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1 Motivation
What really appealed to us in this project was first and foremost the fact that we were learn-
ing by ourselves notions that we had never seen before in class. Some of them such as the
Euclidean Algorithm we had already seen, discussed some of its applications to real life prob-
lems, but never had we yet encountered best approximations or continued fractions, which
were key elements to the computations needed in order to model the pieces and print them
to assemble them into a planetarium. Of course what we also really liked was simply that
this project was the kind of project that we would have appreciated doing on our own, even
if it hadn’t been offered by the course, because it’s just nice to say that you printed a whole
planetarium.

2 Continued fraction

2.1 Introduction
We currently do not know precisely when continued fractions were first discovered, but math-
ematical history shows they have been used even during the first millennium. During the
VIIth century, in a work called Aryabhatiya, the technique used by Aryabhata, the author, to
produce a general solution to a linear problem, is related to continued fractions. The XVIth
and XVIIth century though, seem to be at the origin of major breakthroughs in this domain
thanks to the understanding of the euclidean algorithm, used to determine the greatest com-
mon divisor (gcd) of two integers x and y, this method of computation being quite similar
to the one of the continued fraction of x

y . The first person though to have used continued
fractions as an application to real life problems, is Christiaan Huygens in the attempt of ap-
proximating ratios for his gears in order to build his planetarium, which we will discus later
in this document.
If the notion of continued fraction is not something we have discussed in our studies until
now, it is something we have sometimes used.

Example. The number 1,3, it can also be describe as 1+ 1
3 . This is a continued fraction.

And we can develop other number in the same way.

Example. The number 0,729 is a rational number that can be written in the form 27
37 , but can

also be written as:
27
37

=
1

1+
1

2+
1

1+
1

2+
1
3

The aim of this section will now be to add further information on continued fraction
as well as give some properties that apply to this notion and an algorithm to compute the
continued fraction for a given rational number.
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2.2 The Gauss map
The Gauss Map, or also known as the continued fraction operator is defined by

T : [0,1) −→ [0,1)

x 7−→

1
x −

⌊
1
x

⌋
if x ̸= 0

0 if x = 0

We have two different cases for this function:

• 1st case : x is an irrational number so T (x) is an irrational number and by induction, so
is T n(x) ∀n ∈ N.

• 2nd case : x is a rational number so by the Divisor Algorithm of Euclid, there exists an
n such that T n(x) = 0.

2.3 Definitions
Definition. (Generalized continued fraction). A generalized continued fraction is a fraction
of the form:

x = a0 +
b1

a1 +
b2

a2 +
b3

a3 +
. . . +

bn−1

an−1 +
bn

an

where the ai and bi are complex numbers.

Example. A continued fraction of π is (formula due to Euler) :

π = 3+
12

6+
32

6+
52

6+
72

6+ . . .
.

Definition. (Simple continued fraction). A regular or simple continued fraction a is a fraction
of the form:

x = a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

an−1 +
1
an

where a0 is an integer and ai are positive integers.The continued fraction representation of x
is written x = [a0;a1,a2, · · · ,an].
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Remark. This type of continued fraction is the mainly relevant type of continued fraction
for Huygens planetarium. The fraction can also be denoted as [a0,a1, · · · ,an] where ai ∈
Z,∀i ∈ Z, and {x}= x−a0 ∈ [0,1).

Example. e can be written as a generalized continued fraction or a regular one:

e = 2+
2

3+
3

4+
4

5+
5

6+ . . .

= 1+
1

0+
1

1+
1

1+
1

2+
1

1 =
1

1+
1

4+ . . .

.

Definition. When the expression of the continued fraction contains a finite number of ai, it
is called finite. On the contrary when the expression does not contains a finite number of
ai it is called an infinite continued fraction. When the terms repeat in the expression of the
continued faction, it is called periodic.

Method. Computing a regular fraction of a finite rational number. In the case of an integer
x, we just take a0 = x and all the ai = 0. If x is not an integer, every rational number can
be written as a finite fraction. We denote the denominator by d and the numerator by n.
To compute each ai we compute the euclidean division of n by d, ai is the quotient and n
becomes d and d becomes the rest of the division.

Remark. A more detailed algorithm is given in the section ”Calculation for a Planetarium”
(5.1).

[Wik22]

2.4 Convergents and properties of a continued fraction
Definition. (Convergents of a continued fraction). The fractions pn

qn
= [a0;a1, · · · ,an] are the

convergents of the continued fraction of x where n ∈N, pn, qn ∈ Z, qn ≥ 1 and gcd(pn,qn) =
1.

[Hen06]

Proposition. 1. In order to compute pn and qn, we use the following algorithm:

p−1 = 1
p0 = a0

q−1 = 0
q0 = 1
n≥ 1
pn = pn−2 +an pn−1

qn = qn−2 +anqn−1
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2.

pn−1qn− pnqn−1 = (−1)n

3.

{x}= pn + pn−1T n(t)
qn +qn−1T n(t)

n≥ 1
{x}= x−a0

Remark. Those 3 properties are basic properties of continued fractions. T n describes the
n-th iteration of of the Gauss map.

Proof. 1. Let x be a rational number.
We define the matrices Ai such that ∀i ∈ {1, · · · ,n}:

Ai =

(
0 1
1 ai

)
.

We have :
Mn = A1 ·A2 ·A3 · · ·An.

Proposition. (Möbius transformation). If a matrix

A =

(
a b
c d

)
.

with a, b, c and d ∈ Z and det(A) = ad− bc = ±1. The we can define the Möbius
transformation:

A : R∪{∞} −→ R∪{∞} : x 7−→ ax+b
cx+d

.

Remark. Notice that for each Ai, we have that det(Ai) = 0×ai−1×1 = −1. So we
can define the Möbius transformation:

Ai(x) =
1

x+ai
.

In particular, we have:

Ai(0) =
1
ai
.

We compute now Ai−1 ·Ai(0):

Ai−1 ·Ai(0) =
(

0 1
1 ai−1

)
·
(

0 1
1 ai

)
(0) =

(
0 1
1 ai−1

)
·
(

1
ai

)
=

1
1
ai
+ai−1

=
1

ai−1 +
1
ai

.
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By iterating this process we obtain:

Mn(0) = A1 ·A2 ·A3 · · ·An(0) = a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

an−1 +
1
an

And this is the regular continued fraction of x.
Since for all i we have that Ai are matrices with integers, their product Mn is also a
matrix with only integers. We can write Mn as:

Mn =

(
un pn
vn qn

)
and thus:

Mn(0) =
(

un pn
vn qn

)
(0) =

pn

qn
.

Moreover:
Mn = A1 ·A2 ·A3 · · ·An = Mn−1 ·An.

So we have that:

Mn =

(
un−1 pn−1
vn−1 qn−1

)
·
(

0 1
1 an

)
=

(
pn−1 an pn−1 +un−1
qn−1 anqn−1 + vn−1

)
=

(
un pn
vn qn

)
.

with un = pn−1 and vn = qn−1.
And we have that for n≥ 1:

• p−1 = 1, p0 = 0 and pn = an pn−1 + pn−2

• q−1 = 0, q0 = 1 and qn = anqn−1 +qn−2.

Thus we have proven the first part of the proposition.

2.

Remark. For rational numbers, the continued fraction is finite and the last convergent
(the n-th convergent) is the rational number and thus the error is 0.

Proposition. If A and B are two square matrix of order n. Then

det(AB) = det(A)det(B).

So we have that:

det(Mn) = det(A1) ·det(A2) · · ·det(An) = (−1)n.

From this we can deduce that:

unqn− vn pn = pn−1qn− pnqn−1 = (−1)n.

Which confirmed the second part of the proposition. And we can also deduce that
gcd(pn,qn) = 1.
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3. We replace the matrix An by:

Ãn =

(
0 1
1 an = T n(x)

)
,

and we compute M̃n given by:

M̃n = A−1 ·A2 · · ·An−1 · Ãn

= Mn−1 · Ãn

=

(
pn−2 pn−1
qn−2 qn−1

)
·
(

0 1
1 an = T n(x)

)
=

(
pn pn−2 + pn−1 (an +T n(x))
qn qn−2 +qn−1 (an +T n(x))

)
=

(
pn pn−2 + pn−1an + pn−1T n(x)
qn qn−2 +qn−1an +qn−1T n(x)

)
=

(
pn pn + pn−1T n(x)
qn qn +qn−1T n(x)

)
.

And for x = 0 :

M̃n(0) =
pn + pn−1T n(x)
qn +qn−1T n(x)

.

But we have :

M̃n(0) = A−1 ·A2 · · ·An−1 · Ãn(0)

= A−1 ·A2 · · ·An−1 ·
1

an +T n(x)

= a0 +
1

a1 +
1

a2 +
1

a3 +
. . . +

1

an−1 +
1

an +T n(x)
= x,

and thus we have that:

x =
pn + pn−1T n(x)
qn +qn−1T n(x)

.

And we have proven the third part of the proposition

[Ami10]
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2.5 Margin of error
The margin of error at the i-th convergent is:∣∣∣∣x− pi

qi

∣∣∣∣ .
The greater the i, the smaller the error is. Now to compute the maximal error, we replace the
matrix An by:

Ãn =

(
0 1
1 an = T n(x)

)
,

and from the point 3) of the proposition in the previous section we have that:

x =
pn + pn−1T n(x)
qn +qn−1T n(x)

.

From that we deduce that the margin of error is given by:∣∣∣∣x− pn

qn

∣∣∣∣= ∣∣∣∣ pn + pn−1T n(x)
qn +qn−1T n(x)

− pn

qn

∣∣∣∣
=

∣∣∣∣qn pn +qn pn−1T n(x)− pnqn + pnqn−1T n(x))
qn(qn +qn−1T n(x))

∣∣∣∣
=

T n(x) |qn pn−1− pnqn−1|
q2

n(1+T n(x)qn−1
qn

)

<
1
q2

n

[Ami10]

3 Best approximation
The continued fraction can be used to approach the ratio of the orbital of the planet as did
Christiaan Huygens. In this section, we will see if the best approximation possible is the
convergents of a continued fraction.

3.1 Ostrowski representation
Definition. (Best approximation) Let x ∈R\Q and let p

q ∈Q with gcd(p,q) = 1. We say that
p
q is a best approximation to x if and only if for all r

s ∈ Q such that r
s ̸=

p
q and 0 < s < q we

have |qx− p|< |sx− r|.

Remark. From this definition we can deduce that:∣∣∣∣x− p
q

∣∣∣∣= 1
q
|qx− p|< 1

q
|sx− r|< 1

s
|sx− r|=

∣∣∣x− s
r

∣∣∣
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Theorem. (Ostrowski representation). Let [a0;a1, · · · ,an] be the continued fraction of the
irrational number x with convergents pi

qi
. For every natural number m there exists n ∈N such

that qN ≥ m < qN+1. Then there is an unique finite sequence (ci+1)i∈N such that:

m =
N

∑
i=0

ci+1 ·qi

where 
0≥ ci+1 ≥ ai+1, if i > 0
0≥ ci+1 < ai+1, if i = 0
ci = 0, if ci+1 = ai+1

3.2 Lemma’s needed for the theorem on best approximation
Lemma. Let x be an irrational number and let [a0,a1, · · · ,an] be its continued fraction. We
denote the convergents by pi

qi
for each i ∈ {1, · · · ,n}. Let m be a positive integer. The Os-

trowski representation of m is given by m = ∑
N
i=0 ci+1 ·qi, where ci+1 = 0 for 0≥ i < n≥ N.

Then

|(cn+1−1)Dn−Dn+1|<

∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣< |cn+1Dn−Dn+1|

where
Di = qix− pi.

Proof. To prove this lemma, there are four cases to be examined:

1. Dn > 0 and DN > 0

2. Dn > 0 and DN < 0

3. Dn < 0 and DN > 0

4. Dn < 0 and DN < 0

But this proof is quite long and complicated as it needs theorems we haven’t given here. For
the complete proof we looked at [Bos+18] section 2.1 Lemma 6.

Lemma. Let x be an irrational number and let [a0,a1, · · · ,an] be its continued fraction. We
denote the convergents by pi

qi
for each i ∈ {1, · · · ,n}. Let m be a positive integer. The Os-

trowski representation of m is given by m = ∑
N
i=0 ci+1 ·qi, where ci+1 = 0 for 0≥ i < n≥ N.

Then

1. if c1 = c2 = 0 the ∥mt∥=
∣∣∑N

i=0 ci+1 ·Di
∣∣

2. if c1 = 0 and c2 > 0 then

(a) if {t}< 1
2 then ∥mt∥=

∣∣∑N
i=0 ci+1 ·Di

∣∣
(b) if {t}> 1

2 then

i. if c2 > 1 then ∥mt∥> ∥t∥
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ii. if c2 = 1 then ∥mt∥> D2

3. if c1 = 0 then ∥mt∥> |D1|

Proof. As for the previous Lemma, we don’t have the mathematical level to be able to find a
proof by ourselves. For the complete proof we looked at [Bos+18].

Remark. Neither of these two Lemmas were proven as we only gave them for the next
theorem on the best approximation. We wanted to focuse ourselves on the next proof as it is
for the main theorem of this project.

3.3 Theorem
Theorem. (Best approximation). Let x be an irrational number and p, q ∈ Z with (p,q) = 1
and q > 0. Then p

q is a best approximation if and only if it is a convergent of x.

Proof. Let the Ostrowski representation of q be ∑
N
i=0 ci+1qi. Suppose there exists n ∈N such

that ci+1 = 0 for all 0≥ i < n≥ N and cn+ > 0. We have to check every possibility for c1 and
c2.

Case 1: c1 = c2 = 0
We need to examined four cases:

1. Dn > 0 and DN > 0∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣≥ (cn+1−1)Dn−Dn+1 +DN > DN = |DN |= |qNx− pN |

2. Dn > 0 and DN < 0∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣≥ (cn+1−1)Dn−Dn+1 +DN+1 >−Dn+1 = |Dn+1| ≥ |DN |= |qNx− pN |

Remark. n ̸= N as Nn and DN have different signs. Thus we have that N ≥ n+1.

3. Dn < 0 and DN > 0∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣≥ (1− cn+1)Dn +Dn+1−DN+1 > Dn+1 = |Dn+1|> |DN |= |qNx− pN |

Remark. In this case we also have N ≥ n+1.

4. Dn < 0 and DN < 0∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣≥ (1− cn+1)Dn +Dn+1−DN >−DN = |DN |= |qNx− pN |
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So |qNx− pN | minimizes |qx− p| in all possible cases. let’s prove the theorem for this case
now. Assume that p

q is a best approximation. By definition of a best approximation we have
that |qx− p|< |qNx− pN | for all p

q ̸=
pN
qN

such that 0 < qN < q. But

|qNx− pN |= ∥qt∥=

∣∣∣∣∣ N

∑
i=0

ci+1 ·Di

∣∣∣∣∣
so we have |qx− p|> |qNx− pN | for all p

q ̸=
pN
qN

. And thus we deduce pN = p and qN = q.
Assume that p

q is a convergent. Then there exists an integer m such that |qx− p| = |qmx−
pm|= |Dm|. We have that qN ≤ qm < qn+1. So we deduce that qN = q, so N =m and conclude
that pN

qN
is a best approximation.

Case 2 (a): where c1 = 0, c2 > 1, and {x}< 1
2

This case is similar to Case 1.

Case 2 (b) (i) : c1 = 0,c2 > 1,{t}> 1
2 .

Assume that q = q0 = q1 = 1. We have |D1| < 1
2 , so ∥q1x∥ = ∥q1x− p1∥ = |D1|. Thus we

have |q1x− p1|> |q1x− p1|. So q > q1 and from

|qx− p| ≥ ∥qx∥> 1−{t}=−D1 = |D1|= |q1x− p1|

we have that |qx− p|> |q1x− p1|. And by definition we conclude that p
q is not a best approx-

imation.
Now assume that p

q is a convergent, there exists an integer m such that |qx− p|= |qmx− pm|=
|Dm|. We know that |Dm|= |qmx− pm|= |qx− p|> ∥qx∥> |D1|. We find |Dm|> |Dk| for all
k. Since q > q1 we deduce that p

q is not a convergent.

Case 2 (b) (ii) : c1 = 0, c2 = 1, {t}> 1
2 .

There are three possibilities for N.

1. N = 0
We know that c1 = 0 hence q = c1q0 = 0, which is a contradiction.

2. N = 1
The theorem about the three basic properties of continued fractions and the fact that
a1 = 1 enable us to deduce that

q = c1q0 + c2q1 = q1

p = c1 p0 + c2 p1 = p1.

Assume now that p
q is a convergent. We have q = q1 = 1, hence we can’t find a s ∈ N :

0 < s < q. Therefore p
q is a best approximation.

3. N > 1
Remember that c1 = 0, c2 = 1, q1 = a1q0 +q−1 = 1. Thus

q = c1q0 + c2q1 + c3q2 + · · ·+ cN+1qN = 1+ c3q2 + · · ·+ cN+1qN .

12



But N > 1 which means there must exist z ∈ {2,3, . . . ,N} such that cz+1qz ̸= 0. We
also know that q > qz ≥ q2 and that

|qt− p| ≥ ∥qt∥> D2 = |D2|.

Now since q> q2 and |qt− p|> |q2t− p2|, we deduce that p
q isn’t a best approximation.

Also supposing it would be a convergent, we’d be able to find a m ∈ N such that |qt−
p| = |qmx− pm| = Dm|. But |qmx− pm| = |Dm| > |D2| and actually, |Dm| > |Di|∀i ∈
N≥2.

Case 3: c1 ≥ 0
We have two cases to examined.

1. c1 = 1 and N = 0
We find that q = c1q0 = q0 and p = c1 p0 = p0.
p
q is obviously a convergent. As q = q0 = 1 there are no s ∈ N : 0 < s < q. Thus p

q is a
best approximation.

2. N ̸= 0
So q > 1. Assuming that p

q is a best approximation, we have:

q = c1q0 + c2q1 + · · ·+ cN+1qN ≥ c1 + cz+1qz ≥ qz.

We know that qz ≥ q1, so q ≥ q1 and |qt − p| > |q1t− p1|. And so by definition p
q is

not a best approximation and there is a contradiction.
Suppose p

q is a convergent, there exists an integer m such that |qx− p|= |qmx− pm|=
|Dm|. We know that |Dm|= |qmx− pm|= |qx− p|> ∥qx∥> |D1|. We find |Dm|> |Dk|
for all k. Since q > 1, qm ̸= q0 we deduce that p

q is not a convergent.

[Bos+18]

4 Planetarium

4.1 Definition of a Planetarium
A planetarium is a representation, a model of the solar system. In our case, we attempt to
print our planets and gears with a 3D printer which we will have programmed using the
computations we made using the method of the best approximations, continued fractions and
algorithms. We then assemble those pieces in the most realistic possible way in order to
recreate a mini version of the solar system.
A planetarium though can also be defined as a building in which moving images are shown
at night with a star projector.

13



4.2 Huygens Planetarium
Christiaan Huyguens was a Dutch scientist specialised in many disciplines such as mathe-
matics, engineering, physics or astronomy during the XVII-th century. Some of his work
involves the invention of the pendulum clock, the magic lantern, the centrifugal governor,
and in our case, his planetarium.

Christiaan Huygens Huygens Planetarium

4.3 Mechanism
Below are two pictures of the inside of Huygens planetarium. We have annotated a sketch of
the interior of Huygens planetarium after with the explanation of what are each letters.

Interior of Huygens planetarium
Interior of Huygens planetarium

14



Huygens planetarium - interior

1. A : square bases, end of pillars that are screwed into

2. B-C : 61cm long iron rod, the shaft of the planetarium

3. D : gear with 121 teeth, responsible for Mercury’s movement

4. E : gear with 52 teeth, responsible for Venus movement

5. F : gear with 60 teeth, responsible for Earth’s movement

6. G : gear with 84 teeth, responsible for Mars movement

7. H : gear with 14 teeth, responsible for Jupiter’s movement

8. K : gear with 7 teeth, responsible for Saturn’s movement

9. L : gear with 73 teeth, responsible for the movement of the circle with days and months

10. M : piece of metal spiral, responsible with the aid of 2 gears attached to an axis for the
cycle of 300 years

11. N : clock mechanism

15



12. V : gear responsible for the movement of the 61cm long iron rod. Its revolution period
is of 96hours

13. P : 4 teeth of gear V

14. O : gear with 45 teeth moved by teeth P

15. Q : gear attached to axis of O with 9 teeth responsible for the movement of L, which
ends up turning B-C

[Ami10]

The force driving the planets around the planetarium is generated by a clock-mechanism
which was also invented by Huygens. This mechanism is connected to a shaft which is
connected to 6 gears each for a different planet. The gears each have a different number of
teeth which was calculated using continued fraction. The planetarium is composed of 6 rings
with teeth each representing the orbit of a planet. When the planetarium is closed, the rings
are connected to the gears through their teeth. Another gear connects the shaft to the clock-
mechanism and is responsible for the movement of the planets.
This planetarium (and the one we aim to build) are ’ideals” planetariums as the orbits of the
planets have no inclinations and are all on a same plane. We also need to add that the orbits
describe by the planets are circles while it is not the case in reality.

5 Calculation for a planetarium

5.1 Algorithm
The following algorithm is given in its entirety and in python language in the annex. Below is
just the most important part which has to do with the loop computing each ai of the continued
fraction. The value for the earth orbital period is 365,256 days which can be written as
365+ 32

125 days or 45657
125 days. Thus each orbital period is multiplied by 125 so that there are

no problems for the calculations afterward.

• orb.p represents the orbital period of the chosen planet given in days ×125

• orb.e represents the earth orbital period

• c represents the number of digit after the decimal point in orb.p

n← orb.p×10c

d← orb.e×10c

r = 1
while r ̸= 0 do

n′← n
x← ⌊ n

d ⌋
n← d
d← n′− r×d

end while
The result x is a list with all the component of the continued fraction.
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5.2 Application
In this section, we will calculate the convergents for the ratio of the orbital period of each
planet with the earth’s orbital period, using the algorithm presented in the previous subsec-
tion. With those calculations, we will compute the each gear ratio for the construction of our
planetarium.
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Mercury

Mercury
Orbital period [days]: 87.969.
[Dav21a]
The continued fraction is of the ratio between Mercury orbital period
and the Earth orbital period is:

10996125
45675000

=
29323

121752
= [0;4,6,1,1,2,1,5,1,1,2,6,3]

The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 0 2.4×101

1
1
4

9.2×10−1

2
6

25
8.4×10−2

3
7

29
5.3×10−2

4
13
54

1.0×10−2

5
33

137
3.4×10−3

6
46

191
4.3×10−4

7
263

1092
4.5×10−5

8
309

1283
2.6×10−5

9
572

2375
6.6×10−6

10
1453
6033

4.1×10−7

11
9290

38573
2.1×10−8

12
29323
121752

0
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Venus

Venus
Orbital period [days]: 224.701.
[Dav21b]
The continued fraction is of the ratio between Venus orbital period and
the Earth orbital period is:

28087625
45675000

=
224701
365256

= [0;1,1,1,1,2,29,1,1,1,77,4]

The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 0 6.2×101

1
1
1

3.8×101

2
1
2

1.2×101

3
2
3

5.1×100

4
3
5

1.5×100

5
8

13
2.0×10−2

6
235
382

4.5×104

7
243
395

2.2×10−4

8
478
777

1.1×10−4

9
721

1172
9.3×10−7

10
55995
91021

3.0×10−9

11
224701
365256

0
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Mars

Mars
Orbital period [days]: 686.980.
[Dav21c]
The continued fraction is of the ratio between Mars orbital period and
the Earth orbital period is:

858725
456750

=
171745
91314

= [1;1,7,2,1,1,3,1,1,1,1,1,1,1,2,9]
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The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 1 8.8×101

1
2
1

1.2×101

2
15
8

5.8×10−1

3
32
17

1.5×10−1

4
47
25

8.1×10−2

5
79
42

1.3×10−2

6
284
151

2.3×10−3

7
363
193

1.1×10−3

8
647
344

3.9×10−4

9
1010
537

1.5×10−4

10
1657
881

5.8×10−5

11
2667
1418

2.1×10−5

12
4324
2299

9.0×10−6

13
6991
3717

2.7×10−6

14
18306
9733

1.1×10−7

15
171745
91314

0
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Jupiter

Jupiter
Orbital period [days]: 4330.595.
[Dav21d]
The continued fraction is of the ratio between Jupiter orbital period and
the Earth orbital period is:

541324375
45675000

=
4330595
365256

= [11;1,5,1,24,5,5,1,1,36]

The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 11 8.6×101

1
12
1

1.4×101

2
71
6

2.3×100

3
83
7

8.1×10−2

4
2063
174

6.3×10−4

5
10398
877

2.3×10−5

6
54053
4559

2.2×10−6

7
64451
5436

1.8×10−6

8
118504
9995

2.7×10−8

9
4330595
365256

0
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Saturn

Saturn
Orbital period [days]: 10759.22.
[Dav21e]
The continued fraction is of the ratio between Saturn orbital period and
the Earth orbital period is:

13449025
456750

=
2689805
91314

= [29;2,5,3,1,2,1,3,1,1,1,2,4,1,2]
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The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 29 4.6×101

1
59
2

4.3×100

2
324
11

2.1×10−1

3
1031
35

4.9×10−2

4
1355
46

1.3×10−2

5
3741
127

3.8×10−3

6
5096
173

7.7×10−4

7
19029
646

1.3×10−4

8
24125
819

6.0×10−5

9
43154
1465

2.3×10−5

10
67279
2284

6.7×10−6

11
1777212

6033
5.4×10−7

12
778127
26416

8.3×10−8

13
955839
39449

3.4×10−8

14
2689805
91314

0
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Uranus

Uranus
Orbital period [days]: 30685.4.
[Dav21f]
The continued fraction is of the ratio between Uranus orbital period and
the Earth orbital period is:

38356750
456750

=
3835675

45657
= [84;93,1,3,40,3]

The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 84 1.1×100

1
7813
93

8.6×10−3

2
7897
94

2.8×10−3

3
31504
375

1.8×10−5

4
1268057
15094

1.5×10−7

5
3835675
45657

0
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Neptune

Neptune
Orbital period [days]: 60189.

The continued fraction is of the ratio between Neptune orbital period
and the Earth orbital period is:

75236250
456750

=
2507875
15219

= [164;1,3,1,2,63,1,1,2,3]

The table of convergent with the margin of error is:

Order of convergent Convergent Ratio Margin of error in %

0 164 7.9×101

1 165 2.1×101

2
659
4

3.6×100

3
824
5

1.4×100

4
2307
14

8.0×10−3

5
146165

887
7.4×10−5

6
148472

901
5.1×10−5

7
294637
1788

1.1×10−5

8
737746
4477

1.5×10−6

9
2507875
15219

0

6 Printable planetarium
The aim is now to choose a convergent for each ratio which will enable us to have on the one
side the smallest margin of error possible and on the other side a printable gear or train of
gear. Indeed the gear ratio is limited by the number of teeth a gear can have. It is possible
to attached multiple gear together in order to have a more precise ratio but we do not want to
have a planetarium that is too big.
We first had to choose what type of planetarium, i.e., how will the gears be placed. While
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looking for ideas and possibilities, we found a planetarium by Zeamon which seems feasible.
[Zea22]

Planetarium by Zeamon

We also found a planetarium based on this model that was printed by a 3D printer. The
ratio were different from ours, but we could at least follow the model.
[Zip20]

Planetarium by Zippitybamba

The aim is now to find the right number of teeth for each gear in order to have the right
ratio for each orbital period. Here is a layout of the planetarium we would like to build but
with ratios we found online. We started computing our ratio but it is quite complicated as
some numbers we found are prime number but are also too big to be a number of teeth on
a gear. We would like for at least each gears to have less than 100 teeth which is still a big
number and would probably be complicated to print and thus not really precise.
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Sketch of the planetarium gears

As we now have the layout, we need to adapt this to our calculations and then draw to
pieces of the planetarium with the right software to be able to print it with a 3D printer.
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8 Annex
Bellow is an algorithm to compute the continued fraction of the ratio between the orbital
period of a planet of our choice and the earth orbital period. We just need to enter the orbital
period of our chosen planet in days and the algorithm compute the continued fraction of the
ratio, its convergent and the margin of error for each convergent.

from math i m p o r t modf , sqrt , pi
from d e c i m a l i m p o r t Decimal

# W r i t e i n c o n t i n u e d f r a c t i o n

p l a n e t o r b i t a l = f l o a t ( input (
” E n t e r t h e o r b i t a l p e r i o d o f t h e p l a n e t i n days ” ) )

#As t h e t h e e a r t h o r b i t a l p e r i o d i s 365 ,256 days , i t can be w r i t t e n as
# 365+(32 /125) and t h u s i t i s 45657 /125 , so we have t o m u l t i p l y by 1 2 5 .
p l a n e t o r b i t a l = f l o a t ( p l a n e t o r b i t a l * 125)
e a r t h o r b i t a l = f l o a t ( 4 5 6 5 7 )

# Fix t h e r e s u l t i . e . t h e c o n i t n u e d f r a c t i o n
r e s u l t = [ ]
p r i n t ( ” P l a n e t O r b i t a l : ” , f l o a t ( p l a n e t o r b i t a l ) ,

” E a r t h O r b i t a l : ” , i n t ( e a r t h o r b i t a l ) )

# Fix t h e r e s t t h a t w i l l be used t o compute t h e c o n t i n u e d f r a c t i o n
r e s t = 1

# Find how many d i g i t a f t e r t h e d e c i m a l p o i n t are t h e r e
# i n o r d e r t o g e t r i d o f them t o do t h e c o m p u t a t i o n s
n b o f d e c i m a l = s t r ( p l a n e t o r b i t a l ) [ : : − 1 ] . f i n d ( ' . ' )

# M u t i p l y bo th o r b i t a l p e r i o d f o r t h e r e t o be no d e c i m a l s
n0 = n = i n t ( p l a n e t o r b i t a l * 10** n b o f d e c i m a l )
d0 = d = i n t ( e a r t h o r b i t a l * 10** n b o f d e c i m a l )

p r i n t ( n , d )

#Loop t o compute t h e c o n t i n u e d f r a c t i o n
whi le r e s t != 0 :

#Add t h e q u o t i e n t o f t h e e u c l i d e a n d i v i s i o n o f n by d t o t h e r e s u t
r e s u l t . append ( i n t ( divmod ( n , d ) [ 0 ] ) )
r e s t = i n t ( divmod ( n , d ) [ 1 ] )
#n becomes d = t u r n t h e f r a c t i o n ( i t becomes 1 over t h e f r a c t i o n )
n = d
#d becomes t h e r e s t o f t h e e u c l i d e a n d i v i s i o n o f n by d
d = r e s t
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p r i n t ( r e s u l t )

# Tab le o f c o n v e r g e n t

# D e f i n e t h e p o s i t i o n i n t h e r e s u l t
pos = 0

# D e f i n e t h e p i f o r t h e c o m p u t a t i o n a f t e r w a r d
p0 = 0
p1 = 1
q0 = 1
q1 = 0

# D e f i n e t h e margin o f e r r o r
e r r = 0

#Loop t o compute t h e c o n v e r g e n t t o each o r d e r
whi le pos < l e n ( r e s u l t ) :

p = p0 + r e s u l t [ pos ] * p1
q = q0 + r e s u l t [ pos ] * q1
e r r = abs ( ( p / q ) −( n0 / d0 ) ) * 100
# P r i n t t h e f i r s t l i n e o f t h e t a b l e o f c o n v e r g e n t w i t h
# t h e margin o f e r r o r
p r i n t ( pos , ”−−” , p , ” : ” , q , ”−−−” , ” margin o f e r r o r = ” , e r r )
#Jump t o t h e n e x t l i n e o f t h e t a b l e
pos = pos + 1
p0 = p1
p1 = p
q0 = q1
q1 = q
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