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1 Introduction

In this report we are going to study the rational points of different quadrics. It is an interesting
and well studied topic. As we know, quadrics have rational points, in particular the quadrics whose
equation is defined with rational coefficients. But is it possible to find all rational points? We
know that they are dense, so is it possible to establish some methods to find them systematically?
We are going to answer that question. Before we start, we need to recall the definition of the quadric.

For the rest of the report, we assume that we are working over the field of real numbers.

1.1 Quadric

Definition 1.1. We call quadratic polynomial with n variables and coefficients in K, any element
of K[X1,X2,...,Xn] of the form

q(X1, X2, · · ·, Xn) =
∑

1≤i≤j≤n

ai,jXiXj +

n∑
i=1

a0,iXi + a0,0

where at least one of ai,j for 1 ≤ i ≤ j ≤ n is not equal to 0

Example 1.1. Let n = 1 with variable X, any quadratic polynomial can be written in the following
form

a1,1X
2 + a0,1X + a0,0 = a2X

2 + a1X + a0

where we have indexed all the coefficients in the usual way.

Example 1.2. Let n = 2 with variables X and Y, any quadratic polynomial can be written in the
following form

a1,1X
2 + a1,2XY + a2,2Y

2 + a0,1X + a0,2Y + a0,0

In particular, we have the following examples:

1. X2

a2 + Y 2

b2 − 1

2. X2

a2 − Y 2

b2 − 1

3. X2

a2 − Y

2 Rational points of quadrics.

As we know what a quadric is, let’s think about its rational points. The rational points of
quadrics are the points (x,y) such that x and y are rational. To find such points, we decided to use
a program that finds integer solutions for quadric in the interval [-100,100].

For example, we take the following quadric:

−2x2 + y2 + 3.3xy + 0.4x + 10y + 9 = 0

Now we use our program to find its integer solution(s). And we get:

integer solutions: {(0,−9) ; (0,−1)}

And we know that we can obtain rational solutions from integer solutions. To do so, we choose
a random rational number, for example 7, and we substitute x and y in our initial quadratic equation
by 7x and 7y respectively. After manipulations, we obtain:
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−2(7x)2 + (7y)2 + 3.3(7x)(7y) + 0.4 ∗ 7x + 10 ∗ 7y + 9 = 0

−98x2 + 49y2 + 161.7xy + 2.8x + 70y + 9 = 0 (*)

So we know that the points (0; −17 ) and (0; −97 ) belong to the quadric(*), so there’s 2 rational
points of the initial quadric.

{(0,−−9

7
), (0,

−1

7
)}

Unfortunately, such method does not give a solution of general form. So we had to apply
another method to find rational points. We subdivided quadrics in 3 general forms: circle, parabola
and ellipsis.

2.1 Rational points of a circle

Let’s start with a circle. For the simplicity of computations, we choose the unit circle as it has
4 obvious rational points: (-1,0); (1,0); (0,-1); (0,1). The idea is to choose one of the previously
mentioned rational points and a line passing through that point, but the line must have rational
slope. So we want to show:

Claim: If the straight line with rational slope intersects the unit circle in 2 points, and one of
them is rational, then the second point of intersection is also rational.

Proof: We just need to fix 1 rational point of a circle. We take (-1,0). We illustrated the
situation in the following picture.

Figure 1: Intersection of a line and a circle with radius 1

Remark: The equation of the line is y = mx + m because of the point (-1,0) belongs to the line
and its slope is m. And we have 2 equations, so we have a system of equations for which we want
to find rational solutions.

{
y = mx + m ∀m ∈ Q The equation of the line (1)

1 = x2 + y2 The equation of the unitary circle (2)

(1) in (2):
x2 + (mx + m)2 = 1

⇔ x2 − 1 + [m(x + 1)]2 = 0

⇔ (x + 1)[x(m2 + 1) + (m2 − 1)] = 0
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so x = −1 or x(m2 + 1) + (m2 − 1) = 0

⇔ x(m2 + 1) = 1−m2

⇔ x =
1−m2

m2 + 1{
if x = −1 ⇒ y = 0 (x , y ∈ Q)

if x = 1−m2

m2+1 ⇒ y = (1−m2)m
m2+1 + m = m−m3+m3+m

m2+1 = 2m
m2+1 (x , y ∈ Q)

We know that m is a rational number, so we want to rewrite it in a general form: m = a
b ,

∀ a ∈ Z and ∀ b ∈ Z∗.

if x = −1 ⇒ y = 0

if x =
1−( a

b )
2

( a
b )

2+1 =
b2−a2

b2

a+b2

b2

= b2−a2

b2+a2 ⇒ y =
2 a

b

( a
b )

2+1 =
2a
b

a2+b2

b2

= 2ab
a2+b2

So, there is a unique second point on the intersection of the line and the circle and this second
point has rational coordinates. And we can compute now any rational point of the circle. It follows
because the line is determined by 2 rational points and the line has a rational slope.

{(−1, 0) ; (
b2 − a2

b2 + a2
,

2ab

a2 + b2
)}

�

Corollary 2.1. There exists a bijective function:

f : Q → Q2

{m ∈ Q} 7→ { rational points (
1−m2

m2 + 1
,

2m

m2 + 1
) and (−1, 0) on the unit circle}

So we proved that the 2nd point is also rational. This helps us to parameterize the line by
changing its slope in order to find all rational points of the circle. We can simply change the slope
of the line.

Here’s the precise example: let’s choose 2 integers a and b. We say that a = 4 and b = 5. So the
slope of a line is 4

5 . After computing the coordinates of the point where the intersection happens, we
get the following point: ( 9

41 ; 40
41 ). In the picture below, you can notice that the intersection happens

indeed in a found point. (Graphic calculator rounded the numbers).
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Figure 2: The intersection of a circle and a line with a slope 0,8.

Now we want to generalize the formula for a certain circle with radius r. We are not going to
take the complete formula of the circle: (x−a)2 +(y− b)2 = r2 as we would have 2 more restrictions
related to a and b: they should be rational. We assume that a∈ Q, b∈ Q and r ∈ Q. If they are not,
we just apply translation of the center to the origin. As we don’t have any obvious rational point of
the circle, we need to adapt the equation of a straight line (we use its general form). Now we can
formulate the claim.

Claim: If a straight line with rational slope intersects the circle with rational radius in 2 points,
and one of these points is rational, then the other point must be rational.

Proof:{
x2 + y2 = r2 ∀r ∈ Q General equation of a circle at the origin (1)

mx + n = y ∀m,n ∈ Q The equation of the straight line (2)

(2) in (1):

x2 + (mx + n)2 = r2

⇔ x2 + m2x2 + 2mnx + n2 − r2 = 0

⇔ (1 + m2)x2 + 2mnx + (n2 − r2) = 0

so x =
−2mn±

√
4m2n2 − 4(1 + m2)(n2 − r2)

2 + 2m2

⇔ x =
−2mn±

√
4m2n2 − 4(n2 + m2n2 − r2 −m2r2)

2 + 2m2

⇔ x =
−2mn±

√
4(m2r2 − n2 + r2)

2 + 2m2

⇔ x =
−mn±

√
m2r2 − n2 + r2

1 + m2
if m2r2 − n2 + r2 < 0 ⇒ no solution in R ⇒ no solution in Q
if m2r2 − n2 + r2 = 0 ⇒ x = −mn

1+m2 ∈ Q
if m2r2 − n2 + r2 > 0 ⇒ x = −mn±

√
m2r2−n2+r2

1+m2
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We can conclude that in the first case, the line and a circle have no intersection. In the second
case, our line is tangent to the circle. For the last case, we have the situation that we’re interested in.

But we should consider a number
√
m2r2 − n2 + r2 that can be irrational, to avoid such problem,

we assume that the line passes through the rational point (-r, 0). We use that information to make
a new system of equations:{

x2 + y2 = r2 ∀r ∈ Q∗ General equation of a circle at the origin (1)
m
r x + r = y ∀m ∈ Q The equation of the straight line (2)

(2) in (1):

x2 + (
m

r
x + r)2 = r2

⇔ x2 +
m2

r2
x2 + 2

m2

r
x + m2 − r2 = 0

⇔ (1 +
m2

r2
)x2 + 2

m2

r
x + (m2 − r2) = 0

so x =
−2m2

r ±
√

(2m2

r )2 − 4(1 + m2

r2 )(m2 − r2)

2(1 + m2

r2 )

⇔ x =
−2m2

r ±
√

4m4

r2 − 4(m2 − r2 + m4

r2 −m2)

2r2+2m2

r2

⇔ x =
−2m2

r ±
√

4r2

2r2+2m2

r2

⇔ x =
(−2m

2±2r2
r )r2

2r2 + 2m2

⇔ x =
−rm2 ± r3

r2 + m2{
if x = −r ⇒ y = 0 (x , y ∈ Q)

if x = −rm2±r3
r2+m2 ⇒ y = m

r (−rm
2±r3

r2+m2 ) + m = m−m
2±r2

r2+m2 + m = −m3+m2+r2±r2m
r2+m2 (x , y ∈ Q)

We know that m and r are rational number, so we want to rewrite it in a general form: m = a
b

and r = c
d , ∀ a, c ∈ Z and ∀ b, d ∈ Z∗.



if x = − c
d ⇒ y = 0

if x =
− ca2

db2
± c3

d3

c2

d2
+ a2

b2

=
ca2d2±c3b2

d3b2

c2b2+a2d2

b2d2

= −ca2d2±c2b2
c2b2d+a2d3 ⇒ y =

− a3

b3
+ a2

b2
+ c2

d2
± ac2

bd2

c2

d2
+ a2

b2

=
−a3d2+a2bd2+c2b3±ac2b2

b3d2

c2b2+a2d2

b2d2

= −a3d2+a2bd2+c2b3±ac2b2
c2b2d+a2d3

Corollary 2.2. There exists a bijective function f: Q ↔ {rational points on the circle with radius
r }, given by m : 7→ {circle} ∩ { line through (-r,0) of slope m } and the coordinates of the second

point are (−rm
2±r3

r2+m2 , −m
3+m2+r2±r2m

r2+m2 ).

�
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2.2 Rational points of a parabola.

We want our solution to work also with parabolas. For the simplicity of computations, we take
the equation of a non-translated parabola. We can easily find at least one rational point, which is
the summit of parabola. So the line will pass through that summit and another rational point of
the parabola. The equation of the non-translated and non-homothetized parabola is: y = x2. As
the summit of the parabola is at the origin, we can simplify the equation of the straight line passing
through to it y = mx with m ∈ Q.

Claim: If the straight line with rational slope intersects the parabola in 2 points: parabola’s
summit at the origin and another arbitrary point, they must be rational.

Proof:{
y = x2 General equation of a parabola at the origin (1)

y = mx ∀m ∈ Q The equation of the straight line (2)

(2) in (1):

x2 = mx

⇔ x2 −mx = 0

⇔ x(x−m) = 0

so x = 0 or x = m{
if x = 0 ⇒ y = 0

if x = m ⇒ y = m2

We know that m is a rational number, so we want to rewrite in a general form: m = a
b ,

∀ a ∈ Z and ∀ b ∈ Z∗.

{
if x = 0 ⇒ y = 0

if x = a
b ⇒ y = a2

b2

So we finally have our rational point of a quadric. And we can compute now any rational point
of the circle.

{(0, 0) ; (
a

b
,
a2

b2
)}

�

Let’s take example coefficients: a = 14 and b = 5, i.e. m = 14
5 = 2.8

In this case, we find the following intersection:

7
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Figure 3: The intersection of a parabola and the line with a slope 2,8 passing through (0,0).

At the end we can identify all the rational points: { m belongs to Q} ⇐⇒ {(m,m2) belongs
to the curve of parabola }.

Now we want to take the general equation of translated parabola which is: y = (x + a)2 + b.
And we also need the general equation of a line. We rewrite the claim for general case.

Claim: If the straight line with rational slope intersects the parabola in 2 points: its summit
and any other point, both must be rational, or none.

Proof :

{
y = (x + a)2 + b ∀a, b ∈ Q General equation of translated parabola (1)

y = mx + n ∀m,n ∈ Q The equation of the straight line (2)

(2) in (1):

x2 + 2ax + a2 + b = mx + n

⇔ x2 + (2a−m)x + (a2 + b− n) = 0

so x =
−2a + m±

√
(2a−m)2 − 4(a2 + b− n)

2

⇔ x =
m− 2a±

√
4a2 − 4am + m2 − 4a2 − 4b + 4n

2

⇔ x =
m− 2a±

√
m2 + 4n− 4b− 4am

2
if m2 + 4n− 4b− 4am < 0 ⇒ no solution in R ⇒ no solution in Q
if m2 + 4n− 4b− 4am = 0 ⇒ x = m−2a

2 ∈ Q, if a ∈ Q
if m2 + 4n− 4b− 4am > 0 ⇒ x = m−2a±

√
m2+4n−4b−4am

2

Unfortunately, we have the same problem as before, and we want
√
m2 + 4n− 4b− 4am ∈

Q, so we can make 4n − 4b − 4am = 0, then we get
√
m2 = m, as m is a rational number,√

m2 + 4n− 4b− 4am is also a rational number. Then we get a new system of equations.

{
y = (x + a)2 + b ∀a, b ∈ Q General equation of translated parabola (1)

y = mx + (am + b) ∀m ∈ Q The equation of the straight line (2)

8
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(2) in (1):

x2 + 2ax + a2 + b = mx + (am + b)

⇔ x2 + (2a−m)x + (a2 − am) = 0

so x =
−(2a−m)±m

2

{
if x = −2a+m−m

2 = −a ⇒ y = −am + am + b = b (x , y ∈ Q)

if x = −2a+m+m
2 = −a + m ⇒ y = m(−a + m) + am + b = m2 + b (x , y ∈ Q)

We know that a,b and m are rational number, so we want to rewrite it in a general form: a = c
d ,

b = f
g and m = h

j , ∀ c, f, h ∈ Z and ∀ d, g, j ∈ Z∗.

{
if x = − c

d ⇒ y = f
g

if x = − c
d + h

j = −cj+dh
dj ⇒ y = h2

j2 + f
g = h2g+fj2

j2g

�

Corollary 2.3. There exists a bijective function f: Q ↔ {rational points on the parabola }, given
by m : 7→ {parabola}∩{ line through (-a,b) of slope m } and the coordinates of the second point are
(−a + m , m2 + b).

Example: Let’s take example coefficients: a = 5
2 ; b = 4

5 and m = 13
5

After choosing these coefficients, we compute and find the following intersection:

Figure 4: intersection of a parabola with equation : y = (x + 5
2 )2 − 4

5 and a line with equation:
y = 13

5 (x + 5
2 ) + 4

5
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2.3 Rational points of an ellipsis.

Now we want to find rational points of an ellipsis. First, as example, we take the non-translated
ellipsis with the equation:3x2 + 5y2 = 17. We choose a point of that ellipsis (2,1). So we want our
line to pass through that point. We find the following equation: y = ( 1−b

2 )x + b. Such equation
will always pass through the point (2,1) and it doesn’t depend on parameter b. We thought the
following: y = ax + b which pass through the point (2,1), then 1 = 2a + b ⇔ a = 1−b

2 . We assume
that b is rational, so the slope of a chosen line is also rational. Based on that information, we can
write the following theorem.

Claim: If a straight line passing through (2,1) with rational slope intersects the ellipsis with
equation 3x2 + 5y2 = 17 in 2 points, then second point is also rational.

Proof:{
17 = 3x2 + 5y2 Example of equation of ellipsis (1)

y = ( 1−b
2 )x + b ∀b ∈ Q The equation of the straight line (2)

(2) in (1):

3x2 + 5((
1− b

2
)x + b)2 = 17

⇔ 3x2 + 5(
(1− b)2

4
x2 + (1− b)bx + b2) = 17

⇔ 3x2 +
5(1− b)2

4
x2 + (5b− 5b2)x + 5b2 − 17 = 0

⇔ (3 +
5

4
(1− b)2)x2 + (5b− 5b2)x + (5b2 − 17) = 0

so x =
5b2 − 5b±

√
(5b− 5b2)2 − 4(3 + 5

4 (1− b)2(5b2 − 17))

6 + 5
2 (1− b)2

⇔ x =
5b2 − 5b±

√
25b2 − 50b3 + 25b4 − 4(15b2 + 25

4 b2(1− 2b + b2)− 51− 85
4 (1− 2b + b2))

6 + 5
2 (1− b)2

⇔ x =
10b2 − 10b± 2

√
25b2 − 50b3 + 25b4 − (60b2 − 25b2(1− 2b + b2)− 204− 85(1− 2b + b2))

12 + 5(1− b)2

⇔ x =
10b2 − 10b± 2

√
25b2 − 50b3 + 25b4 − (60b2 − 25b2 + 50b3 − 25b4 − 204− 85 + 170b− 85b2)

12 + 5(1− b)2

⇔ x =
10b2 − 10b± 2

√
25b2 − 170b + 289

12 + 5(1− b)2

⇔ x =
10b2 − 10b± (10b− 34)

12 + 5(1− b)2

{
if x = 10b2−34

12+5(1−b)2 ⇒ y = ( 1−b
2 )( 10b2−34

12+5(1−b)2 ) + b = (1−b)(5b−17)+12b+5b(1−b)2
12+5(1−b)2

if x = 10b2−20b+34
12+5(1−b)2 = 10b2−20b+34

5b2−10b+17 = 2 ⇒ y = 2( 1−b
2 ) + b = 1

{(2, 1) ; (
10b2 − 34

12 + 5(1− b)2
,

(1− b)(5b− 17) + 12b + 5b(1− b)2

12 + 5(1− b)2
)}

10



Université de Luxembourg 2022/2023

We proved that the 2nd intersecting point of the ellipsis will be rational and its coordinates can
be calculated above.

�

And we choose b=-1, so we compute the intersection points. And we obtain: (−34 ; −74 )

Figure 5: intersection of a ellipsis 3x2 + 5y2 = 17 and a line with equation: y = x− 1

For an arbitrary ellipsis, we use the general equation for ellipsis which is: x2

a2 + y2

b2 = r2

For the following case, we identify the rational points as the intersection of the ellipsis with
lines of rational slope.{

x2

a2 + y2

b2 = r2 ∀a, b, r ∈ Q General equation of ellipsis (1)

mx + n = y ∀m,n ∈ Q The equation of the straight line (2)

(2) in (1):

x2

a2
+

(mx + n)2

b2
= r2

⇔ b2x2 + a2(mx + n)2 − a2b2r2

a2b2
= 0

⇔ b2x2 + a2(mx + n)2 − a2b2r2 = 0

⇔ b2x2 + a2(m2x2 + 2mnx + n2)− a2b2r2 = 0

⇔ (b2 + a2m2)x2 + 2mna2x + a2n2 − a2b2r2 = 0

11
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so x =
−2mna2 ±

√
(2mna2)2 − 4(b2 + a2m2)(a2n2 − a2b2r2)

2(b2 + a2m2)

⇔ x =
−2mna2 ±

√
4m2n2a4 − 4(b2a2n2 + a4m2n2 − a2b4r2 − a4b2m2r2)

2(b2 + a2m2)

⇔ x =
−2mna2 ±

√
4(a2b4r2 + a4b2m2r2 − b2a2n2)

2(b2 + a2m2)

⇔ x =
−2mna2 ± 2ab

√
(b2 + a2m2r2 − n2)

2(b2 + a2m2)

⇔ x =
−mna2 ± ab

√
b2 + a2m2r2 − n2

b2 + a2m2


if b2 + a2m2r2 − n2 < 0 ⇒ no solution in R
if b2 + a2m2r2 − n2 = 0 ⇒ x = −mna2

b2+a2m2

if b2 + a2m2r2 − n2 > 0 ⇒ x = −mna2±ab
√
b2+a2m2r2−n2

b2+a2m2
if x = −mna2

b2+a2m2 ⇒ y = m · −mna2

b2+a2m2 + n = −nm2a2+nb2+na2m2

b2+a2m2

if x = −mna2±ab
√
b2+a2m2−n2

b2+a2m2 ⇒ y = m · −mna2±ab
√
b2+a2m2r2−n2

b2+a2m2 + n

= nb2±abm
√
b2+a2m2r2−n2

b2+a2m2

Again, we have 3 possibilities: 2 intersecting rational points, 1 intersecting point and no inter-
secting points.

Let
√
b2 + a2m2r2 − n2 ∈ Q,

√
b2 + a2m2r2 − n2 = c

d , for some c ∈ Z and for some d ∈ Z∗

√
b2 + a2m2r2 − n2 =

c

d

⇔ b2 + a2m2r2 − n2 = (
c

d
)2

⇔ r2 =
( c
d )2 − b2 + n2

a2m2

⇔ r2 =
c2 − b2d2 + n2d2

a2d2m2

We know a,b,m and n ∈ Q, so a = f
g , b = h

j , m = k
l and n = o

p ∈ Z, f, h, k, o ∈ Z and ∀ g, j, l,
p ∈ Z∗

x =
−kof2

lpg2 ± fhc
gjd

h2

j2 + f2k2

g2l2

y =

oh2

pj2 ±
fhkc
gjld

h2

j2 + f2k2

g2l2

=

−kof2jd±fhclpg
lpg2jd

h2g2l2+f2k2j2

j2g2l2

=

ohgld±pjfhkc
pj2gld

h2g2l2+f2k2j2

j2g2l2

=
(kofjd± hclpg)jlf

pd(h2g2l2 + f2k2j2)
=

glh(ogld± pjfkc)

pd(h2g2l2 + f2k2j2)
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So we have our rational point of a quadric. And we can compute any rational point of the
ellipsis:

{( (kofjd + hclpg)jlf

pd(h2g2l2 + f2k2j2)
,

glh(ogld + pjfkc)

pd(h2g2l2 + f2k2j2)
) ; (

(kofjd− hclpg)jlf

pd(h2g2l2 + f2k2j2)
,

glh(ogld− pjfkc)

pd(h2g2l2 + f2k2j2)
)}

�

After all the computations and proofs, we can conclude that there exists a 1 to 1 correspondence
between rational numbers and rational points on the quadric. And that works for each general type
of quadric: circle, ellipsis and parabola.

And now we can pass to observations.

2.4 Observations

While we were working with quadrics, we noticed some interesting things. For some quadrics, it
is very difficult to find rational points. For example, x2 + y2 =

√
2. We know that

√
2 is irrational.

Consequently we conclude that x2 must be irrational and or y2 must be irrational. It follows from
the fact that if we add 2 rational numbers, their sum is also rational. We can conclude that if 2
arbitrary quadrics intersect each other in some points, we do not have a guarantee of their rational-
ity. Also, the general formula of the quadrics contains the information about its origin (for a circle),
summit (if we work with parabola), size and direction (in case of parabola) or focal point (in case
of ellipsis) etc.That’s why we want to study the behaviour of quadrics if we apply a transformation
to the quadrics.

We take 2 transformations: translation and homothety. We rewrite what we need in a theorem,
that we want to prove.

Theorem 2.4. The information about rational points of a quadric is preserved under translation by
a rational vector and under homothety by a rational coefficient. In other words: a point on a quadric
is rational if and only if it is still rational after a rational translation or a rational homothety.

This allows us to reduce the problem of finding rational points on an arbitrary quadrics to
certain, normalized ones. We will prove that theorem for 3 types of quadrics: circle, ellipsis and
parabola.

2.5 Observations on a circle.

So, let’s get back to our circle of the form (x− a)2 + (y− b)2 = r2 (∀a, b ∈ Q and ∀r ∈ Q∗). We

can divide the whole formula by r2 , so we obtain (x−a)2
r2 + (y−b)2

r2 = 1⇔ (x−a
r )2 + (y−b

r )2 = 1.

And we can conclude that if r is rational, then the previously found rational points are of the
form :

∃ a ∈ Q, b ∈ Q

x− a′

r
=

b2 − a2

b2 + a2
and

y − b′

r
=

2ab

a2 + b2
⇔ x = r

b2 − a2

b2 + a2
+ a′ and y = r

2ab

a2 + b2
+ b′

So our point is rational if and only if a’,b’ are rational. Because x = r b2−a2

b2+a2 + a′ , a,b,r are
rational, for x to belong to Q, a’ needs to be rational , same reason for b’. If it is not the case, then
we we have irrational point. However, we can choose irrational a and b to get rid of r. We just
need a2 + b2 be a rational multiple of r and such that the corresponding fractions will be a rational
multiple of a’ and b’.
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2.5.1 Remark

There’s a very famous examples of Pythagorian triples (for example: 3,4,5 or 5,12,13), i.e. for
x = 3 and y = 4, x2 +y2 = 52. Consequently we can divide the equation by 5 and we obtain rational
point on the unit circle. Like this that any Pythagorian triple gives a rational point on the unit
circle.

2.6 Observations on a parabola.

As we established the general formula for parabola, we can say that the information contained
in that general formula is the coordinates of the summit and its width. y = a(x+b)2+c , ∀a, b, c ∈ Q.
To work easily with parabola, we can apply a translation to the origin (0,0).

Finally, we get the following equation of parabola:{
y = ax2 ∀a ∈ Q
y = mx ∀m ∈ Q

(2) in (1):

ax2 = mx

⇔ ax2 −mx = 0

⇔ x(ax−m) = 0

so x = 0 or ax = m

{
if x = 0 ⇒ y = 0

if x = m
a ⇒ y = (m

a )2

And we finally obtain that if a is rational (⇒ we apply rational homothety), then the intersection
is rational. Otherwise m must be a rational multiple of a. If we don’t want to change m and we
want to keep it rational, then x must be of the form x = x′

a where x’ is a rational.

2.7 Observations on an ellipsis.

For the ellipsis, we take the following formula: (x
a )2 + (y

b )2 = r2. As before, we can divide the
equation by r2.

( x
ar )2 + ( y

br )2 = 1

And we can substitute each squared term by x” and y”. So we have again the famous equation
of the unitary circle. After necessary computations, we obtain:

x

ra
=

b2 − a2

b2 + a2
and

y

rb
=

2ab

a2 + b2
⇔ x = ra

b2 − a2

b2 + a2
and y = rb

2ab

a2 + b2

So we must be sure, that r · a and r · b are rational.
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3 Visualization of the intersection of tri-dimensional quadrics.

We were also interested in visualizing 2 quadrics in R3 and their intersection. To do it a little
bit more interactive, we can modify its coefficients. To do so, we used Matlab. Further, we show
some of the results:

Example 1:

The blue quadric has the formula

fblue := x2 + 2y2 + 0.5z2 + 4xy + 5xz + 6yz + 7x + 8y + 9z − 100

The red quadric has the formula

fred := 1.8x2 + 2.9y2 + 0.6z2 + 7xy + 13xz + 3yz + x + 2y − 25

Figure 6: 1st example of the intersection

We colored the intersection with corresponding colour to make it more visible.

Example 2:

The blue quadric has the formula

fblue := x2 + y2 + z2 − 150

The red quadric has the formula

fred := 9x2 + 18y2 + 25z2 − 3000
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Figure 7: 2nd Example of the intersection

Remark 1: For this example, we obtain as the intersection 2 curves because we work only with
the contour of the quadrics. In other words, they are empty inside, otherwise the result would be
voluminous figure.

Remark 2: Sometimes the numerical intersection does not look smooth because of the equa-
tions of quadrics. This means, that the volumes of quadrics that we are working with are small, and
our program is not so precise to draw them on small intervals. Consequently, the intersection of 2
tridimensional quadrics has low resolution.

Example 3:

The blue quadric has the formula

fblue := 12x2 + 10y2 + 3.1xy + 6.8xz + 5yz + 0.5x + 7y + 10.2z − 11

The red quadric has the formula

fred := 9x2 + 18y2 + 25z2 + 2.5yz − 4.6x− 1y + 55z − 38

Figure 8: 3rd Example of the low poly intersection.

Remark 3: The term low poly is used in both a technical and a descriptive sense; the number of
polygons in a mesh is an important factor to optimize for performance but can give an undesirable
appearance to the resulting graphics.
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The blue quadric has the formula

fblue := 120x2 + 100y2 + 31xy + 68xz + 50yz + 5x + 70y + 102z − 1500

The red quadric has the formula

fred := 90x2 + 180y2 + 250z2 + 25yz − 46x− 10y + 550z − 38000

Figure 9: 4nd Example of the intersection high on polygons

As you can see, we changed the last coefficient. That changed the size of the quadrics without
changing its classifications (the red quadric is ellipsoid and the blue one is paraboloid).

4 Intersection of a quadric implementing magic figures

Now we want to find a particular solution to some magic figures. The figures are: square 3x3,
tetrahedron and square 4x4.

4.1 Magic square of squares 3x3

For that magic figure, we want every number be a square of some other number. The most
difficult part of the task is to find a combination such that all the entries are different form each
other. After trying different methods and failing all of them to find such combination. We found
out that this problem was studied already and apparently there’s no solution for such square yet (if
we want to use small numbers). Otherwise, there might be a solution with big integers. But such
research demands huge computational power.

a2 b2 c2

d2 e2 f2

g2 h2 i2

a2 + b2 + c2 = d2 + e2 + f2 = g2 + h2 + i2 = a2 + d2 + g2

=b2 + e2 + h2 = c2 + f2 + i2 = a2 + e2 + i2 = c2 + e2 + g2 = 3e2

However, we have found the following solution:
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By the property of magic square of size 3x3, we know that for any column, line or diagonal
the sum will be 3 times the middle. In particular: a2 + b2 + c2 = 3e2 (1). Also we noticed that
(x + y)2 + (x− y)2 = 2x2 + 2y2 (2). This equation is almost similar to a2 + b2 + c2 = 3e2. We can
add x2 + y2 to both sides of the equation (2). So we obtain the equation matching the equation (1).

then the magic square becomes

(x + y)2 (x− y)2 x2 + y2

(x− y)2 x2 + y2 (x + y)2

x2 + y2 (x + y)2 (x− y)2

for example: x = 4 and y = 3

72 12 52

12 52 72

52 72 12

72 + 12 + 52 = 12 + 52 + 72 = 52 + 72 + 12 = 72 + 12 + 52

=12 + 52 + 72 = 52 + 72 + 12 = 72 + 52 + 12 = 52 + 52 + 52 = 3 ∗ 52 = 75

However, we want to add another result of similar research. It is an example of semi-magic
square of squares.

Figure 10: semi-magic square of squares
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