
Exploring Runge’s
phenomenon

Supervisor: Thierry Meyrath

Aylin Cosgun

Jules Nies

Experimental Mathematics Lab

BMATH
Université du Luxembourg

May 31st, 2022

Contents

1 Interpolation 2

2 Approximation and Weierstrass Theorem 3

3 Polynomial Interpolation 3

4 Lagrange interpolation 4

5 Newton interpolation 7

6 Polynomial interpolation error 12

7 Runge’s phenomenon 13

8 Chebyshev interpolation 18

9 Python code 19

10 References 21

1

1 Interpolation

The interpolation of function values or measured values is about expressing pairs
of values by a formula, in other words to determine a curve that passes through
given pairs of values. Specifically expressed we are looking for a continuous
function f(x) for n + 1 points (xk; yk) so that yk = f(xk) for k = 0, . . . , n,
so that the given points lie on the graph of f . The interpolation allows us
to get information in between for measurement points that are far apart, by
connecting the given values by a line/curve through the interpolation. As we
shall see later, if we have n+1 points (xk; yk) with k = 0, . . . , n and xk pairwise
different then we can always determine a polynomial of degree at most n degree
so that pn(x) =

∑n
k=0 ckx

k is true, as we will see later, and we can find ck
so that yk = pn(xk) for all k = 0, .., n. To determine this polynomial, which
is continuous and arbitrarily often differentiable, one must solve a system of
equations.

Example 1.1. 2 points lay on a straight line (polynomial of the first degree)
and 3 points on a parabola (polynomial of the second degree). These are trivial
cases.

To summarize we have the following definition of the interpolation problem:

Definition 1.1. Given n+1 pairs of values (xk; yk) with k=0,. . .,n and xk pair-
wise different, which are also called interpolation points. We look for continuous
function f with the property: f(xk) = yk∀k = 0, ..., n.

Example 1.2. We have the following points: (0, 2) and (1, 3). A possible func-
tion for the pairs of values is f(x) = x+2. In this case f(x) is the interpolating
one. However, f(x) =

√
x + 2 and f(x) = x3 + 2 are also interpolants of these

pairs of values. So the conclusion we draw from this is that there is more than
one interpolant for these pairs of values.

2

So the general interpolation problem is not uniquely solvable. Therefore, we
will limit the class of possible functions f.

2 Approximation and Weierstrass Theorem

The approximation by an interpolation function is often the basis of an effective
approximate problem solution for complicated and complex functions. First of
all, we will start with the Weierstrass theorem.

Theorem 1. Let f : [a; b] → R be a continuous function. For any ϵ > 0,∃p, p
being a polynomial, such that max

x∈[a;b]
|f(x)− p(x)| < ϵ.

In other words, if we have a function f that is continuous on a certain closed
interval, we can find a polynomial p that approximates this function on the
interval, and the difference between our approximation polynomial p and the
function f is as small as ϵ.

3 Polynomial Interpolation

We now consider polynomial interpolation, that is the interpolation problem
with the interpolating function. Being a polynomial, the interpolation polyno-
mial is a polynomial which passes through exactly given points. So we want
to construct a polynomial that passes through known points. You could also
connect the points by so called linear splines, but polynomials are better suited
because they have special properties. For example, you can differentiate them
infinitely often, for polynomials up to degree 4 you can calculate exact zero-
points and evaluate the function with the Horner Scheme. We have already
discussed the case of 3 given interpolation points in the general interpolation, in
the following we will interpolate for n+1 interpolation points (xk, yk) by polyno-
mials of degree at most n. A polynomial of degree n has n+1 degrees of freedom
and coefficients, we will define the coefficients by n+1 conditions. We will do
this using a system of equations from the interpolation problem. So we get the
following linear system of equations with n+1 equations and as many unknowns

3

a0, ..., an to solve, with the condition that the points xk are pairwise different:x0
0 . . . xn

0
...

. . .
...

x0
n . . . xn

n

a0

...
an

 =

y0
...
yn

The determinant of the coefficient matrix is called Vandermonde determinant.
So now we come to the definition of the existence and uniqueness of the inter-
polation polynomial.

Theorem 2. Given n+1 pairs of values (xk, yk) with k = 0, .., n and yk ∈ R
and xk pairwise different ∈ R, there exists a unique polynomial p with degree
at most n such that p(xk) = yk∀k ∈ 0, . . . , n. [3]

Proof. It can be shown that the above Vandermonde determinant is non-zero.
Hence, the above linear system has a unique solution.
We now give an alternative proof for the unicity, we will do a proof by contradic-
tion. So let’s suppose there exists two interpolating polynomials P (x) and Q(x),
of degree at most n for the same pairs of values (xk, yk), with P (x) ̸= Q(x).
Let’s define D(x) = P (x) −Q(x) of degree most n. Then, D(xk) = 0, because
P (xk) = Q(xk) = yk. Then D(x) must have n+1 roots.
But from the Fundamental Theorem of Algebra we know that D(x) cannot have
more than n roots. Contradiction!
It must be P (x) = Q(x) and D(x) = 0.

Since the above method to determine the polynomial interpolation requires
us to set up long and difficult systems of equations and then solve them, it
is very time-consuming. Therefore, we will be interested in other methods to
determine the interpolation polynomial. Now that we know that such an inter-
polation polynomial exists. Therefore, we have multiple choices, among which
the Lagrange and the Newton polynomials are the most common.

4 Lagrange interpolation

Lagrange interpolation allows us to find a polynomial that passes exactly through
given points. Let’s start by saying that we need a function that satisfies the
following:

li(x) =

{
1 x = xi,
0 x = xj , j ̸= i

If we have the following polynomial: y(x) = (x − a)(x − b)(x − c) we find the
zeros when x=a, x=c and x=b. So we can produce polynomials which are equal
to zero at different points. For example, if we have nodes at x=0,1,2 and 3. We
would like to have the following fulfilled:

l1(1) = 1 and l1(0) = l1(2) = l1(3) = 0

4

So to satisfy this we could choose the following polynomial:

l∗1(x) = (x− 0)(x− 2)(x− 3)

So we get the following graph:

We notice that it goes through the right nodes but at x=1 we do not get the
right number. When x=1 we have (1-0)(1-2)(1-3)=2 and not 1 as we wanted.
So this formula does not work. However, if we take this calculation on the
denominator and take the polynomial on the numerator. We get:

l1(x) =
(x− 0)(x− 2)(x− 3)

(1− 0)(1− 2)(1− 3)

We now have l1 = 1 and at all the other nodes we have it equal to zero and
if we divide this by the same polynomial evaluated at the same node where we
want it to equal one, then we get the so-called Lagrange polynomial. So we get
the following Lagrange polynomials for the nodes 0,1,2 and 3:

Definition 4.1. The Lagrange form of the interpolation polynomial is given as
the sum of the function values times the Lagrange polynomials:

Pn(x) =

n∑
i=0

yi · li(x)

5

with li(x) =

n∏
j=0,j ̸=i

x− xj

xi − xj

For a set of nodes xi = 1, .., n, we get n+1 Lagrange polynomials, for xi pairwise
different.
The condition j = 0, j ̸= i is necessary, because otherwise we could get 0 on the
denominator and this is impossible.

First, polynomials are created that pass through a certain point. For exam-
ple, we have l0 = 1 at the first point and 0 at the second point, l1 = 1 at the first
node and zero at the second and so on. These are then the Lagrange polyno-
mials, which each contribute to its own node. Now each individual polynomial
is multiplied by a y-value that it should have and then all are added together.
To calculate the Lagrange polynomial, you only need the x-values of the given
points. The polynomial that comes out of this then interpolates all the given
points.

Example 4.1. We have the following points: A = (2, 1), B = (1, 3) and C =
(5, 4). We first have to calculate the Lagrange polynomials:

l0 =
x− 1

2− 1
· x− 5

2− 5
= −x2 − 6x+ 5

3

l1 =
x− 2

1− 2
· x− 5

1− 5
=

x2 − 7x+ 10

4

l2 =
x− 2

5− 2
· x− 1

5− 1
=

x2 − 3x+ 2

12

So now we have to multiply them by the y-values and add everything together:

Pn(x) = 1 · −x2 − 6x+ 5

3
+ 3 · x

2 − 7x+ 10

4
+ 4 · x

2 − 3x+ 2

12
=

3x2 − 17x+ 26

4

The degree of the interpolation polynomial is at most as large as the num-
ber of given points minus one and there can be no other polynomial of the
same degree that also passes through the same points. This calculated polyno-
mial is therefore unique. The advantage of Lagrange interpolation is that the
Lagrange polynomial depends solely on the x-values and not on the measured
y-values. This means that in an experimental set-up where you always take
a measurement at the same time and the same place, you can always renew
this by multiplying the new y-values with the Lagrange base polynomials. The
disadvantage of Lagrange interpolation is that if only one x-value is added you
have to calculate all the base values again and this is very time consuming. In
addition, one is inclined to make running errors in these calculations, so the
Lagrange interpolation becomes numerically unstable. Therefore, we will talk
about a better, faster and easier method to calculate interpolation polynomials.

6

5 Newton interpolation

Definition 5.1. Given n+1 pairs of points (xk; yk) ∀k ∈ 0, . . . , n. The Newton
interpolation polynomial is the sum of constant coefficients multiplied by the
Newton base polynomials.

Pn(x) =

n∑
i=0

Ci ·Ni(x)

with Ni(x) =

i−1∏
j=0

(x− xj)

Ci being the so-called divided differences.

The problem with Newton interpolation is the same as with Lagrange inter-
polation, finding a polynomial which passes though given points (nodes). The
difference between the two interpolation methods is the calculation of the basis
polynomial. Compared to the Lagrange basis polynomials, the Newton basis is
relatively easy to determine. With the Newton basis polynomials, the difficulty
lies in calculating the constant coefficients, but there is a method that makes it
easier, it is called divided differences. By the definition, interpolating polyno-
mials must agree with the values at the nodes, this means: pn(xi) = yi and for
example with (x0, y0), (x1, y1) and (x2, y2) as nodes we have the following:

• For 1 node: p0(x) = y0 ⇔ c0 = y0.

• For 2 nodes we have: p1(x) = c0+c1(x−x0) = a0. If we substitute x with
x0, we get: p1(x0) = c0 + c1(x0 − x0) = a0 and p1(x0) = y0. So c0 is still
y0 like we had with only one node. So we see that when we add a new
node we can keep the old calculation and only need to add the new one.
If we rearrange: p1(x0) = y0 + c1(x1 − x0) = y1 ⇔ c1 = y1−y0

x1−x0
=: [y0, y1],

which is the divided difference of first order.

• For 3 nodes: p2(x) = y0 + [y0, y1] (x − x0) + c2(x − x0)(x − x1). If we
substitute x with x2, we get: p2(x2) = y0 + [y0, y1] (x2 − x0) + c2(x2 −
x0)(x2 − x1) = y2. If we rearrange this we get to: c2 = [y0,y2]−[y0,y1]

x2−x1

So these calculations of the divides differences leads us to a definition:

Definition 5.2. Given n+1 pairs of points (xk; yk), k = 0, ..., n. The divided
differences are defined recursively by [yk] = yk, k = 0, ..., n:

[yk, yk+1, ..., yk+(i−1), yk+i] =
[yk+1, ..., yk+(i−1), yk+i]− [yk, yk+1, ..., yk+(i−1)]

xk+i − xk

7

for i = 1, ..., n and k = 0, ..., n-1
This equation allows us to calculate the n+1th order of divided differences from
an nth order of divided differences.

So now we can use the board of divided differences :

For the scheme of divided differences, we think of the difference quotient. That
means we divide the difference of two y-values by the difference of the corre-
sponding x-values. We do this with all adjacent pairs of points. We can also
swap the rows, the scheme will then be slightly different, but the end result
remains the same.

Example 5.1.

We want to determine the polynomial with the minimum degree that goes
through the following points.

8

Now we have calculated the coefficients and just the following calculation
left to do:

P3(x) = 2 + 1 · (x− 1) + 2(x− 1)(x− 3)− 4

3
(x− 1)(x− 3)(x− 2)

=
4

3
x3 + 10x2 − 65

3
x+ 15

So we see that this calculation is much shorter to calculate the interpola-
tion polynomial compared to the Lagrange method. If we want to add another
point through which this interpolation polynomial should pass, we do not have
to start the calculation from the beginning, but we can simply add the point
at the bottom of the table and then calculate the scheme of divided differences
again and let the pyramid point to a value again, then we can use the same
summands, we only have to add one summand at the end. In addition, the last
point is always missing from the sum, so you can reduce numerical rounding
errors by cleverly swapping the rows. So you can make the problem numerically
more stable.

To show how Newton interpolation works, we take a look at another exam-
ple. In particular, we will also investigate if interpolation polynomials can be
used to approximate functions (Recall that by Weierstrass theorem, continuous
functions on closed intervals can be approximated by interpolation polynomi-
als). We consider the function f(x) = sin(x) on the interval [−10; 10]. We know
that this function is oscillating between -1 and 1. First, we start by interpolat-
ing sin(x) by 5 equidistant points. We get the following graph:

9

Here, the green line represents the original sin(x) function, and the blue line is
the interpolation polynomial at 5 equidistant points of sin(x). We conclude that
the maximal error between sin(x) and the polynomial is still very high because
the interpolation cannot take into account the oscillation of sin(x) yet.
Therefore, we try by interpolating at 8 points. We get the following graph:

We can see an amelioration in the approximation because more interpolation
points can increase the accuracy of the approximation, but it is still not perfect.

10

We now take 12 equidistant points:

We see that the interpolation error minimizes whilst approaching 0, but still
expands towards both extremities of the graph. Therefore, we now take 16
equidistant points to interpolate at and we get the following graph:

This interpolation polynomial is already very close to the real sin(x) function.
We now have a look at the evolution of the maximum error whilst increasing
the number of interpolation points. This table represents the number of in-
terpolation points and the absolute value of the maximum error between the
interpolation polynomial P(x) and sin(x).

11

Number of points max
[−10;10]

| sin(x)− P (x)|

5 1.98
6 2.71
7 1.17
8 5.37
9 2.80
10 4.03
11 2.46
12 1.75
13 1.14
14 0.51
15 0.34
16 0.11
17 0.07
18 0.02
19 0.01
20 0.003
55 0.0003

We can represent this table in a graph, the x-axis gives the number of points
where we interpolate in, and the y-axis gives the maximum error.

We see that the maximum error tends towards 0 as the number of interpolation
points increases. This is the case for a lot of functions.

6 Polynomial interpolation error

We take individual points of a function f(x) in order to calculate an interpolation
polynomial p(x) for these points. Now we would like to find out the interpolation

12

error that appears when calculating the interpolation polynomial, i.e. how large
the error is between the polynomial f(x) and the polynomial p(x). So in other
words, we want to know how good p(x) approximates f(x) on a certain interval.
The error varies from point to point, at some points it is zero but at other points
it could be very high. This is because we only have the data from the given
points and know nothing about the intervals between the points. So we want
to find out the maximum error that the interpolation polynomial has. We have
the following theorem and definition:

Theorem 3. If we have n+1 pairwise different points on an Interval I=[a,b] and
f(x) has n+1 derivatives.The error at x ∈ I is defined as: En(x, f) = f(x)−p(x)
where p(x) denotes the interpolation polynomial that interpolates f. Then ∀x ∈
I, there exists a number ξ(x) in the interval I such that:

f(x) = p(x) +
f (n+1)(ξ(x))

(n+ 1)!
(x− x0)...(x− xn)

So we obtain the following expression for the maximum error:

max
[a,b]

|f(x)− p(x)| ≤ 1

(n+ 1)!
max
[a,b]

|f (n+1)(x)|max
[a,b]

|
n∏

i=0

(x− xi)|

The first term depends of the function f(x) and the second term depends on the
choice of points.

If we increase the number of points, one would think that the interpolation
error should go towards 0 and that approximation by interpolation polynomials
could be possible. However, as we shall now see, this is not always the case.

7 Runge’s phenomenon

We now try to interpolate the so-called Runge function f(x) = 1
25x2+1 . We start

by interpolating in 5 equidistant points in [-1;1].

13

Recall that the green line represents f(x) and the blue line represents the inter-
polation polynomial of f(x). We see that five points are not enough to make
a perfect approximation, so we try, by what we know so far, to increase the
number of interpolation points in order to increase approximation accuracy.

With 8 interpolation points, the accuracy increases in the vicinity of 0. Now
we increase the number of points again, and with 11 points, we can observe a
strange behavior of the Newton interpolation polynomial.

14

As the approximation accuracy increases around x=0, the maximum error be-
tween f(x) and the interpolation polynomial increases as well unlike expected.
When interpolating at 15 points, we get the evidence that the approximation
does not work as we expected:

It seems that the interpolation for a function like f(x) is not usable for ap-
proximation, because it gets worse while increasing the number of interpolation
points. Before looking at the actual issue we commit while interpolating, let us
analyze the evolution of the maximum error between our interpolation polyno-
mial P(x) and f(x).

15

Number of points max
[−10;10]

|f(x)− P (x)|

5 0.438
6 0.432
7 0.617
8 0.247
9 1.0
10 0.3
11 1.91
12 0.55
13 3.66
14 1.07
15 7.19
16 2.1
17 14.37
18 4.22
19 29.2
20 8.57
21 59.8
22 17.6
23 123.6
24 36.4
25 257.2
26 75.8
27 538.2
28 158.7
29 1130.7
45 481579.3
75 51960402911.3

We can represent this table in a graph, where we can observe another phe-
nomenon:

16

First, we see that the maximum error is increasing, as we expected. We can
observe as well that for an odd number n of interpolation points, the error is
greater than the error when taking the next even n+1 interpolation points. This
is due because if we try to have a symmetry both on the left and on the right
side of the y-axis and by taking an odd number of interpolation points, one
point will lie exactly on the y-axis, which causes this to happen. By taking only
odd numbers of points, we get the following maximum error graph:

As we now know that for some functions, the approximation by interpolation
can go wrong and we can find interpolation polynomials that interpolate in a
lot of points but are far off the given function. We emphasize that so far, we
only considered equidistant interpolation points. We suppose that by choosing
the interpolation points differently, we can reduce the maximum error.

17

8 Chebyshev interpolation

Chebyshev nodes for polynomial interpolation were designed to optimize the
choice of nodes in a way that the error will be distributed equally throughout
the interpolating interval.
Consider an interval]a,b[, then the Chebyshev nodes are defined as follows:

x̄i =
1

2
(a+ b) +

1

2
(b− a) cos(

2i+ 1

2n+ 2
π) ∀i ∈ (0, .., n)

So we have again the shift to the midpoint of interval [a,b] and then the scaling
factor with the cosine function which distributes the xi on this interval.
In conclusion we now know that if we take the Chebyshev nodes instead of
equidistant points, the error can be minimized so much such that |f(x)−P (x)| <
ϵ can be achieved ∀ϵ > 0.

If we now take the Chebyshev nodes with our Runge function, we get the
following graph for 11 interpolation points:

The maximum approximation error is 0.1 for this graph and it was 1.91 for the
Runge function interpolated on equidistant points.

We can resume the maximum approximation error for interpolating the
Runge function f(x) with equidistant points versus Chebyshev nodes in a table.
We call the interpolation polynomial interpolating through Chebyshev nodes
C(x).

18

Number of points max
[−10;10]

|f(x)− P (x)| max
[−10;10]

|f(x)− C(x)|

7 0.617 0.26
9 1.0 0.17
11 1.91 0.11
13 3.66 0.07
15 7.19 0.05
17 14.37 0.03
19 29.2 0.02
21 59.8 0.02
23 123.6 0.01
25 257.2 0.01
27 538.2 0.004
29 1130.7 0.003
75 51960402911.3

By interpolating in Chebyshev nodes, we can represent the maximum approxi-
mation error in a graph:

9 Python code

In this section, we will briefly look at the Python code for the Newton interpo-
lation of the Runge function.

1 import numpy as np

2 from matplotlib import pyplot as plt

Therefore, we have the part where we define our functions:

19

1 def divided_differences(x, y):

2 matr = np.zeros([len(x), len(x)])

3 matr[:,0] = y

4 for k in range(1,len(x)):

5 for i in range(len(x)-k):

6 matr[i][k] = \

7 (matr[i+1][k-1] - matr[i][k-1]) / (x[i+k]-x[i])

8

9 return matr

10

11

12 def newton(matr, x, new_x):

13

14 n = len(x) - 1

15 p = matr[n]

16 for k in range(1,len(x)):

17 p = matr[n-k] + (new_x -x[n-k])*p

18 return p

19

20 def runge(x):

21 y = 1 / (25*x**2 + 1)

22 return y

We define the divided differences, the Newton interpolation as well as
the Runge function which we will use later on.
Then we proceed by defining in what range of points we want to interpolate, so
here, we start by interpolating in 5 points until we end up at 30 excluded.

1 F = []

2 N = range(5,30,1)

Then we create a for loop in which we interpolate for every number of points.
Here, we first create the Runge function again in order to be displayed as the
green line on every graph. Then, we create some points, in this case 1000 new
points where we compute the y-coordinate via the Newton formula. This gives
us a very rounded approximation polynomial curve. Then, we use this part of
the code to compute the maximum error between the interpolation polynomial
graph P(x) and f(x) as well, which is stored in a list called F. Thereafter, the
code just plots all the graphs with P(x), f(x) and the interpolation points and
it outputs the maximum error as well.

1 for n in N:

2 x = np.linspace(-1,1,n)

3 y = 1 / (25*x**2 + 1)

4 d_d0 = divided_differences(x, y)[0]

5 new_x = np.linspace(-1, 1, 1000)

6 new_y = newton(d_d0, x, new_x)

20

7 f = max(np.absolute(runge(x_plot)-new_y))

8 F = np.append(F, f)

9 print("The maximum error is: ", f)

10 plt.plot(new_x, new_y)

11 plt.plot(x, y, "o")

12 plt.plot(x_plot, runge(x_plot))

13 plt.grid()

14 plt.show()

15 plt.plot(N, F)

16 plt.show()

These code snippets can be run all together in that order in one .py file.
If we now change the definition of x from the np.linspace to

1 x = chebyshev(-1, 1, n)

where [a,b] is the interval which the nodes are computed in and n is the
number of nodes, we can create the Chebyshev nodes like in the following code:

1 def chebyshev(a, b, n):

2 k = np.array(range(n+1))

3 c = np.cos((2*k+1)*(np.pi)/(2*(n+1)))

4 return 0.5*(a+b)+0.5*(b-a)*c

If we add this function to our code, then it will compute the Runge interpo-
lation in the Chebyshev nodes so that the error of approximation decreases by
increasing the number of interpolation points.

10 References

[1] Michael T. Heath. Scientific Computing: An introduction Survey , Inter-
national edition 1979

[2] Eugene Isaacson Herbert Bishop Keller. Analysis of numerical Methods,
Dover Edition 1994

[3] Michael Knorrenschild. Numerische Mathematik: Eine beispielorientierte
Einführung, September 2012 (5. aktualisierte Auflage)

[4] Günter Bärwolff. Numerik für Ingenieure, Physiker und Informatiker,
Juni 2006 (3. Auflage)

[5] Michelle Schatzman. Numerical Analysis: a mathematical introduction,
2002

21

