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1 Motivation

It is easy to know if a number is divisible by 2, by 3, by 5 or also by 10. There exist
divisibility criteria with respect to different numbers, for example:

• A number is divisible by 2 if and only if its last digit is even. For instance,
4,6,8,10,12.345.678 are divisible by 2.

• A number is divisible by 3 if the sum of its digits is divisible by 3.

Example. 12 : 1+2 = 3 thus 12 is divisible by 3.
1.273.843.095 : 1+ 2+ 7+ 3+ 8+ 4+ 3+ 0+ 9+ 5 = 42, and 4+ 2 = 6 thus
1.273.843.095 is divisible by3.

• A number is divisible by 5 if and only if its last digit is 0.

Example. 10,285,15.938.215 are divisible by 5.

• A number is divisible by 10 if and only if its last digit is 0.

Example. 40,970,13.375.910 are divisible by 10.

Although it is quite easy to describe and understand the divisibility rules for some
numbers, or deduce them from other number’s divisibility rules, there are way many
numbers whose divisibility rules aren’t as easy and require much more complicated
calculation.

Example. A number divisible by 6 if and only if it is divisible by 2 and by 3.
To know if a number is divisible by 13, we have to do some calculations: Let’s suppose
we want to know if the number anan−1...a0 where ai is the ith digit of the number is
divisible by 13. This number is divisible by 13 if and only if anan−1...a1 + 4× a0 is
divisible by 13. Then we repeat this transformation until we obtain a number in the
range from 1 to 52 (= 13×4). The number anan−1...a0 is divisible by 13 if and only if
the result after the calculation is 13,26,39. For example: 142.389 : 14.238+4×9 =

14.274, 1.427+ 4× 4 = 1.443, 144+ 4× 3 = 156, 15+ 4× 6 = 39. Thus 142.389
is divisible by 13. Actually, it is possible to perform the division by 13 and check
whether the remainder is 0. However the above criterion for 13 will be a special case
of divisibility criteria that become very understandable when working with divisibility
graphs, that are the objects of this work.
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2 Divisibility

2.1 Notation

Notation. If x,y are integers, then we write x | y (respectively, x ∤ y) if x divides (re-
spectively, does not divide) y.

Definition. We say that ”x is congruent to y modulo n” or ”x and y are congruent
modulo n” if and only if x and y have the same remainder in the euclidean division by
n.

Notation. We write:

x ≡ y mod n

Remark. In general, we have 0 < y < n such that y is the remainder of the euclidean
division of x by n.

2.2 Testing divisibility in base b

Fix some natural number b ≥ 2. Writing a positive integer number a in the numeral
base b amounts to writing a = ∑

k
i=0 cibi where ci ∈ {0,1, . . . ,b− 1} are the digits in

base b and the first digit ck is non-zero. We want to test whether some integer n ≥ 2
divides a:

• If b ≡ 0 mod n, we may replace a by c0 (as a and its last digit leave the same
remainder after division by n).

• If b ≡ 1 mod n, we may replace a by the sum of its digits in base b, namely

∑
k
i=0 ci (as a and the sum of its digits leave the same remainder after division by

n).

• If b ≡−1 mod n, we may similarly replace a by the alternating sum of its digits
in base b, namely ∑

k
i=0 ci(−1)i.

• If b ≡ 0 mod n, calling β the remainder of b after division by n (thus β ̸= 0),
then we may replace a by ∑

k
i=0 γiβ

i.

Moreover, to test whether n divides a, we could suppose that n is a prime power. Indeed,
if n = ∏ℓ|n ℓ

vℓ(n) is the prime decomposition of n, then we may equivalently require that
ℓvℓ(n) divides a for all prime divisors ℓ of n.
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3 Graph’s Theory

3.1 Terminology

• Order of a Graph : the order of a graph is the number of vertices in the graph

• Oriented Chain : an oriented chain is a finite sequence of vertices linked to-
gether by oriented edges

• Eulerian Chain : an Eulerian chain is a simple oriented chain passing through
all the edges of a graph

• Cycle : a cycle is a chain that returns to its starting point

• Eulerian Cycle : an Eulerian cycle is a simple cycle passing through all the
edges of a graph only once

• Connected Graph : a graph is connected if for any pair of vertices (x,y), there
is an oriented chain with first term x and last term y

3.2 Definitions

Definition. Graphs can be classified amongst to categories : oriented graphs, where
the edges have no orientations and non-oriented graphs, where the edges are oriented
by arrows. Both kinds of graphs have degrees, which are computed in two different
ways. Degrees represent the number of edges connecting a vertex.

Definition. In an oriented graph, we also distinguish indegrees from outdegrees. The
indegree of a vertex, denoted by d−(Vi), is the number of edges that go toward this
vertex, whilst the outdegree, denoted as d+(Vi), is the number of edges that leave the
vertex. In an oriented graph, the set of all the incoming edges is denoted by E+

v and the
set of all the outgoing edges is denoted by E−

v .

Example. Divisibility graphs will be in particular oriented graphs, here is an example:
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Divisibility graph of 7

3.3 General properties of graphs

Here are some properties that come with the definitions seen above about both types
of graphs.

For a non-oriented graph G with |E| edges and |V | vertices,

k

∑
i=1

d(Vi) = 2|E|

which means that the sum of the degrees of the vertices of a graph is equal to twice the
number of edges of this graph.

For an oriented graph with |E| edges and |V | vertices, we have

k

∑
i=1

d+(Vi) = |E|= d−(Vi)

Corollary. In a non-oriented graph, the number of vertices with odd degrees is even.

Corollary. In a non-oriented graph, d(Vi) = k ⇒ k|V |= 2|E|

Corollary. In a non-oriented graph, d(Vi)≥ k ⇒ k|V | ≤ 2|E|.

Corollary. In a non-oriented graph, d(Vi)≤ k ⇒ k|V | ≥ 2|E|.

,

4 Divisibility Graphs

4.1 Divisibility graph’s principle

We now define divisibility graphs which will be useful to understand divisibility
criteria with reference to any positive integer n in basis 10 but also in any numeral
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basis b ≥ 2.

Definition. The divisibility graph of n in basis b, which we denote by Db,n = (Xn,An)

is an oriented graph, with Xn = {0,1, ...,n−1} the vertices and An the arrows.
We can define the arrows An as the union of the multiplicative and the additive arrows.
The additive arrows A(+)

n = {(i, j)∈Db,n | j = i+1} represent the operation +1 mod n

and the multiplicative arrows A(×)
n = {(i, j) ∈ Db,n | b× i ≡ j mod n} represent the

operation ×b mod n.
From now on we consider the basis to be b = 10.

4.1.1 An example: the divisibility graph of 7

First let’s look at the graph of 7 to understand the general principle:

Divisibility graph of 7

Two types of arrows can be recognised in the divisibility graph of 7. The black
arrows A(+)

n , representing the operation: +1 mod 7, and the purple arrows A(×)
n , rep-

resenting the operation: ×10 mod 7.

How does it work?

Let’s suppose we want to determine whether a number a = anan−1...a0 where ai

is the ith digit of a is divisible by 7 or not. We first start our walk at the vertex 0 and
move an black arrows forward to another vertex, from which we take the one purple
outgoing arrow, which will bring us to a next vertex. We repeat this process for an−1

then an−2, etc... until a1. Finally for a0, we simply follow a0 black arrows. If we land
on the vertex 0, a is divisible by 7, otherwise it’s not.

Why does it work?

Simply because every number can be decomposed as:

a =
n

∑
i=0

ai(10)i
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4.1.2 Generalisation: the divisibility graph of k

Recall that every positive integer a = anan−1...a0 where ai is the ith digit of a in
base 10, and where an ̸= 0. As every number a can be decomposed as

a =
n

∑
i=0

ai(10)i

where ai is the ith digit of a. We repeat the following algorithm:

• Fix r1 = remainder of Euclid’s division of an by k

• While 1 ≤ i < n, do

1. Fix r2 = remainder of Euclid’s division of r1 ×10 mod k by k

2. Fix r1 = remainder of Euclid’s division of r2 +an−1 by k

3. Fix i = i−1

• r0 = Euclid’s division of a1 +a0 by k

If r0 = 0 then a if divisible by k, if r0 is different from 0, then a is not divisible by 0.

4.2 Testing divisibility with a walk on a divisibility graph

Write a non-negative integer a = ∑
k
i=0 aibi in base b. To test whether n divides

a for some integer n ≥ 2, consider the following walk on the divisibility graph Db,n.
Start from the vertex 0, and take ak times an additive edge A(+)

n . If k > 0, then for
i = 0,1, . . . ,k − 1 do the following: take the outgoing multiplicative edge A(×)

n from
the vertex on which you have landed, then walk ai times on an additive edge. We
have divisibility if and only if this walk ends at the vertex 0. The proof of the validity
of the divisibility test amounts to considering the modulo n version of the following
statement:

Lemma. Any non-negative integer a can be obtained from 0 (in a unique way) by alter-

nating the following two operations: adding some number from 0 to b−1; multiplying

by b. The numbers to be added are precisely the digits of a in base b, from left to right.

Proof. This is clear for the numbers up to b−1, with only one digit in base b. If a ≥ b,
then divide a by b, with quotient q > 0 and remainder r. Since a = bq+ r, the last
operations to be done are multiplying q by b and adding r. We conclude by induction,
as q has one digit less than a.

7



4.3 Edges of divisibility graphs

Some multiplicative edges of Db,n could be a loop, the reverse of an additive edge,
or an additive edge. More precisely, we have:

Proposition. Let n,b ∈ N, the divisibility graph Db,n has the following property:

(a,a) ∈ A(×)
n ⇔ a ≡ ba mod n

Proof. This means that n | a(b−1) or in other words, a is a multiple of n/gcd(n,b−1).
So we always have a loop at 0, and this is the only loop if b−1 is a unit. The number
of loops is always equal to gcd(b−1,n).

Proposition. We similarly have:

(a,a) ∈ A(+)
n ⇔ a+1 ≡ ba mod n

Proof. The congruence in the statement is equivalent to a(b − 1) ≡ 1 mod n. This
happens if and only if b− 1 is a unit modulo n and a is its inverse. Similarly, a mul-
tiplicative edge is the reverse of an additive edge if and only if a− 1 ≡ ba mod n, i.e.
b−1 is a unit and −a is its inverse.

Proposition. With the above notation, we have

#A(×)
n =

{
2n if b−1 is a zero divisor

2n−1 if b−1 is a unit

as we do not count the multiplicative edges that are additive edges.

Proof. If b−1 is a zero divisor, then the number of edges exiting the n-gon (excluding
the loops, the additive edges and their reverses) is n−3. If b−1 is a unit, then b−1 and
n are coprime, hence their gcd isequaltooneandthenumbero f loopsinthegraphwillbeequaltoone,andwillbelocatedatthevertex0.
In some cases it could be convenient to count edges with multiplicities, namely to as-
sign multiplicity 2 to an edge which is an additive edge and a multiplicative edge.

4.4 Adjacency Matrix

Definition. Let G = (Xn,An) be an oriented graph, with Xn = {0,1, ...,n− 1} and An

the set of oriented matrix. The adjacency matrix of the graph G is the matrix M(G) ∈

8



Matn×n(R) whose coefficient mi, j are defined by the following rule:

mi, j =

{
1 if (xi,x j) ∈ A

0 if (xi,x j) /∈ A

Proposition. We have that for each i = {1,2, ...,n},

d+(i) =
n

∑
j=1

mi, j

d−(i) =
n

∑
j=1

m j,i

∑
mi, j

=
n

∑
i=1

d+(i)+
n

∑
i=1

d−(i) = |A|

where d+(i) is the number of arrows of initial vertices i (going from i), and d−(i) is the

number of arrows of final vertices i (coming to i).

Moreover the trace of the matrix M(G) is equal to the number of loops in the graph

Remark. For non oriented graphs, the adjacency matrix is symmetric.

Remark. For a divisibility graph, there is the possibility that two arrows (one multi-
plicative and one additive) go from the vertices i to the vertices j (for example in the
graph of 7, two arrows go from 4 to 5), thus, to calculate the degree of each vertex, we
have to write the number of arrows for each mi, j. In other words:

mi, j = 2 ⇔ (i, j) ∈ A(×)
n ∩A(+)

n

Theorem. Let G = (X ,A) be an oriented graph, with X = {x1,x2, ...,xn}, and consider

its adjacency matrix M = (mi, j). For all positive integer k, we write Mk = (m(k)
i, j ). Then

(m(k)
i, j ) is equal to the number of paths of length k from the vertex xi to the vertex x j.

Proof. Eric Sigward, Introduction à la théorie des graphes, Académie Nancy-Metz,
Mars 2002

4.5 Examples of divisibility graphs

Here are some examples of divisibility graphs with their adjacency matrix.

1. The divisibility graph of 3
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Divisibility graph of 3

and its adjacency matrix

M3 =

1 1 0
0 1 1
1 0 1


We can see that Tr(M3) = 3 so that represents the 3 loops of the graph and for
all i = {1,2,3} we have that d+(xi) = 2, d−(xi) = 2, d− being the outgoing
degree and d+ the ingoing degree.

2. The divisibility graph of 7

Divisibility graph of 7

and its adjacency matrix

M7 =



1 1 0 0 0 0 0
0 0 1 1 0 0 0
0 0 0 1 0 0 1
0 0 1 0 1 0 0
0 0 0 0 0 2 0
0 1 0 0 0 0 1
1 0 0 0 1 0 0


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3. The divisibility graph of 11

Divisibility graph of 11

and its adjacency matrix

M11 =



1 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 2 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 1 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0 0 0


4. The divisibility graph of 13
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Divisibility graph of 13

and its adjacency matrix

M13 =



1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0 0 0 0 0


Now let’s look at the divisibility graph in another base:

• D3,6
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Divisibility graph of 6 in base 3

• D5,7

Divisibility graph of 7 in base 5
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• D5,11

Divisibility graph of 11 in base 5

Remark. When b divides n, then it is possible to draw a divisibility graph while writing
all the vertices in base b : for example the graph D3,6.
However for other numbers it is not possible : for example the graph of 7 in base 5:
(7)10 = (12)5 and (5)10 = (10)5, then the remainder of the euclidean division of 2×10
by 12 is equal to 8 which is not a digit in base 5. Thus if we want to draw the divisibility
graph of n in base b with b ∤ n we keep the number in base 10 and we calculate the rest
of the euclidean division of k×b (k ∈ N|k < n by n to draw the multiplicative arrows.
But to verify if a number is divisible by n, we have to use its form in base b.

4.6 Quotient Graphs

While computing different graphs, we noticed that for the graph of a non prime
integer, we could see the pattern of the graphs of its divisors. Let’s take the example of
the divisibility graph of 12:
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Divisibility graph of 12

The divisors of 12 are 2,3,4 and 6. Let’s compare the graphs of the divisors of 12
with its divisibility graph.

Divisibility graph of 2 Pattern of the divisibility graph of
2 in the graph of 12

Divisibility graph of 3

Pattern of the divisibility graph of
3 in the graph of 12
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Divisibility graph of 4
Pattern of the divisibility graph of
4 in the graph of 12

Divisibility graph of 6 Pattern of the divisibility graph of
6 in the graph of 12

We will now try to formulate this idea in a more precise way.

Definition (Divisibility Quotient). Let Dn = (Xn,An) be the divisibility graph of n with
Xn the set of vertices and An the set of edges and let

φ : Z/nZ → Z/mZ
x mod n 7→ x mod m

be the natural projection. The homomorphism φ is surjective, thus for all , ji ∈ Z/mZ,
there exits a,b ∈ Z/nZ such that φ(a) = i and φ(b) = j.
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We obtain the graph Dφ as follows:

Xφ = {0,1, . . . ,m−1}

(i, j) ∈ Aφ if (a,b) ∈ An

Remark. In this case: ∀k ∈ Z/nZ, we have: φ(k) = km

With k ≡ km mod m.

Theorem. Assume d|n. Then the graph Dd is a quotient of the graph Dn. Moreover, if

φ : Z/nZ→ Z/dZ denotes the natural projection, we have Dφ
∼= Dd .

Proof. Assume d|n, and let’s define the function φ : Z/nZ→ Z/dZ,x 7→ x̄, where x̄ is
the class of x.
We identify the vertices accordingly.
Now to identify the edges: suppose there is an arrow from the vertex x to the vertex y,
denoted by x ∼ y in the graph Dn. It means that 10x ≡ y mod n. This implies, working
with the class of x and y denoted respectively x and y, that 10x ≡ y mod d, so that there
exists the edge x̄ ∼ y in the graph Dφ .
But the graph of Dφ is isomorphic to the graph of Dd , thus the graph Dφ = (Xφ ,Aφ ) is
equal to the graph Dd = (Xd ,Ad).
To conclude: ∀x ∼ y ∈ Dn ⇒ x ∼ y ∈ Dd = (Xd ,Ad).

Example. Let’s take the example of the divisibility graph of 12:

1. We identify first the vertices:

• Let’s take the divisor 6:
φ6 : Z/12Z −→ Z/6Z

0,6 7−→ 0
1,7 7−→ 1
2,8 7−→ 2
3,9 7−→ 3
4,10 7−→ 4
5,11 7−→ 5

• Let’s take the divisor 4:
φ4 : Z/12Z −→ Z/4Z

0,4,8 7−→ 0
1,5,9 7−→ 1
2,6,10 7−→ 2
3,7,11 7−→ 3
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• Let’s take the divisor 3:
φ3 : Z/12Z −→ Z/3Z

0,3,6,9 7−→ 0
1,4,7,10 7−→ 1
2,5,8,11 7−→ 2

• Let’s take the divisor 2:
φ2 : Z/12Z −→ Z/2Z

0,2,4,6,8,10 7−→ 0
1,3,5,7,9,11 7−→ 1

2. Now we identify each edge (let’s do it for the graph of 6):

x ∼ y ⇒ x ∼ y ; 10× x ≡ y′ mod 6
0 ∼ 0 ⇒ 0 ∼ 0 ; 10×0 ≡ 0 mod 6
1 ∼ 10 ⇒ 1 ∼ 4 ; 10×1 ≡ 4 mod 6
2 ∼ 8 ⇒ 2 ∼ 2 ; 10×2 ≡ 2 mod 6
3 ∼ 6 ⇒ 3 ∼ 0 ; 10×3 ≡ 0 mod 6
4 ∼ 4 ⇒ 4 ∼ 4 ; 10×4 ≡ 2 mod 6
5 ∼ 2 ⇒ 5 ∼ 2 ; 10×5 ≡ 4 mod 6
6 ∼ 0 ⇒ 0 ∼ 0 ; 10×0 ≡ 0 mod 6
7 ∼ 10 ⇒ 1 ∼ 4 ; 10×1 ≡ 4 mod 6
8 ∼ 8 ⇒ 2 ∼ 2 ; 10×2 ≡ 2 mod 6
9 ∼ 6 ⇒ 3 ∼ 0 ; 10×3 ≡ 0 mod 6
10 ∼ 4 ⇒ 4 ∼ 2 ; 10×4 ≡ 2 mod 6
11 ∼ 2 ⇒ 5 ∼ 4 ; 10×5 ≡ 4 mod 6

It is clear that y = y′ so that the identification of each edge corresponds to the
edge of the graph D6.

Divisibility graph of 6 Divisibility graph of 12
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Now let’s take the example of the graph of 33:

Divisibility graph of 33

The divisors of 33 are 3 and 11.

Quotient divisibility graph of 33 by 3
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Quotient divisibility graph of 33 by 11

4.7 On the Eulerianity of divisibility graphs

An oriented graph is Eulerian if and only if at each vertex there is the same amount
of oncoming and incoming edges. At each vertex there is one incoming and one on-
coming additive edge.

If b is a unit, then there is one incoming and one outcoming multiplicative edge
at each vertex (they may coincide, e.g. consider the loop at 4 in D3,8): if we count
edges with multiplicity, then Db,n is Eulerian; if b− 1 is a unit and we do not count
multiplicative edges that are additive edges, then Db,n is not Eulerian, as the inverse
of b− 1 has 1 oncoming edge and 2 incoming edges. If b is not a unit, then Db,n is
not Eulerian because there is no incoming multiplicative edge at vertices that are units
(if we do not count multiplicative edges that are additive edges, then we need n > 2
because we cannot work with the inverse of b−1).
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D(3),8

4.8 On the planarity of divisibility graphs

Roughly speaking, a graph is planar if it can be drawn in the plane so that the
edges do not intersect (we can ignore the orientation of the edges). By the well-known
Wagner’s theorem,

Theorem. A finite graph is planar if and only if it does not contain a copy of K5 nor of

K3,3, which are the two graphs below:

Graph of K5

Graph of K3,3
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For example, D4,6 contains a copy of K3,3 while D6,15 contains a copy of K5 so
they are not planar. The graphs D0,n, D1,n, Dn−1,n are planar. The multiplicative edges
of D0,n all go to zero, so they can be drawn as diagonals of the regular n-gon, while
the multiplicative edges of D1,n are loops. The graph Dn−1,n is planar because the
multiplicative edges can be drawn very closely to diagonals of the regular n-gon that
are orthogonal to the line connecting 0 and the center of the n-gon. Example of a graph
Dn−1,n : D7,8

Divisibility graph of 8 in base 7

If n is even, the graphs Dn/2,n and Dn/2−1,n are planar. For Dn/2,n, the multiplicative
edges go to 0 or to n/2: the former can be drawn as diagonals of the regular n-gon,
while the latter can be drawn outside of the polygon. For Dn/2−1,n the multiplicative
edges connecting vertices v and −v can be drawn as non-intersecting diagonals of the
regular n-gon, while those connecting vertices v and n/2− v can be drawn as circular
arcs outside of the polygon: these do not intersect as we can take smaller arcs for v

going from 0 to n/4 or n/4+1 respectively.

• Example of a graph Dn/2,n : D4,8
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Divisibility graph of 8 in base 4

• Example of a graph Dn/2−1,n : D3,8

Divisibility graph of 8 in base 3

Conjecture (Wolff). Suppose b ̸= 0,1,n−1,n/2,n/2−1. The divisibility graph Db,n

is not planar if n ≥ 13 is odd, or if n ≥ 16 is even.
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Divisibility graph of 14 in base 10

This graph is planar so it agrees with the conjecture of Wolff. Let’s take a look at
a graph that is non planar according to the conjecture: for example the graph of 13.
Then, we should be able to find the graph K5 or K3,3 in it.

Divisibility graph of 13 K3,3 applied to the divisibility
graph of 13

We can see that the edge (5,8) does not exists thus it is impossible for the graph
K3,3 to be a sub-graph of 13.
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Divisibility graph of 13
K5 applied to the divisibility graph
of 13

Here we can see that the ”star” has six points instead of 5. So K5 isn’t a sub-graph
of D13.

Divisibility graph of 32 in base 10

This graph is supposed to be non-planar according to the conjecture of Vincent
Wolff, but the graphs K5 or K3,3 don’t seem to appear in it, which would suggest that the
conjecture has to be slightly modified, since non-planar graph are supposed to contain
K5 or K3,3. Notice that the conjecture does not concern the graph D10,14, which is
planar and indeed does not contain neither K5 nor K3,3.
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5 More on the Graph’s Theory

5.1 Symmetries

Consider the graph Db,n as not oriented, and draw it as a geometric figure, recalling
that we place the vertices at a regular n-gon. More precisely, the edges that are not
loops are segments connecting vertices, while the loops are small circles around the
vertices. Then we may ask whether Db,n is symmetric at the line Lz through a vertex z

and the center of the regular n-gon. Such a symmetry swaps the vertices x and 2z− x.
For example, if n is even and z = n/2, then it swaps x and n− x: as we will see below,
Db,n is symmetric at Ln/2 .

There is no problem is swapping additive edges. The symmetry condition for the
loops is that n | a(b− 1) implies n | (2z− a)(b− 1) for every a or, in other words,
that n | 2z(b−1). Finally, we have to ensure that multiplicative edges connecting non-
consecutive vertices are also symmetric. Supposing that ba ̸= a,a+ 1,a− 1, the con-
dition for a is that b(2z−a) = 2z−ba or b(2z−ba) = 2z−a. This means n | (b−1)2z

or n | (b−1)(2z−a(b+1)).

Definition (Weak symmetry). We define the weak symmetry for a graph if there exists
for each vertex x ∼ y a vertex y ∼ x. But we do not count the loops.

Proposition. Every divisibility graph of n in base b = n−1 has weak symmetry.

Proof. We want to prove that for every arrows (i, j)∈A(×)
n , there exists an arrow ( j, i)∈

A(×)
n . First we have:

(i, j) ∈ A(×)
n ⇔ (n−1)i ≡ j mod n

⇔ (n−1)i = kn+ j k ∈ N

Thus we have

j = (n−1)i− kn

Now, we want to show that there is an arrow ( j, i):

(n−1) j = (n−1)× [(n−1)i− kn]

= (n−1)2i− (n−1)kn

= n(ni−2i− k+ kn)+ i

= pn+ i p = ni−2i− k+ kn ∈ Z
⇒ ( j, i) ∈ A(×)

n
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So the divisibility graph D(n−1),n has weak symmetry.

Example. Here are some examples:

Divisibility graph of 11 in base 10

Divisibility graph of 8 in base 7

5.2 Periodic points

Consider the multiplication by b on the vertices of Db,n, and the iterates of this map.
As the graph is finite, all vertices are pre-periodic points.

Call g∞ the limit for x → ∞ of the eventually constant sequence gcd(bx,n) and set
n∞ := n/g∞. Then the periodic points are precisely the vertices v such that gcd(v,n) is
a multiple of g∞. Indeed, the periodic points are divisible by g∞ because gcd(v,n) must
be the same for all vertices v in the orbit of a periodic point. Moreover, the multiples
of g∞ are periodic points because they are the image of Z/n∞ in Z/n and (b mod n∞)

is a unit modulo n∞.
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Thus 0 is the only periodic point if and only if g∞ = n. Moreover, all points are
periodic if and only if g∞ = 1, i.e. b is a unit.

The size of the orbit of a periodic point a is the smallest positive integer x such that
n∞ | a(bx − 1) thus it divides the size of the orbit of g∞. If b is a unit, the size of the
orbit of 1 is precisely the smallest positive integer x such that n | (bx −1): this order is
maximal when it equals ϕ(n), and in this case all units lie in one same orbit.

By fixing n and varying b, the possible values for g∞ are 2d , where d is the number
of prime divisors of n because g∞ can be obtained from n by removing all prime factors
that do not divide b. We may then characterize 2d as the different sets of periodic points
in the graph Db,n by varying b.

6 Miscellanea

6.1 Criterion for n being a prime power

In a graph, we call neighbour of a vertex v any vertex which is related to v by an
edge (the direction of the edge does not matter).

Theorem. An integer n ≥ 2 is a prime power if and only if for every 2 ≤ b < n the

divisibility graph Db,n has some vertex with at most two neighbours except possibly

itself. In other words, we want some vertex v such that the multiplicative edges starting

or ending at v are loops or additive edges or the reverse of additive edges.

Proof. Notice that an integer n ≥ 2 is a prime power if and only if for every integer
2 ≤ b < n we have that b or b−1 is a unit (because, if n has two distinct prime divisors
p and q, then the condition does not hold for example if b≡ 1 mod p and b≡ 0 mod q).
If b is a unit, we may take v = 0. If b is a zero divisor and b−1 is a unit, then we may
take as v the inverse of b−1: the multiplicative edge starting at v is an additive edge;
no multiplicative edge ends at v because b is a zero divisor and v is a unit.
Now suppose that b and b−1 are zero divisors, and in particular gcd(n,b)> 1. If v is
as requested, the multiplicative edge at v must be a loop (as no multiplicative edge is
an additive edge or its reverse) thus v ≡ bv mod n. To conclude, we find some vertex
w ̸= v such that the multiplicative edge at w ends at v, i.e. v ≡ bw mod n: we can take
any w ̸= v such that w ≡ v mod n/gcd(n,b).

6.2 Skeletons of Polyhedra

Consider a three-dimensional convex polyhedron and its skeleton, namely the graph
where vertices and (not oriented) edges are those of the polyhedron. For example, the

28



skeleton of a tetrahedron can be drawn in the plane as follows: draw the vertices of
an equilateral triangle and its middle point; draw the 6 connecting segments between
those 4 points.

Conjecture (Wolff). No divisibility graph is the skeleton of a three-dimensional con-
vex polyhedron.

A graph is 3-connected if it is connected and it is still connected by removing any
two vertices (and all edges at them). By a well-known :

Theorem (Steinitz). A graph G is the edge graph of a polyhedron if and only if G is a

simple planar graph which is 3-connected.

Notice that, if b or b− 1 are units, then Db,n is not 3-connected: if b is a unit,
then the only multiplicative edge at 0 is a loop; if b is a zero divisor and b− 1 is a
unit, then the multiplicative edge at the inverse of b− 1 is an additive edge and there
is no multiplicative edge ending at it. For example, if n is even, the graph Dn/2,n is not
3-connected (remove 0 and n/2).
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