the cardinality of the
set of solutions Sn for n ∈ N. This sequence is the main result and has a list of
interesting properties which we will discuss in Theorem 3.7.

2 Sivek Theorem

Theorem 2.1 (Sivek Theorem). Write n = pe11 · · · perr , with pi prime and each
ei positive and let 1 ⩽ k < n − 1. Then n is k-balancing if and only if both k
and n− k are in Np1 + · · ·+ Npr

Theorem 2.1 gives us a list of different k, that are solutions for a specific
n. This can be implemented on a short python program. It can be written like
such:

1 from sympy.ntheory import primefactors

2

3 #Main Theorem

4 def centrifList(n):

5 ’’’We obtain all the k possible solutions

6 for a centrifuge n in a list’’’

7 sol1 = primefactors(n)

8 sol2 = []

9 final = []

10 while len(sol1) != len(sol2):

11 sol2 = sol1

12 for i in sol2:

13 for j in sol2:

14 if i + j < n and i + j not in sol1:

15 sol1.append(i + j)

16 sol1.sort()

17 for l in sol1:

18 if n - l in sol1:

19 final.append(l)

20 final += [0,n]

21 final.sort()

22 return final

Example 2.2. If we search all the possible k that work for a specific n = 14
we obtain: [0, 2, 4, 6, 7, 8, 10, 12, 14] as a list.

2

Remark. Theorem 2.1 helps to understand where solutions come from and
why they are a solution. Depending on the relation between n and k, we can
determine whether the couple (n, k) forms a solution for a fixed n. For smaller
values of n, there are 3 cases that can appear. (1) and (2) have been proved by
Gary Sivek in [1] and (3) is a result dating back to [3].

(1) If gcd(n,k) > 1, then n is k-balancing.

(2) If n = pq with p, q two primes, then k = is either a multiple of p or a
multiple of q

(3) If gcd(p, q) = 1 and k ⩾ (p− 1)(q − 1) then k ∈ Np+ Nq

These cases are implemented in the python program.

Example 2.3. We can illustrate how the theorem works with an example.

1. Let n = 24, the example from before. Here are two pictures of balanced
centrifuges.

Figure 2
8 tubes

Figure 3
11 tubes

For k = 8, just by looking at the figure 2 the centrifuge looks clearly
balanced. We have:

k = 8 = 4× 2 = 2 + 2 + 2 + 2

n− k = 16 = 2× 5 + 2× 3 = 5 + 5 + 3 + 3

So k, n− k ∈ Np1 + · · ·+ Npr.
For k = 11 one might think that the centrifuge is not balanced. In fact,
we have:

k = 11 = 3 + 4× 2 = 3 + 2 + 2 + 2 + 2

n− k = 13 = 2× 5 + 3 = 5 + 5 + 3

Again k, n− k ∈ Np1 + · · ·+ Npr and by Theorem 2.1 both 8 and 11 are
balanced configurations.

3

2. Now let n = 45 and k = 19.

Figure 4: 19 tubes

At first sight the centrifuge may seem to be unbalanced, but in fact:

k = 19 = 2× 5 + 3× 3 = 5 + 5 + 3 + 3 + 3

We managed to express 19 as a linear combination of prime factors of n
which means that the centrifuge is balanced.

We can then write a code that draws a specific solution for a given n and k
as such:

1 import matplotlib.pyplot as plt

2 import numpy as np

3 import math

4 import itertools

5 from sympy.ntheory import primefactors

6 import sympy

7

8 def valueB(k, p1, p2):

9 ’’’Finds the value of b for k = ap + bq’’’

10 count = 0

11 while k % p1 != 0 :

12 k = k - p2

13 count += 1

14 return count

15

16 def valueA(k, p1, p2 , b):

17 ’’’Finds the value of a for k = ap + bq’’’

18 return int((k - p2 * b) / p1)

19

20 def centrifListCoef(n):

21 ’’’Gives a list of tuples (k, coef) with k beeing a solution

for the

22 Theorem 2.1 and coef a list of primes coefficient for k’’’

23 prim = primefactors(n)

24 sol1 = []

25 sol2 = []

26 final = []

4

27 lim2PSum = (prim [0] - 1)*(prim [1] - 1)

28 for i in range(0, len(prim)):

29 coef = [0]* len(prim)

30 coef[i] += 1

31 sol1 += [(prim[i], coef)]

32 while len(sol1) != len(sol2):

33 sol2 = list(sol1)

34 for i in sol2:

35 for j in range(0, len(prim)):

36 ksol = []

37 for g in sol1:

38 ksol.append(g[0])

39 sumij = int(i[0] + prim[j])

40 if sumij < n and sumij not in ksol:

41 if sumij < lim2PSum:

42 coef = list(i[1])

43 coef[j] += 1

44 else:

45 b = valueB(sumij , prim[0], prim [1])

46 a = valueA(sumij , prim[0], prim[1], b)

47 coef = [a, b]+[0]*(len(prim) -2)

48 sol1.append ((sumij , coef))

49 sol1.sort()

50 for l in sol1:

51 if n - int(l[0]) in ksol:

52 final.append(l)

53 final += [(0 ,[0]* len(prim)),(n,[int(n/prim [0])]+[0]*(len(prim)

-1))]

54 final.sort()

55 return final

56

57 def draw(m, color , theta , ax):

58 ’’’Draws roots of unity m starting at angle theta’’’

59 theta = theta + np.linspace(0, 2 * np.pi, m + 1)

60 r = 2

61 a = r * np.cos(theta)

62 b = r * np.sin(theta)

63 ax.scatter(a, b, s=100, c=color)

64 ax.scatter(0, 0, s=50, c=’black ’)

65

66 def moduloList(num , add , ran):

67 ’’’Gives a list of numbers that represents the space the

solution occupies ’’’

68 modulo = []

69 for i in range(0, ran - 1):

70 if ((i - add) % num) == 0:

71 modulo.append(i)

72 return modulo

73

74 def compModulo(li1 , li2):

75 ’’’Checks if the two solutions doesn’t overlap ’’’

76 count = 0

77 for i in li1:

78 for j in li2:

79 if i == j:

80 count += 1

81 return (count != 0)

5

82

83 def drawP(n, prim , coef , angle , color , ax):

84 ’’’Draws roots of unity for given primes and given amount ’’’

85 spotsTaken = []

86 coef.reverse ()

87 prim.reverse ()

88 for i in range(0, len(coef)):

89 jump = 0

90 pickColor = i % 4

91 for j in range(0, coef[i]):

92 spotsWants = moduloList(int(n/prim[i]), j + jump , n)

93 while compModulo(spotsTaken , spotsWants):

94 jump += 1

95 spotsWants = moduloList(int(n/prim[i]), j + jump , n

)

96 spotsTaken = spotsTaken + spotsWants

97 draw(prim[i], color[pickColor], (j + jump) * angle , ax)

98

99 def findPrime2(li):

100 ’’’finds the second smallest prime dividing n’’’

101 li.pop(1)

102 li.pop(0)

103 for i in li:

104 if sympy.isprime(i):

105 p = i

106 break

107 return p

108

109 def drawSolution(n, k, ax):

110 ’’’Draws the solution for a balanced centrifuge if it exsists ’’

’

111 gcd = math.gcd(n, k)

112 angle = (2 * np.pi) / n

113 color = [’b’, ’r’, ’g’, ’y’]

114 if gcd > 1:

115 steps = int(k / gcd)

116 for i in range(0, steps):

117 pickColor = i % 4

118 draw(gcd , color[pickColor], i * angle , ax)

119 else:

120 solC = centrifListCoef(n)

121 solK = []

122 for g in solC:

123 solK.append(g[0])

124 prim = primefactors(n)

125 if k in solK:

126 if k > n / 2:

127 k = n - k

128 draw(n, ’red’, 0)

129 color = [’lightgray ’,’lightgray ’, ’lightgray ’,’

lightgray ’]

130 else:

131 color = color

132 p1 = prim [0]

133 p2 = prim [1]

134 pos = [x for x, y in enumerate(solC) if y[0] == k]

135 pos = pos [0]

6

136 coef = solC[pos][1]

137 drawP(n, prim , coef , angle , color , ax)

138 else:

139 print(’There is no solution ’)

140

141 def menu():

142 n = int(input("Enter the number of buckets in the centrifuge:")

)

143 k = int(input("Number of tubes:"))

144 fig , ax = plt.subplots ()

145 draw(n, ’lightgray ’, 0, ax)

146 drawSolution(n, k, ax)

147 ax.set_aspect(’equal’, ’box’)

148 plt.axis(’off’)

149 plt.show()

150

151 menu()

3 Sequence of solutions

For every n, we have a set of solutions Sn with cardinality < n. Then the #Sn

is the number of distinct k that we can choose to balance a n-centrifuge. Note
that 0 and n are also a solution although we will not consider them.

Definition 3.1. Let (sn)n∈N be a sequence with values in the natural numbers,
n ⩾ 1. Sn := {0 < k < n : n is k-balancing} is the set of all balanced solutions.
The sequence is defined by:

sn = #Sn

By definition s1 = 0

Example 3.2. The first 24 elements in the sequence are:

0, 0, 0, 1, 0, 3, 0, 3, 2, 5, 0, 9, 0, 7, 6, 7, 0, 15, 0, 15, 8, 11, 0, 21, ...

Lemma 3.3. Let n ⩾ 5 such that n is not prime. Then sn ⩾ 2

Proof. Let n ⩾ 5 and p be a prime such that p|n. In the case where n is even
choose p = 2. We know n−p ̸= p since n ⩾ 5 so p, n−p ∈ Sn ⇒ sn ⩾ 2. Suppose
n is not even, if n−p = p ⇒ n = 2p but n is not even so n−p ̸= p ⇒ sn ⩾ 2

Lemma 3.4. Let x = ab if a ⩽ b ⇒ b ⩾
√
x for a, b ∈ R⩾0.

Proof. Suppose b ⩾ a ⇔
√
b ⩾

√
a ⇔ b ⩾

√
a
√
b =

√
x

Proposition 3.5. Let (sn)n∈N be defined as above.

(a) sn = 0 ⇐⇒ n is a prime number

(b) sn = 1 ⇐⇒ n = 4

7

Proof. (a) Let n be a prime number. If n is k-balancing then k ∈ nN ⇒ k ⩾ n.
So Sn = ∅ thus sn = 0
If n is not prime, then n = pa where a = n

p and p is a prime divisor of n and if

we take k = p we have that gcd(n, k) > 1 so by Sivek n is k-balancing and we
have k ∈ Sn ⇒ sn ̸= 0
(b) Suppose that sn = 1. If n = 2 or n = 3 then by (a) sn = 0. Since sn < 2 by
Lemma 3.3 n < 5 so the only possible value is n = 4.
If n = 4 ⇒ Sn = {2} ⇒ sn = 1

Example 3.6. We can observe in figure 5 that the graph of the sequence follows
specific patterns if n is not a prime number and also that the sequence (sn)n∈N
is bounded and has several properties that we will discuss in Theorem 3.7.

Figure 5: n = 200

Remark. The symmetry of Sivek theorem and Euler’s totient function in [4]
will be useful to us in Theorem 3.7.

(1) We know that the sum of all the nth roots of unity is 0 and since we
do not allow repetition of roots, if a subset of the nth roots of unity has
vanishing sum so does its complement. Thus if n is k-balancing and k ∈
Np1 + · · ·+ Npr then by symmetry so is n− k.

(2) Euler’s totient function is defined by:

ϕ(n) = n
∏
pi|n

(1− 1

pi
)

Where pi are prime factors of n and 1 ⩽ i ⩽ r. This function counts the
positive integers that are relatively prime to n.
In fact: ϕ(n) = #{1 ⩽ k ⩽ n| gcd(n, k) = 1}.

8

Theorem 3.7. Let n be non-prime. The sequence (sn)n∈N has the following
properties:

(i) (a) ∀n ⩾ 2 we have sn ⩽ n− 3

(b) sn = n− 3 ⇔ 6|n

(ii) ∀n ⩾ 3 we have s2n ⩾ n− 1

(iii) ∀p with p prime, ∀r ⩾ 1 then spr = pr−1 − 1

(iv) ∀n ⩾ 1 we have sn ⩾
√
n− 1

(v) If n = p2 for p prime ⇒ sn =
√
n− 1

(vi) limn→∞ sn = +∞
Proof. (i) (a) Let n = pe11 · · · perr , we have that 1 ⩽ sn ⩽ n − 1. For n to be
1-balancing, 1 and n − 1 have to be in Np1 + · · · + Npr. We can observe that
1 ̸= p1a1+· · ·+prar for a1, · · · , ar ∈ N since 1 < p1 < p2 < · · · < pr and at least
one ai ̸= 0. Because n− 1 ∈ Np1 + · · ·+ Npr is a necessary condition for Sivek
theorem to hold, we can conclude by symmetry that 1 /∈ Sn and n − 1 /∈ Sn.
This means that ∀n ⩾ 2 we get sn ⩽ (n− 1)− 2 = n− 3.
(b) ⇒ Let us suppose that n ⩾ 5 then by Lemma 3.3 we know that sn ⩾ 2. If
sn = n − 3 this means that k ∈ Sn for 2 ⩽ k ⩽ n − 2 so in particular 2 ∈ Sn

and 3 ∈ Sn. By Sivek we know that 2 and 3 are in Np1 + · · · + Npr as well as
n − 2 and n − 3. Since 2 is the smallest prime, we cannot write 2 as a sum of
prime divisors of n that are different from 2. Thus 2 must be one of the prime
divisors of n.
Similar, we have that 3 = 2 + 1 where 2 is prime but 1 is not prime, again we
cannot write 3 as a sum of prime divisors of n that are different from 3. Thus
3 is also a prime divisor of n. Since 2|n and 3|n ⇒ 6|n.
⇐ Let 2 ⩽ k ⩽ n − 2, if k is even then k ∈ 2N. Since 3 is the smallest odd
number, if k is odd then k ∈ 3+2N. Thus k ∈ 2N+3N and by symetry of Sivek
theorem, for n to be k-balancing, we have that n− k ∈ 2N+ 3N.
(ii) If 2 ⩽ k ⩽ 2n−2 is even then for k′ ∈ N, 2n−k = 2(n−k′) so k, 2n−k ∈ N2
and by Sivek 2n is k-balancing. Thus all the even k between 2 and 2n − 2 are
in S2n and we must have s2n ⩾ n− 1 since there are 2n−2

2 possible even values
for k.
(iii) Let p be prime, r ⩾ 1 and 1 ⩽ k ⩽ pr − 1.

If pr is k-balancing then k, pr − k ∈ pN so in particular sn ⩾ pr

p − 1 = pr−1 − 1.

We need to subtract 1 since n = pr /∈ Sn. Furthermore, since k ⩽ pr − 1 then
Sn contains exactly the number of multiples of p for 1 ⩽ k ⩽ pr − 1. Using
Euler’s totient function we can compute sn the following way:

ϕ(pr) = pr(1− 1

p
) = pr − pr−1

ϕ(pr) = #{1 ⩽ k ⩽ pr| gcd(pr, k) = 1} and since we want only the multiples of
p we have:

sn = pr − ϕ(pr)− 1 = pr − pr + pr−1 − 1 = pr−1 − 1

9

(iv) Let π(n) be the smallest prime dividing n.
c× π(n) ∈ Sn for 1 ⩽ c ⩽ n

π(n) − 1. Thus sn ⩾ n
π(n) − 1

We have that n = ab for a = π(n) and b = n
π(n) and since a ⩽ b by Lemma 3.3.

b ⩾
√
n thus sn ⩾

√
n− 1

(v) This is a special case of (iii)
(vi) By point (iv) sn −−−−→

n→∞
∞

On a short program using the Main Theorem, we can compute the sequence:

1 # s_n = #{0<k<n : the n-centrifuge can balance k tubes}

2 def sequenceCentrif(n):

3 seq = [0,0]

4 for i in range(2, n+1):

5 seq.append(len(centrifList(i))- 2)

6 return(seq)

Example 3.8. Without the prime numbers, we can plot the graph for n = 1000
as such in blue with upper bound n−3 (green) and lower bound

√
n−1 (orange):

4 Multiple centrifuges

In this section we want to study if it is possible to find a balanced configuration
for multiple unbalanced centrifuges that are placed on top of another. Although
we will not prove anything rigorously, we want to give an idea of what the prob-
lem looks like. A centrifuge is not balanced if n is not k-balancing, in other

10

words if the center of gravity of the tubes does not coincide with the center of
gravity of the centrifuge. In that case the tubes are not regularly arranged in
the centrifuge.
The question is the following: given m centrifuges Ci for 1 ⩽ i ⩽ m with differ-
ent radius ri ∈ R, such that all Ci are centered at 0. Can we find ki where ki is
the number of tubes inserted in centrifuge Ci such that Ci is not ki-balancing
but

⋃
Ci is balanced.

In order for this to work, all the centrifuges need to have the same number of
slots n and 1 ⩽ ki ⩽ n. We want to say that one or more solutions exist.

Approach

In the case where a centrifuge is not balanced, the center of gravity of the tubes
does not coincide with the one of the centrifuge. If we insert a unbalanced con-
figuration of tubes, the sum of the roots of unity corresponding to the occupied
spots is not 0. We can look at this problem in two different ways:

• By Sivek we know how to find all k which can balance a centrifuge. So
in particular we are able to find all k which balance a specific centrifuge
Ci and adding balanced configurations on top of another would still be
balanced. If we consider unbalanced configurations we cannot say much.

• Another approach consists in considering the center of gravity of the tubes
ki for 1 ⩽ i ⩽ m, denoted gi respectively and check if:

m∑
i=1

gi = 0

If it is the case then
⋃

Ci is balanced and if not, one might have to rotate
one or more of the Ci in order find the right configuration. Knowing which
rotation should be applied would be based on finding the centers of gravity
that cancel each other.

The second approach is better suited in this case because we cannot use Sivek.
The center of gravity changes depending on how the tubes are inserted in the
different centrifuges. It may be sufficient to rotate the right configurations to
get a balanced configuration with the tubes which are already inserted. So the
goal is to find different configurations for the centrifuges which are not balanced
so that the center of gravity gi ̸= 0. For all the Ci to be balanced we need to
find centers of gravity which balance each other out.

Remark. Let R be the set of all the nth roots of unity. We define ζn = e2πi/n

and (ζn)
ri = eri2πi/n ∈ R with si being the spots where the ki tubes are inserted

for 1 ⩽ ri ⩽ n.
The center of gravity gi of ki inserted tubes is :

gi =

∑ki

i=1 ζ
si
n

k

11

2 unbalanced centrifuges

In order to generalize this result for multiple unbalanced centrifuges, we want
to look at the case with only 2 unbalanced centrifuges and try to understand
how to find a solution.
Here are two pictures of unbalanced centrifuges, for n = 18 in figure 6 and for
n = 35 in figure 7.

Figure 6
7 tubes

Figure 7
13 tubes

Example

Let C1 and C2 be two centrifuges, both with n slots. Centrifuge C1 has a radius
of 1 and centrifuge C2 has radius 2. We want to find k1 tubes inserted in C1 and
k2 tubes inserted in C2 and let g1 and g2 be their respective center of gravity,
it is possible to find balanced configurations for C1 ∪C2 if the tubes are placed
such that:

g1 + g2 = 0 and g1 ̸= g2 ̸= 0

We might have to rotate the k1 or k2 tubes for the sum of their respective center
of gravity to vanish.

m unbalanced centrifuges

Let m ∈ N be the number of centrifuges and ki the number of tubes inserted
in the centrifuge Ci with respective center of gravity gi for 1 ⩽ i ⩽ m. It is
possible to balance the m centrifuges if we can find

∑m
i=1 gi = 0.

12

References

[1] Gary Sivec, On vanishing sums of distinct roots of unity, Integer 10 (2010),
365-368

[2] Lam, T. Y. and Leung, K. H., On vanishing sums of roots of unity, J. Algebra
224 (2000), 91–109

[3] Sylvester, J. J., Question 7382, Mathematical Questions from the Educa-
tional Times 41 (1884)

[4] Euler’s totient function, LATEX: Computing Euler’s totient func-
tion, Wikipedia https://en.wikipedia.org/wiki/Euler%27s_totient_

function#Computing_Euler’s_totient_function

[5] Holly Krieger, The Centrifuge Problem - Numberphile, YouTube (2018)
https://www.youtube.com/watch?v=7DHE8RnsCQ8

13

https://en.wikipedia.org/wiki/Euler%27s_totient_function#Computing_Euler's_totient_function
https://en.wikipedia.org/wiki/Euler%27s_totient_function#Computing_Euler's_totient_function
https://www.youtube.com/watch?v=7DHE8RnsCQ8

	Introduction
	Sivek Theorem
	Sequence of solutions
	Multiple centrifuges

