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1 Introduction

There are a number of famous chess inspired mathematical puzzles. One of them is the
queens puzzle, better known under the name eight queens puzzle. The eight queens puzzle
is the problem of placing eight chess queens on an 8× 8 chessboard in such a way that no
two queens attack each other. A queen attacks all queens which share a row, column or
diagonal with it. At the end of the introduction you will find a visualised attack pattern
of a queen on an 8× 8 chessboard.
We focus on specific variations of the queens problem, meaning we change the size and
shape of the board. We also look at boards with holes. We will start by looking at the
8 × 8 case first to get familiar with the puzzle. Then we will introduce the N Queens
Problem, where we try to place N queens on a N×N board. Furthermore, we will look at
a special variation of the N queens problem, where we add k holes to the board and place
N +k queens. Each queen problem will be provided with a python-code and explanations
on how we obtained various results. In the end, we will showcase the N queens problem
on a Torus.

Attack pattern of a queen

Q: Queen
X: Field under attack
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2 N Queens Problem

2.1 Eight Queens Problem

The eight queens problem is a simpler case of the more general N queens problem. For
this puzzle, we look at an 8 × 8 board and we try to place eight queens without giving
any queen an attack option.
There exist several techniques to solve this kind of problem. For example, one can simply
try brute-forcing the problem, which will eventually lead to a solution. To be a bit more
efficient, one can use the backtracking method. An even more efficient way to solve the
problem is to create permutations. Using the backtracking and the permutation method
will also make it easier to find more solutions.

2.1.1 Backtracking method

The backtracking method considers searching every possible combination of queen place-
ments to find a solution. The method works recursively, meaning it places one queen at
a time and removes those that don’t lead to a solution, while respecting the given con-
straints. With constraints, we mean that the 8 × 8 board must contain 8 queens, while
no queen attacks another, to form a solution.
Illustrated example:
We imagine the board to be a coordinate system, where the origin is at the top left. We
place the queens by assigning coordinates, meaning we use to numbers (x, y) to obtain
their location on the board. The following seems counter intuitive, but x is the row-value,
which indicates how far down the queen is from the origin, and y is the column-value,
which indicates how far right the queen is from the origin. The origin has a coordinate of
(0, 0). For simplicity, we only use positive integers.

First we take an empty 8× 8 board.
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We place the first queen, represented as the symbol Q, at the coordinate (0, 0).

Now, we move on to the next row, since clearly the second queen cannot be placed in
the same row as the first one. The next possible position for a queen will therefore be
(1, 2).
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We repeat this process until we cannot place anymore queens.

Notice, it is impossible to place a queen in the 5th row. Therefore we replace the last
queen to the new position (4, 7) and we continue to place queens at the first possible
position.
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Again, it is impossible to place another queen. We backtrack once more. However,
this time we need to go back to the placement of the 4th queen and change its position to
(3, 6). We repeat the process and we finally obtain a solution.

To obtain other solutions, one simply needs to check every possible option using the
backtracking method. For example, changing the starting position gives another solution.

First Solution with starting Queen at (0, 1)
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2.1.2 Generating permutations

We introduce a method, we call the permutation method, which takes the list [0, 1, 2, 3, 4, 5, 6, 7]
of 8 values and gives us every permutation of that list. Then we check for every permu-
tation, if all 8 queens can be placed correctly. In other words, let’s say we have the
permutated list [5, 3, 1, 7, 4, 6, 0, 2]. Then the first queen would be placed at (0, 5), the
second at (1, 3) and so on . . . up to the last queen at (7, 2). In this case the permutated
list is a solution, since neither queen attack each other.
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2.1.3 Python-code

Using the permutation method we wrote a Python program, which permits us to find all
solutions for the N queens puzzle. The program is based on the permutation method,
we explained in the previous section. As input, we take N , which gives us our N × N
board size and the number of Queens, which will be placed on the board. The output
will consist of the number of total solutions for specific N and it will provide us with a
simple illustration of all the distinct solutions.
Program with simple explanations in form of comments [See [1]]:
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2.1.4 Explanation of the code above

As already mentioned, the code takes N as the input. By changing the value of N , one
changes the board size and the number of placed queens.
In the code, we use the inbuilt permutations() function, which provides us with all the
permutations of a list. In our case, we call perms the list of all the permutations of the
list called l. The list l is simply a list containing the integers from 0 to N − 1. We define
a list with N ×N zeros and we call it board.
The function setboard() uses the list board and the value of N to print us an illustration
that looks like a board.

Example of setboard() with N = 8

Next we define the placequeen(x, y) function.

placequeen(x, y) function:
Input: x, y and the global variables N and board
Output: True/False
Description: The placequeen(x, y) function checks if a queen can be placed at (x, y) and
returns True/False accordingly. In addition, working with the variables N and board,
we determine if a queen will be placed. A queen can only be placed, if the position in the
board at which we call the function is equal to 0. If the function indeed decides that a
queen will be placed, we place the symbol Q at the position. Then the function will also
change every field to an underline, which would be under attack by the placed queen.

Example of placequeen()
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These two functions will be used in the main part of the program, which is the per-
mutation method.
main part:
Input: N
Description: We define count = 0, which will count how many solutions we will have
for N . The main part checks for every single permutation p in the list perms, if the
placequeen function returns True at (p[i], i) for all values i between 0 and N − 1. In
case that is true for a permutation a solution was found. Thus, we add 1 to count and
call setboard() to print the solution, afterwards we reset the list board such that we can
repeat the process until we have gone through all the permutations of the list l.

Output examples
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2.2 Number of Solutions

Using the permutation code, we found out that there are exactly 92 solutions for the eight
queens problem. The table [4, Sequence A000170 and Sequence A002562] below confirms
our claim and also shows the number of solutions for other N up to 27.

Number of Queens N Total Solutions Fundamental Solutions

1 1 1
2 0 0
3 0 0
4 2 1
5 10 2
6 4 1
7 40 6
8 92 12
9 352 46
10 724 92
11 2680 341
12 14200 1787
13 73712 9233
14 365596 45752
15 2279184 285053
16 14772512 1846955
17 95815104 11977939
18 666090624 83263591
19 4968057848 621012754
20 39029188884 4878666808
21 314666222712 39333324973
22 2691008701644 336376244042
23 24233937684440 3029242658210
24 227514171973736 28439272956934
25 2207893435808352 275986683743434
26 22317699616364044 278971246651089
27 234907967154122528 29363495934315694

The permutation code is not the fastest, when it comes to finding the number of solutions
for higher values of N . This is the case, since the placequeen() function needs to run N
times for every single permutation, even if for example the 3th value of the permutation
gives us a False statement. Since the all() function will only run if the placequeen() func-
tion checked all N values. Therefore, we introduce a new code, which we found online
[See [7, Sample program]]. The following code is much faster in finding all the solutions
for higher N . In addition this code is able to give us the fundamental solutions, which
will be explained in detail in the next section.

12



Program [See [7, Sample program]] with simple explanations in form of comments:
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2.3 Explanation of the code above

This code works again for any N we give as input. This N is the number of queens we
want to place on a N ×N chess board. We define an empty list called fsol where we will
store all the fundamental solutions later on.
Next we define the functions RefH() and Rot90().

RefH():
Input: board
Output: returns a reflection of the board along the horizontal line
Description: returns a list where the new rows of the reflected board are lists themselves
and elements of the returned list. We start at the last row and we get the elements of
that row as a list, which will be the first element of the returned list. We repeat until the
first row. In other words, we inverse the order of the rows.

Rot90():
Input: board
Output: returns a 90 degrees rotation of the board
Description: returns a list of the rows obtained after a 90 degrees clockwise rotation. The
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first new row will be the first old column but in inverse order. The same goes for the
second, third,. . . , until the last.

Note that these two functions are enough to represent all the rotations and reflections
in a square board. In fact we define the following new functions: Rot180(), Rot270(),
RefHRot90(), RefHRot180() and RefHRot270(). These functions do exactly as their
name suggests, for instance RefHRot90() returns the board after first rotating it 90 de-
grees to the right, and then reflecting it. Hence, we can call upon the first two functions
we defined to obtain such a result. The rest of the functions work in a similar manner.
The board we used in the functions above has to be defined first of course. The board
is a list with N lists where each list contains N elements equal to 0. The smaller lists
inside the board list represent the rows of the board. Furthermore we define the function
setboard(), which prints every row of the board in a way that the output resembles a real
chessboard.
Now we define the most important function, the queens() function. In fact, in python it
is known as a generator function. Instead of returning, we yield. Put simply, contrary to
the return statement, the yield statement does not stop the function execution entirely,
but saves the state of the function and returns the yielded value to the caller.

queens():
Input: n, i, a, b, c
Explanation of the input: The parameter n is simply the number of queens N we want
on our N ×N board. The value i represent the current row of the board. The parameter
a is a list that helps us to check the column j of our current row i. The parameters b and
c are also lists that help us to check the current / and \ diagonals respectively.
Output: yield a
Description: We first check if our current row i is smaller than n (n− 1 is the last row).
If that is the case, for every j with j going from 0 to n− 1, we check if j is not in a and
i+j is not in b and i−j is not in c. The list a starts out empty and we only add the value
of j to it if it wasn’t there before (and if the b and c conditions are also met), hence j not
being in a means that the column j is free. Next we look at the list b, which also starts
out empty. The sum of the coordinates of a point on a board is the same for every point
on a single / diagonal. In fact, the sums can go from 0 to (n− 1) + (n− 1) = 2n− 2. To
understand, consider a 3 × 3 board. The points at (0, 0) will have value 0, the points at
(0, 1), (1, 0) will have value 1, the points at (0, 2), (1, 1), (2, 0) will have value 2, the points
at (1, 2), (2, 1) will have value 3 and the points at (2, 2) will have value 4. This is the case
for any N .
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Hence saying that i+ j is not in b means that the / diagonal is clear. It is similar for
c. The difference of the coordinates i− j of a point on a board is the same for every point
on a single \ diagonal. Indeed, the differences go from 0 to −(n−1). The idea is the same
as for b, hence to say that i− j is not in c means that the \ diagonal is clear. Now if these
three conditions are met, we yield from queens(n, i+1, a+[j], b+[i+ j], c+[i− j]), where
we went to the next row and values that were not in a, b, c are added to their respective
lists. This process is repeated until i < n is not true anymore. This means that all the
columns of the board have one single queen in them. We yield the list a, because the list
gives us exactly in which columns the queens are placed for each row (the first element in
a is the column in row 0, . . . , the last element in a is the column in row n− 1).

Next we define the variable count to be zero as we use it to count the number of
solution.

main part:
Input: N and the variables i, a, b, c are assigned to 0, [], [], [] respectively.
Description: We create a for-loop. We consider every solution in queens(N, 0, [], [], []).
This will give us all the different lists a that were yielded from the function. So for every
such solution, we replace by 1 the value in every position of the board where a queen
should be placed. After that, we create a tuple we call sym where we include all eight
variants a board can have (the board itself, the board after a 90, 180 and 270 degrees
rotation and the reflection of each of the four). Let us now define a variable called new
which is set to True. Next for every element in the tuple sym, if any of them is in the list
fsol, then that means that there is already a version of the board that can be obtained
by applying rotation and reflection operations on our current board. In that case we set
the variable new to be False. The only way for the variable new to stay True, is that
none of the variants of the current board in sym already are in the list fsol. Then in
the case that new is indeed True, we add the current board to the list of fundamental
solutions. Then add value 1 to the variable count, and print the current board with the
function setboard(). After the if-statement, it is important to reset the board in order for
the next solution to be processed correctly.

This part of the code only gives us the fundamental solutions. The next function will
provide us with all solutions. We define the TotalNumberOfSolutions() function.

TotalNumberOfSolutions():
Input: N
Description: Gives us the total number of solutions for N by simply adding 1 to the be-
forehand defined parameter totalcount for every solution in queens(N, 0, [], [], []) and then
printing totalcount after the for-loop ended.
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2.4 Fundamental solutions

As one might have already noticed, we have already given the precise number of the
fundamental solutions for N up to 27 in the table of the section 3.1. But what exactly
are fundamental solutions? Let’s look at the case where N = 8. Then we have 92 distinct
solutions. Now if we take the symmetry operations of rotation and reflection of the board
of the solutions into account, then if we count these solutions as one, we will only have 12
solutions left, which will be called fundamental solutions. Most of the time a fundamental
solution has eight forms. First of all we have its original form, which we can subsequently
rotate three times by 90 degrees. Meaning, we rotate the original form by 90, 18 and 270
degrees, so we currently know about the existence of four forms. Secondly, we can now
take the reflection of each of these four forms, to obtain eight forms in total.
Output of the new code:

Notice that solution 10 in the output has only four forms in total, since it is identical to
its own 180 degrees rotation. The four forms consist of its original form and its reflection
and of the original form’s 90 degrees rotation and its reflection. Therefore, the total
number of distinct solutions for N = 8 is 11 · 8 + 1 · 4 = 92.
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3 N+k Queens Problem

3.1 Introduction

Let us now introduce the N + k queens problem. We still work on a N ×N chessboard,
but we now wish to place N+k queens on such a board without any attacking each other.
However simply placing N + k queens on a N × N board doesn’t sound possible, which
is why we also add k holes to the board. Note that a hole could also be considered as
a pawn, as we define that a queen cannot attack over a hole. In other words, it would
for instance be possible for two queens to be in the same row if they are separated by a
hole. In short, the goal is to place N + k queens and k holes such that no two queens can
attack each other.

Let us state some important results.

Theorem 3.1 (N+1 Queens). [See [8, Theorem 1]] For N ≥ 6, there is a solution to the
N + 1 queens problem.

Conjecture 3.2 (N+k Queens). [See [8, Conjecture 2]] For any positive integer k and
large enough N , there is a solution to the N + k queens problem.

Remark 3.3. The Conjecture above could also be stated as a Theorem. In fact the program
that we will present shortly shows that it is indeed true for smaller values of N , but we
can only assume the same for larger values of N .

In fact, we should have the following number of total solutions [See [3]]

N k = 1 k = 2 k = 3

6 16 0 0
7 20 4 0
8 128 44 8
9 396 280 44
10 2288 1304 528

and of fundamental solutions

N k = 1 k = 2 k = 3

6 2 0 0
7 3 1 0
8 16 6 1
9 52 37 6
10 286 164 66

.

3.2 Python code

Now we introduce a python code [See [2]], where we place N+k queens on a N×N board
with k holes in it. The goal is to find the number of solutions for the N + k problem
where N and k is given as input. Note that the holes are not placed at random but in
such a way to find all possible solutions.
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3.3 Explanation of the code

We first define the function Direction(). The function is used to determine what piece is
placed in a certain given direction from a given position. The possibilities are a hole, a
queen or nothing, meaning that we meet the board’s edge.

Direction():
Input: r, cq, dx, dy
Explanation of the input: The value r is to determine the current row of the board (note
that the rows are denoted from 0 to N − 1). The value cq denotes the current column
where a queen could be placed. The values dx (rows) and dy (columns) represent the
direction in which we look. They can take the values −1, 0 and 1. Since the board is
expressed in form of a list with multiple lists inside that represent the rows, (0, 0) is the
top left position of the board (board[0][0]). Hence we can say that for dx, dy being 0, the
position does not move. For dy = 1, the columns move to the right and for dy = −1 the
columns move to the left. For dx = 1 the rows move down and for dx = −1, the rows
move up.
Output: True/False
Description: When the function is called, we define two variables x, y to be equal to the
row r and column cq with their respective direction added to it. Then we create a while
loop that will be active as long as x and y are both between 0 and N − 1. For every
iteration of the loop, we check if the position we have moved to is occupied by either a
queen (then we return False because that would mean that it is not safe to place queen at
position given at the beginning of the function) or a hole (then we return True because a
queen would be safe to place). However, if we find neither a hole nor a queen, we add the
directions dx, dy to x, y again and start the next iteration. If even after every iteration of
the loop nothing has been returned, we return True because it means we met the edge of
the board.
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Next we define the function isSafe().

Input: r, cq
Output: True/False
Description: Here we call upon the function Direction() for the directions up (dx = −1
and dy = 0), to the left (dx = 0 and dy = −1), to the top left (dx = −1 and dy = −1)
and to the top right (dx = −1 and dy = 1). If the function Direction() returns True for
every of the four given directions, then the function isSafe() returns True and the queen
is indeed safe to place in the current position.

As we will see later, when running the code we run through every element of a row
before going to the next column. This means that we only need to check the positions
behind the current position and not the ones that come after. Now we define the function
LPC() where we check what the last piece in the given column is.

LPC():
Input: ch
Explanation of the input: ch indicates the column of a possible future hole, as we will see
later.
Output: returns 1, 2 or 0
Description: In the given column ch, we start in the last row (hence i = N − 1) and
while that i is still greater or equal to 0 (meaning row is still part of the board), we check
what the piece in that position is. We stop the loop as soon as we come upon a piece
(hole or queen). That is if the current position is not empty (empty denoted by 0 in
current position), then we return the value of the position. If the value is 1, we know it’s
a queen. If it is 2, we know it is a hole. However if for every position in the given column,
the position is empty, then the function returns 0 because the entire column will be empty.

We now come to the most important function of this code. We define the function
QAH().
Input: r, c, h
Explanation of the input: The parameters r and c indicate the rows and columns and h
denotes how many holes are left to place on the board.
Output: solutions
Description: As previously mentioned, when run, the code goes from one row to the next.
Hence if the function were to be called with the row r = N (note that rows go from 0 to
N − 1) as parameter and h = 0 (which means that there are no holes left to place), then
we have a complete board and will can upon the function Solution() with the current
board as its parameter to output the solution. However if that is not the case, then our
board is not yet complete. At this point, we are still at the position indicated by r and
c, but since we go through one row after another, we check the rest of the columns in our
current row r. We create a for loop that considers all the columns cq between our starting
column c and the last column N − 1 to place a queen. For such a column cq and row r,
we call upon the function isSafe(). As explained before, if it returns True, it means that
no position before our current position prevents a queen from being placed in the current
position with row r and column cq. Hence we set that position in the board to be equal
to 1 (which denotes a queen). Next we check if there are still holes to place i.e if h > 0.
If so we have multiple things to do. First it is important to note that in rows with holes,
the holes and queens alternate. This means that a hole is always between two queens.
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Now we check every column ch (still in row r) after the column where we placed the last
queen until the second last column (it cannot be the last column because then it would
not be possible to have a queen to the right of the hole). For such a column, we call upon
the function LPC(), which will return what piece is the last piece in that column. Note
that the hole has not yet been placed, and since holes and queens alternate, the first piece
above our current position would need to be a queen in order for a hole to be placed. If
the function LPC() indeed returns 1, then we can place the hole in the current position
with row r and column ch (we place a 2 in that position of the board). However it is
now important for a queen to be placed to the right of the hole (still in row r), hence we
call upon the function QAH() itself but with parameters r, ch + 1, h− 1. If a queen can
indeed be placed to the right of the hole, then the code continues as intended and tries
to place the next queens and holes. In fact we look for all the solutions with a hole at
current position. But if there is no possible way to place a queen to the right of the hole,
then the hole is not allowed to be there and hence we delete it by resetting its position
to 0. The for loop continues and repeats this process. The next line of code is reached in
two possible ways. Either the for loop is over or the condition h > 0 failed to be True.
In any case we call again upon the function QAH() itself and we go to the next row. To
be precise, the function is called with the parameters r + 1, 0 and h. Now we look for all
the other solution with a queen in the position row r and column cq. As soon as we have
found all the solutions with a queen in that position, we reset the position (a 0 in the
position of the board) and we look for solutions with this position being empty. That is,
the first for loop continues. The function calls itself until every possible solution has been
found.

It might be a bit hard to understand how multiple solutions can be printed when the
function QAH() is over once the first if statement is true. In short, when the function
runs, at some point it will call upon itself, then during that process it might call upon
itself again and so on. The important thing to remember is that when the first if state-
ment of the function is true, then the execution of that function ends, but the function
that called the function that just ended continues. This will repeat multiple times until
every possible solution has been printed.

Finally we have the last function of the code. We define the function Solution().
Input: board and the global variable allsol

Explanation of the input: allsol is the list where each board (solution) is added to
Output: Prints the solution board for us.
Description: For the solution given as a parameter, we print some characters according
to the values of the board. As often mentioned, when a position is equal to 1, we print
a "Q" denoting a queen. When the value is 2, we print "H" for a hole, and when it is 0,
we print "*" denoting an empty space. We also print some phrases and spaces to make it
more aesthetically pleasing.

Now for the final details, we define the global variables board, allsol and N . N denotes
the value for our N ×N board and the variable board represents the board itself. We set
the values for N and h, and we will have N + h queens on the board in the end. We also
set the initial value for board which is a list where the elements are also lists representing
the rows and N − 1 zero’s in every such list (row). The variable allsol is also set as an
empty list. We now call the QAH() function beginning at position (0, 0) and h holes. We
also print the number of total solutions.
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Output examples: 8+3 and 7+2 Queens

6+1 Queens
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4 N Queens Problem on a Torus

In this section, we will analyse the N -Queens problem on a chessboard covering a torus.
Here is a little reminder of what a torus looks like.

Figure 1: picture found at [6]

We now introduce toroidal chess. The rules of chess on a torus are different yet fairly
similar to normal chess. First of all, how do we represent the board? It might be best to
first imagine the concept of cylindrical chess. As the name suggests, it is played as if the
board were a cylinder. This is how it looks.

Figure 2: picture found at [5]

However we can represent it on a normal 2D chessboard. The moves are the same as
in the normal version, with the difference being that the left and right sides of the board
aren’t endpoints. Indeed one can move to the left and come out on the right side and
vice-versa. Now that we know how chess on a cylinder works, we can take the next step
to chess on a torus. We take the cylinder in figure 2 and imagine we connected the flat
surfaces of the cylinder. The result would look like a doughnut.
In fact, this can also be represented in a 2D chessboard. In addition to the left and right
sides being connected, moves from top side to bottom side and vice-versa are also possible.
The possible moves of a queen chess piece are being made visually clear in the following
figure.
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Remark 4.1 (Fun Fact). Though not relevant to the topic at hand, this is the starting
position of torus chess

Q: Queen
K: King
P : Pawn
k: Knight
R: Rook
B: Bishop
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Definition 4.2. The N -Queens problem on a torus is the mod N -Queens problem.

The following example makes the definition a bit more clear.
Example 4.3. Consider a 5 × 5 board and imagine a queen were placed on the square
(3, 3) and it wanted to attack a queen on the square (0, 1) (which is possible on a torus).
The queen would simply move diagonally (direction bottom left) for 2 squares. In fact
(3 + k, 3− k) (mod 5) for k = 2 is exactly the position (0, 1).

As we look at the mod N -Queens problem, with the squares of the board seen as
coordinates ((0, 0) top left and (N − 1, N − 1) bottom right), for a solution we need a
permutation σ of (0, . . . , N − 1) such that the queens in positions (i, σ(i)) do not attack
each other for i = 0, . . . , N−1. In fact, if a queen were to be placed on square (i, σ(i)), then
that queen attack every square in its row and column, but also the squares (i+k, σ(i)+k)
(mod N) and (i + k, σ(i) − k) (mod N) for any k. Hence we get that σ + x and σ − x
are also permutations if σ itself is a solution. We define x to be the identity permutation
(sends i to i).

Before we show how to compute how to find solutions for the N -Queens problem on a
torus, let us state an important theorem.

Theorem 4.4 (See [9, Theorem 1]). There exists a solution for the mod N-Queens problem
if and only if gcd(N, 6) = 1.

Proof. We will demonstrate this proof in three parts. Let us first show that it is indeed
possible to place N queens on the board such that it is a solution. If N and 6 are co-
prime, then 1, 2 and 3 are also co-prime to N . Let σ be the permutation that sends i to 2i
(mod N). As mentioned before, σ + x and σ − x are also permutations. In fact, σ sends
i to 2i (mod N), σ + x sends i to 3i (mod N) and σ− x sends i to i (mod N). We have
the following three boards for example with N = 7 respectively.

2i mod N 3i mod N i mod N

The first figure is indeed a solution, and all three of them are indeed permutations.
As to why the first figure is a solution is pretty simple. It is clear why queens do not
attack each other vertically and horizontally. As for diagonally, we know that for both ”/”
and ”\” diagonals, queens that would attack each other would have the same sum i + j
(mod N) and difference i − j (mod N) respectively, with i, j denoting the coordinates
0, . . . , N − 1. For 2i, none of the sums (mod N) are equal to each other and none of
the differences (mod N) are equal to each other. For instance if we were to have queens
on positions (1, 5) and (4, 1), they would attack each other as 1 − 5 (mod N) ≡ 4 − 1
(mod N) with N = 7.

Next we show that if σ is a permutation of (0, . . . , N − 1) such that σ + x is also a
permutation, then N is odd. The permutation σ + x can be seen as a single permuta-
tion but also as a sum of two permutations, namely the permutation σ and the identity
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permutation x. Let us look at both. If σ + x is a sum of two permutations, we have
N−1∑
i=0

(σ(i) + i) (mod N) = 2
N−1∑
i=0

i (mod N) = N(N − 1) (mod N) = 0 (mod N).

(1)
Note that since σ and x are both permutations of (0, . . . , N − 1), they necessarily have
the same sum (mod N), which is why we have twice the sum

∑N−1
i=0 i (mod N). Now if

σ + x is a single permutation, we have
N−1∑
i=0

(σ(i)+i) (mod N) =
N−1∑
i=0

i (mod N) =
N(N − 1)

2
(mod N) =

{
0 (mod N) Nodd

N
2

(mod N) Neven
.

In order to have
∑N−1

i=0 (σ(i)+i) (mod N) =
∑N−1

i=0 (σ(i)+i) (mod N), which we obviously
want, we have than N is odd.

Finally, if σ is a permutation of (0, . . . , N − 1) such that σ + x and σ − x are also
permutations, then N cannot be divided by 3. We can again look at σ + x and σ − x
as single permutations but also as sums of two permutations, again permutation σ and
identity permutation x. We consider σ + x and σ − x to be two single permutations and
we get
N−1∑
i=0

(σ(i)+i)2+
N−1∑
i=0

(σ(i)−i)2 (mod N) =
N−1∑
i=0

2σ(i)2+i2 (mod N) = 4
N−1∑
i=0

i (mod N).

Note than again since σ and x are both permutations of (0, . . . , N−1), we have four times
the same sum. We now consider σ+x and σ−x to be two sums of two permutations and
we get

N−1∑
i=0

(σ(i) + i)2 +
N−1∑
i=0

(σ(i)− i)2 (mod N) = 2
N−1∑
i=0

i (mod N).

From these two equalities, we get

4
N−1∑
i=0

i (mod N) = 2
N−1∑
i=0

i (mod N),

which implies that

2
N−1∑
i=0

i (mod N) =
N−1∑
i=0

i (mod N).

From (1), we get that

2
N−1∑
i=0

i (mod N) = 0 (mod N).

Finally, this implies that

0 (mod N) = 2
N−1∑
i=0

i (mod N) =
2N3 − 3N +N

3
(mod N) =

N

3
(2N2−3N+1) (mod N).

If N were divisible by 3, N
3

would become a positive integer but 2N2 − 3N +1 would not
be divisible by 3. Hence the term (mod N) would not equal 0.

In conclusion, N cannot be even, hence N cannot be divided by 2 and N can also not
be divided by 3, hence we have gcd(N, 6) = 1.
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4.1 Python-code

The following code is based on the permutation code we introduced at the beginning.
We simply added the conditions needed for it to be considered as the N Queens puzzle
on a toroidal board. Just like the permutation code, the following code works with the
permutation method to find all solutions on an N ×N board with N queens. The input
is again the variable N , which gives us our N ×N board size and the number of Queens,
which will be placed on the board. The output will again consist of the number of total
solutions for specific N and it will provide us with a simple illustration of all the distinct
solutions.
Program with simple explanations in form of comments (continued from code in Section
2.1.3):
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4.2 Explanation of the code above

The code works exactly the same as the permutation code. The only difference occurs
at the placequeen() function. That is, because in toroidal chess the queen covers more
fields as already mentioned earlier. Here, we added some if statements that take the fact
into account that the left and right as well as the bottom and top side of the board are
connected with each other.

Example of placequeen()

Output example
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4.3 Number of Solutions on a Torus

The following table [4, Sequence A000170 and Sequence A051906] shows us the number of
solutions on a toroidal chess board in comparison to the number of solutions on a normal
chess board.

Number of Queens N Total Solutions on Normal Board Torus Solutions

1 1 1
2 0 0
3 0 0
4 2 0
5 10 10
6 4 0
7 40 28
8 92 0
9 352 0
10 724 0
11 2680 88
12 14200 0
13 73712 4524
14 365596 0
15 2279184 0
16 14772512 0
17 95815104 140692
18 666090624 0
19 4968057848 820496
20 39029188884 0
21 314666222712 0
22 2691008701644 0
23 24233937684440 128850048
24 227514171973736 0
25 2207893435808352 1957725000
26 22317699616364044 0
27 234907967154122528 0
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For the solutions on a torus, there are always two solutions that are linked together
for a certain N . Consider the following examples.

Recall in Theorem 4.4, we talked about the permutations σ, σ + x and σ − x, where
x is the identity permutation. Now if solution 1 is the permutation σ, then solution 2 is
the permutation σ+ x and similarly if solution 2 is the permutation σ. then solution 1 is
the permutation σ − x. We observe also exactly the same approach for solution 3 and 4.

5 Conclusion

There exist many different approaches to finding solutions for the N queens puzzle.
Throughout this project, we have introduced a few, namely the backtracking and the
permutation method. There probably are many more. We have come to the conclusion
that even if it isn’t the most efficient method, that the backtracking method is the go-to
method. What we mean by that is that it is way simpler than the permutation method
and most people are already familiar with that method, since it is often even used sub-
consciously in popular games like Solitaire or crosswords for example.
Another reason why we think that the backtracking method has the edge over the per-
mutation method is that it doesn’t fix the number of queens that will be placed unlike
the permutation method. For example, if we were to use the permutation method for the
N + k queens puzzle it would be impossible to handle the already fixed solutions and add
k holes and queens to it.

For future work, the concept of 3D chess is an interesting research area for the N
queens problem. This would be a N ×N ×N board where N boards are stacked on each
other and queens can move up and down in addition to the standard movements.
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