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Abstract

The following paper is a detailed summary of our research about ”Turmites”,
a special case of a so-called cellular automaton. Based on our findings, we will
establish several conjectures. The main purpose of this paper is to broaden our
and our readers’ understanding of the repetitive structure that can be found in the
chaotic turmite world.
We would like to thank Ms. Tara Trauthwein for all of her help and guidance
throughout our project.
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1 Introduction

Let us start off by giving a brief definition of what a turmite is, followed by a precise
example to help understand the basic evolution of such a simulation.

A turmite, whose name originates from the insect ”termite”, can be regarded as a small
ant living on an infinite 2-dimensional grid of squares. The turmite has two particular
attributes, which constantly vary over time: a state and an orientation. Meanwhile, the
squares of the grid also have a fluctuating attribute, namely a colour. While travelling
across the grid from cell to cell, the turmite leaves a clear trail behind, colouring the
visited squares with numerous shades. These colours, along with the ant’s movement, are
entirely defined by the following set of rules and matrices.

1.1 General rules

Suppose we are working with m distinct states {0, . . . ,m−1}, n distinct colours {0, . . . , n−
1} and 4 possible turns/changes of direction {0 = no turn, 1 = 90◦ turn to the right, 2 =
180◦ turn, 3 = 90◦ turn to the left} for our turmite. Next, let us define the 3 rule ma-
trices, which will give us the new state and direction of our turmite, as well as the new
colour of the square the turmite leaves behind, after each single step:

S =


s0,0 s0,1 . . .
s1,0 s1,1 . . .

...
...

. . .


n columns

m
rows

with si,j ∈ {0, ...,m−1},∀i ∈ {0, ...m−1}, j ∈ {0, ..., n−1}

C =


c0,0 c0,1 . . .
c1,0 c1,1 . . .

...
...

. . .


n columns

m
rows

with ci,j ∈ {0, ..., n−1},∀i ∈ {0, ...m−1}, j ∈ {0, ..., n−1}

T =


t0,0 t0,1 . . .
t1,0 t1,1 . . .
...

...
. . .


n columns

m
rows

with ti,j ∈ {0, 1, 2, 3},∀i ∈ {0, ...m− 1}, j ∈ {0, ..., n− 1}

At each timestep, the turmite, of state s and direction d, finds itself on a square of colour
c. Then, these three values are updated simultaneously in the following way:

s = Ss,c (the (s, c) coefficient in the state matrix S)

c = Cs,c (the (s, c) coefficient in the colour matrix C)

t = Ts,c (the (s, c) coefficient in the turn matrix T)

Finally, the ant, of updated state s and direction d, moves one step in the direction that
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it is facing, colouring in the cell it left behind with the new colour c. This procedure can
then be repeated and will run on forever, unless one sets a boundary to the grid size or
to the number of steps.

1.2 Basic example

Let us take a closer look at a specific example of a 2-state, 2-colour turmite to get a better
understanding of how the grid evolves. The pictures shown down below were custom-made
by us and can be seen as a visual aid to help understand the general rules.

Let

S =

(
1 0
1 0

)
C =

(
1 1
1 0

)
T =

(
0 3
1 0

)
be the different rule matrices and let all the squares of the grid be of colour 0 (= white in
our case) initially. If our ant is in state 0, facing North and sitting on a square of colour
0, then these three values are updated as follows:
After step 1:

s = S0,0 = 1

c = C0,0 = 1

t = T0,0 = 0

This means that the new state of our ant is 1, it’s direction remains the same (since 0
represents no turn) and it moves one square to the North, colouring the square it leaves
behind in the colour 1 (= black in our case). The new square the ant has moved to
initially has colour 0.

After step 2:
s = S1,0 = 1

c = C1,0 = 1

t = T1,0 = 1

This means that the state of our ant remains 1, it turns 90◦ to the right and moves one
square to the East, colouring the square it leaves behind in the colour 1.
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After step 3:
s = S1,0 = 1

c = C1,0 = 1

t = T1,0 = 1

We get the exact same movement as described before.

By repeating this procedure, we obtain a nice, forever growing spiral, seen down below.

Figure 1: Visual representation after 10˙000 steps (image from own simulation)

To help understand where the idea of turmites originates from, we will first take a brief
look at the history of different types of cellular automata and give a short summary
of some already well-known mathematical results. Next, we will share our observations
of the general behaviour of turmites, when they are defined by random rule matrices of
various sizes. In addition, we will dive into further detail by explaining two phenomenons,
which occur very frequently: the highway and the busy beaver. Furthermore, we will also
analyse other interesting statistics such as the average steps it takes to notice a repetitive
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pattern, or the average length of a continuous cycle. Moreover, we will examine every
possible 2-state, 2-colour turmite, to try and find any particular properties about the
rule matrices. Besides that, we will show the most remarkable shapes and patterns that
we discovered during our research period. Last but not least, we will present our final
conclusion and display the Python codes we used for our simulations in the appendix,
followed by our references.

2 History & mathematical background

In computer science, turmites are known to be a type of cellular automaton and it has
been proven that generally turmites are equivalently powerful as Turing machines, a math-
ematical and computational abstract machine, whose actions are defined by an internal
state transition table.[8]

2.1 Langton’s ant

In 1986, the computer scientist Christopher Langton became one of the first people to
study the behaviour of turmites in general.[4] In particular, he studied a very popular
case, known nowadays as ”Langton’s ant”.[7] The movement of the ant can be defined as
following:

� at a white square, turn 90◦ to the left, move forward one square and change the
colour of the previous square to black

� at a black square, turn 90◦ to the right, move forward one square and change the
colour of the previous square to white

This can be translated to these three rule matrices

S =

(
0 0
0 0

)

C =

(
1 0
1 0

)
T =

(
1 3
1 3

)
Here it is important to notice that there are multiple possible matrices that we could have
used to define the same movement as described above. Hence, we can conclude that a
turmite is not always defined in a unique way.

After about 10˙000 steps, he was able to observe a repetitive pattern. This type of
structure is frequently called a ”highway” and is none other than a sequence of steps
which repeats indefinitely. It turns out that this behaviour, where the turmite forms an
infinitely long highway, is quite common among turmites, as will be explained in detail
throughout the paper. It remains an unproven conjecture that, no matter the initial
colour configuration of the squares of the grid, the ant will eventually build a highway
in every case. Nevertheless, in 1997, the mathematician S. Troubetzkoy proved that, for
all initial configurations of the grid, the trajectory of the ant is always unbounded.[5]

6



This property also holds if we would place the ant on a triangular grid. Furthermore, in
2000, three mathematicians, A. Gajardo, A. Moreira and E. Goles, were able to show that
Langton’s ant is Turing complete, meaning that it can be used to simulate any Turing
machine.[2]

Figure 2: Visual representation of Langton’s ant after about 8˙000, 10˙000 & 12˙000 steps
(images from own simulation)

2.2 The Game of Life

Another famous cellular automaton is the so-called ”Game of Life”, invented by the
mathematician John Conway in 1970. After having selected an initial configuration for
the grid, the simulation requires no further input from its user and evolves over infinitely
many steps, based on a set of well-defined rules, which were inspired by real life ideas.
This sort of simulation was also shown to be Turing complete.[6]

Figure 3: Example of a configuration of the Game of Life (source: Bettilyon, T., https:
//medium.com/tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c)

3 Random rule matrices

Let us start off by analysing what happens when we define our turmite using randomly
generated rule matrices. In order to keep a better overview of the different outcomes, we
decided to primarily work with square matrices, i.e. turmites who have the same number
of states as colours.

7

https://medium.com/tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c
https://medium.com/tebs-lab/optimizing-conways-game-of-life-12f1b7f2f54c


Naturally, there were a few simple questions we asked ourselves at the beginning, regarding
the general behaviour of our turmite:

� What types of shapes and growth patterns can our turmite possibly create?

� Will our turmite always end up forming a repeating pattern eventually, no matter
which rule matrices are used to define it?

� Does the frequency with which each pattern occurs depend on the size of the rule
matrices?

� In general, how many steps does it take to reach a repetitive cycle and how many
cells will our turmite have visited?

� On average, how often does our turmite visit each individual square and how long
are the continuous cycles?

To fully understand our experimental results, we first need to lay the groundworks, by
giving some necessary definitions, which we will frequently use to describe the three
possible movement outcomes a turmite can have. It is important to notice that these
definitions are by no means the ”unique correct” definitions of these terms, rather they
allow us to describe certain ideas in a simple and precise way.

3.1 Definitions

Definition 3.1.1 (Highway). A highway can be defined as a periodic cycle of n (∈ N)
steps, for which there exists N ∈ N st. for all steps after the N th step, the following
conditions hold true:

� ∀k ≥ N , the state and direction of the turmite after k steps and after k + n steps
is the same

� ∀k ≥ N , the colours of the squares the turmite is sitting on after k steps and after
k + n steps are equal

Definition 3.1.2 (Busy beaver). A busy beaver (first studied by computer scientist Allen
H. Brady [1]) is also a periodic cycle of n (∈ N) steps, which shares the exact same prop-
erties as a highway, however, with one additional condition needing to be verified:
∃N ∈ N st. ∀k ≥ N, the square on which the turmite is located after k steps and after k+
n steps is identical

An interesting consequence of this property is that after the N th step, the turmite no
longer visits any new, unvisited squares. In some cases it even appears as if the turmite
is ”frozen” or completely static.

Definition 3.1.3 (Random movement). We classify the movement of our turmite as
random, if neither a highway, nor a busy beaver is formed after a certain amount of steps.
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3.2 Visual simulations vs analytical simulations

To be able to acquire sufficient conclusive data, we made use of two particular types of
simulations: visual simulations and analytical simulations. (The two principal Python
codes that were used, as well as further data can be found in the appendix of our paper).

On the one hand, the visual simulations enabled us to make some preliminary assess-
ments, as to how the movement of our turmite would evolve over time. With the help of
the Python extension Pygame, we were able to project the simulation on to the screen
and take screenshots over regular step intervals.

On the other hand, the analytical simulations gave us a much better understanding of
how the turmite would behave on average. Since our program allowed us to run through
a large number of cases (default value: 10˙000 times) of different rule matrices, we were
able to gather useful statistics, which we then compared with our initial assumptions. All
of the statistics that we obtained during these simulations were saved in EXCEL files, in
order to refer to any data if necessary.

3.3 Visual examples

Next, we will show some visual examples of the simulations we ran through. Here we
worked with a 10-state, 10-colour turmite on 100× 100 grid and we specifically chose the
following three examples to illustrate the different possible outcomes.

Figure 4: Turmite forming a highway after 1˙000, 2˙000 & 3˙000 steps respectively (images
from own simulation)

Here we can see that our turmite seems to move chaotically over the first 1˙000 steps,
before its movement becomes regular and forms an infinite highway, which eventually
exits the grid.

9



Figure 5: Turmite forming a busy beaver after 2˙000, 6˙000 & 10˙000 steps respectively
(images from own simulation)

Once more, we can see that our turmite tends to grow randomly in all directions at the
beginning, until it becomes ”stuck” in an infinite loop, in which it stays for the rest of
the simulation. This explains why the second and third image are identical.

Figure 6: Turmite moving randomly after 2˙000, 6˙000 & 10˙000 steps respectively (images
from own simulation)

In this case, we can see that our turmite builds neither a highway, nor a busy beaver
after 10˙000 steps. However, this does not exclude the possibility of it ending up in one
of these two types of cycles. In fact, it is an open question in mathematics, as to whether
or not all turmites form a highway or busy beaver eventually. This is almost impossible
to check, since we are unable to run every possible case infinitely long. Nevertheless, we
will try to tackle this problem for the 2-state, 2-colour turmite later on in the paper.

3.4 First observations

After having simulated over 1˙000 turmites, running for 10˙000 steps and defined by
random rule matrices ranging in sizes from 2 × 2 to 10 × 10, we came up with our first
observations based on the visual results:

� Throughout our simulations, we were able to find multiple examples of each type of
movement defined in 3.1, no matter the size of the rule matrices.

� The number of times the turmite formed a busy beaver tended to decrease as the
matrix sizes grew, while the number of highways increased with respect to the
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growing sizes. In general, most turmites ended up moving in cycles during the
first 10˙000 steps, meaning that the amount of turmites whose movement can be
described as random, was relatively low. Hence, one could guess that every turmite
will eventually form either a highway or a busy beaver.

� On average, it seemed to take a larger amount of steps to reach a cyclic movement
as the sizes of the matrices became bigger.

� For those turmites that eventually formed a highway, the associated cycles appeared
to grow in size, i.e. the movement became periodic after larger number of steps,
as the matrix size rised. In the cases of a busy beaver, this was usually harder
to identify, since the movement of the turmite became quite static at a certain
timepoint.

3.5 Frequency analysis of different outcomes

Following our first assumptions that were based on the collected visual data, we wanted to
take our analysis a step further. By simulating 10˙000 random turmites on blank grids for
all matrix sizes ranging from 2× 2 to 10× 10 and checking their outcome automatically,
we were able to gather enough data to get a better understanding of the average turmite
behaviour and the frequency of each possible outcome.

Let us start off by taking a look at the table which summarises the frequency of each
of the three possible outcomes for different matrix sizes, after having simulated each sin-
gle turmite for a maximum of 10˙000 steps. Here, one could also add subcategories to
each of the three outcomes, however, we decided to focus primarily on these three main
types of movement.

Table 1: Outcome of 10˙000 turmites after 10˙000 steps
States/Colours Random movement Highway Busy beaver

2 1399 3280 5321
3 2169 3729 4102
4 2425 4172 3403
5 2578 4492 2930
6 2633 4829 2538
7 2781 4953 2266
8 2987 5112 1901
9 3093 5262 1645
10 3227 5384 1389
11 3333 5375 1292
12 3447 5455 1098

When comparing the analytical results with the visual ones, we can see that they overlap.
Overall, we were able to observe that, on average, the proportion of turmites that move
randomly or end up forming a highway tends to increase with the matrix sizes, whereas
the busy beavers become less frequent. By plotting the outcome frequencies as a function
of the matrix sizes, we obtain the following graph.
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Figure 7: Outcome frequency with regard to matrix size (after 10˙000 steps)

Here, we notice that the functions related to the random movements and the highways
both seem to have logarithmic growth. On the other hand, the graph associated to the
busy beavers resembles the graph of the negative logarithmic function.

Next, we decided to increase the maximum number of steps to 100˙000, meaning that
the movement of each individual turmite would be analysed for 10 times as many steps.
We did this in order to see whether or not the total simulation steps plays a significant
role or not. As a result, we could observe some clear differences compared to the previous
case, especially with respect to the number of turmites whose movement can be classified
as random.

Table 2: Outcome of 10˙000 turmites after 100˙000 steps
States/Colours Random movement Highway Busy beaver

2 11 3968 6021
3 18 5005 4977
4 23 5549 4428
5 28 6051 3921
6 33 6336 3631
7 41 6865 3094
8 53 7096 2851
9 69 7566 2365
10 94 7643 2263

The main aspect that stands out in this table is the extremely low proportion of turmites
that still moved randomly after 100˙000 steps. Given enough timesteps, the turmite will
more often than not tend to form some sort of pattern or cycle eventually. This strength-
ens the assessment we made earlier, when we visually observed that most turmites, no
matter the size of the rule matrices, could be ordered into two main groups: the highways
and the busy beavers.
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Figure 8: Outcome frequency with regard to matrix size (after 100˙000 steps)

Furthermore, we can perceive the growth of these two categories to be almost as equiva-
lent as before. Meanwhile, after curve fitting the plotted data for the random movements,
we found the exponential function to be the optimal approximation for our data. How-
ever, this is hard to identify with the graph above, since the exponent of the exponential
function is relatively small compared to the growth scale of the other functions. With the
help of this exponential function associated to the random movement of our turmite, we
can already predict that the average number of steps it takes to reach a pattern correlated
with the matrix size will rise. On the other hand, the growth of the two other functions
simply tells us that the probability of a cycle being a closed loop (i.e. having the same
start and end point) decreases as the matrix size increases.

In addition, we wanted to know if the initial colour configuration of our grid influences
the proportions of the different outcomes in any way. Therefore, we computed as many
random turmites as before, however, this time we distributed random colours to all the
squares at the beginning. A first thing we realised was that these simulations took a lot
longer to finish than those in the previous case. This is most likely due to the fact that the
turmite ”struggles” to form a repetitive cycle, since unvisited squares play a crucial role
in determining the turmite’s next state, colour and move. In contrast, the white squares
in the previous case tended to act more ”neutral”, since the entire grid was initially filled
with a unanimous colour.
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The following table presents the results we obtained from our simulations:

Table 3: Outcome of 10˙000 turmites after 100˙000 steps over a randomly coloured grid
Matrix size Random movements Highways Busy beavers

2 1865 0 8135
3 3300 0 6700
4 2444 0 7556
5 3748 0 6252
6 3622 0 6378
7 4327 0 5673
8 6333 0 3667
9 6425 0 3575
10 7704 0 2296

Unlike the previous case, not a single highway was detected. One explanation for this is
that when a turmite tries to form a highway in a randomly coloured grid, it is constantly
broken down because it repeatedly visits new squares of possibly different colours. In
that sense, a grid of unanimously coloured cells clearly favours the formation of highways.
Meanwhile, once a turmite is locked in a busy beaver, there is no possible way for it to
escape afterwards. Therefore, these appeared with a similar frequency as before. Further-
more, the proportion of turmites which moved randomly tends to increase as the size of
the matrices grow. However, this may be closely related to the total number of simulated
steps. All in all, these differences simply show us that the unique behaviour and special
properties of the turmite over a blank grid is by no means true over grids whose initial
colour configuration is random.

3.6 Statistical analysis of other interesting properties

After having found out that the majority of turmites defined by random rule matrices end
up forming a highway or a busy beaver, we wanted to see if we could determine any other
interesting properties concerning the average behaviour of our turmite. The following
analytical results are based on the simulation of 10˙000 random turmites on a blank grid
of size 1˙000×1˙000 for each matrix size ranging from 2× 2 to 10× 10.

More precisely, we wanted to analyse the following characteristics:

� average number of steps it takes a turmite to reach a repetitive cycle

� average number of squares that are visited

� average number of times a visited square is revisited

� average length of a cycle
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The table down below summarises the average conduct of our turmite in terms of these
properties:

Matrix size Avg steps until repetitive pattern Avg squares visited Avg times each square is visited Avg cycle length

2 x 2 239.212 147.778 29.161 732.775
3 x 3 325.278 265.38 23.248 1284.224
4 x 4 554.57 467.621 14.903 2769.541
5 x 5 628.242 718.111 8.976 4538.06
6 x 6 3152.863 1126.408 6.559 5953.08
7 x 7 4339.802 1302.979 4.591 6287.292
8 x 8 5657.325 1565.61 3.844 7137.962
9 x 9 9930.249 2074.644 3.375 7291.55

10 x 10 13343.278 3774.762 2.807 7584.659

First of all, we notice that the average number of steps it takes until a pattern occurs
with respect to the matrix size tends to grow exponentially. Moreover, this strengthens
our previous prediction that this number increases as the sizes get bigger. Here, we use
the convention that if no cycle is detected after 100˙000 steps, we simply say that it took
this amount of steps to reach a repeating cycle.

Figure 9: Average number of steps until cycle

Next, we can see that the average number of visited squares as a function of the matrix
size behaves like the exponential function. This shows that the turmite’s movement tends
to become more expansive as the sizes of the rule matrices grow. Here it is important to
remember that these results are related to a bounded grid, since it would be impossible
to gather such conclusive data over an infinite grid. Since we found turmites of every
matrix size that formed highways and since the proportion of highways tends to grow
with respect to the sizes, we can conclude that, over an infinite grid, the average number
of visited squares tends to infinity, no matter the matrix size.
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Figure 10: Average number of squares visited

In addition, we were able to observe that by plotting the average number of revisits to a
visited square with regard to the matrix size, its graph resembles the graph of the inverse
exponential function. This property is closely related to the previous one, as the turmite
tends to cover more squares as the rule matrices get bigger. Since we kept the number
of total simulated steps to be constant (100000 steps), this implies that revisits to visited
squares become less frequent as the size increases.

Figure 11: Average number of revisits to a visited square

Finally, by taking a look at the average cycle length as a function of the matrix size, we
realise that it’s growth is logarithmic. As we will see in the next section, the lengths of
these cycles tend to have a large range of possible values. Here we used the convention
that if no pattern is detected after 100˙000 steps, then we say that the cycle is of length
0.
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Figure 12: Average cycle length

3.7 Conjectures

Following the detailed analysis of our observations, we would like to come up with our
very own conjectures, regarding the general behaviour of turmites defined by random rule
matrices:

� Our main conjecture states that regardless of the matrix size, all turmites that are
simulated over a blank grid will eventually form either a highway or a busy beaver,
despite its chaotic movement at the beginning.

� The proportioning of the different possible outcomes largely depends on the total
number of steps for which the turmite is simulated and on the initial colour config-
uration of the grid.

� On a blank grid, the proportion of highways grows logarithmically as the matrix
sizes increase, while the proportion of busy beavers decreases slowly.

� On a grid with randomly coloured cells, the above properties don’t hold in general.
In this case, the turmite struggles to build any periodic cycles, especially highways.

� The average number of steps it takes to reach a cycle and the average number
of squares visited grows exponentially with respect to the matrix size, i.e. the
movement of the turmite becomes more expansive. However, this is only true if we
are working on a bounded grid, otherwise the average number of visited squares will
tend to infinity.

� The graph of the average revisits to a visited cell with regard to the matrix size
resembles the inverse exponential function.

� On average, the cycle lengths tend to grow logarithmically as the rule matrices
expand in size.

17



4 Further analysis on 2-state, 2-colour turmite

So far, we have only been working with turmites defined by random rule matrices of
various sizes. We did this in order to deduce the average behaviour of the turmite. Now,
we wish to shift our focus to the analysis of the 2-state, 2-colour case, by running through
all possible turmites (total of 24 · 24 · 44 = 65536) on a blank grid. Although it took quite
a long time, we were able to simulate every single turmite visually, as well as analytically.

4.1 Simulation of every 2-state, 2-colour turmite

In a first phase, we analytically simulated all the possible turmites, on a blank grid of size
1˙000×1˙000, for a maximum of 10˙000 steps. Our program, which automatically checks
for repetitive patterns, presented us with the following table:

Random movement Highways Busy beavers
80 28˙438 37˙018

By comparing these numbers with those that we obtained for the randomly generated
2 × 2 turmites, we can see that the particular proportions are relatively similar. As
before, busy beavers are more frequent than highways and we only get a low amount of
turmites that do not create a cycle under these circumstances. Since the total number
of turmites that moved randomly only represents a minor fraction of the total possible
turmites ( 80

65˙536
≈ 0.122%), we firmly believed that they would also form a highway or a

busy beaver eventually. Therefore, we decided to compute these turmites again, this time
on a larger grid (10˙000×10˙000) and for more steps (10˙000˙000). After having simulated
the 80 turmites under these new conditions, we got the following results:

Random movement Highways Busy beavers
0 76 4

Hereby, we believe to have shown a weaker version of our main conjecture for a very
specific case:

Every single 2-state, 2-colour turmite on a blank grid will eventually
begin to form either a highway or a busy beaver, which may go on for
infinitely many steps

The exact proportions of the two cycles are the following:

Highways

43.5%

Busy beavers

56.5%
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Furthermore, this also shows that for every single one of these turmites, they reach a
repeating cycle before 1˙000˙000 steps and before exiting a grid of size 10˙000 × 10˙000.
Although these values are by no means the optimal or tightest bounds, they allow us to
confine these two properties.

It is important to understand the significance of the statement ”which may go on for
infinitely many steps” in the conjecture that we stated above. With the help of our pro-
gram, we have been able to check that at some point in time, every turmite will start to
form a highway or a busy beaver. However, due to the nature of our automatic outcome
checker, we cannot say with full certainty that these periodic cycles will repeat them-
selves infinitely often in an unobstructed direction, since it is impossible for our program
to check for an infinite amount of steps. (Please refer to our analytical program in the
appendix to get a better understanding of how this was implemented.) Therefore, we
claim to only have shown a ”weaker” version of our main conjecture.

4.2 Other interesting properties

In this paragraph, we will analyse what type of impact the invertibility, the symmetry
and the diagonalisability of the rule matrices has on the outcome of a turmite. Using a
similar program as before, we ran through every single possible 2-state, 2-colour turmite,
while checking these properties for all three rule matrices: the state matrix, the colour
matrix and the turn matrix. As a result, we obtained the following proportion table:

Condition Highway Busy beaver
State matrix invertible 45.7% 54.3%
Colour matrix invertible 50.1% 49.9%
Turn matrix invertible 38.6% 61.4%
State matrix symmetric 43.6% 56.4%
Colour matrix symmetric 42.7% 57.3%
Turn matrix symmetric 42.8% 57.2%
State matrix diagonalisable 44.0% 56.0%
Colour matrix diagonalisable 43.5% 56.5%
Turn matrix diagonalisable 42.7% 57.3%
State matrix NOT invertible 42.1% 57.9%
Colour matrix NOT invertible 39.4% 60.6%
Turn matrix NOT invertible 58.0% 42.0%
State matrix NOT symmetric 43.3% 56.7%
Colour matrix NOT symmetric 44.2% 55.8%
Turn matrix NOT symmetric 43.7% 56.3%
State matrix NOT diagonalisable 41.7% 58.3%
Colour matrix NOT diagonalisable 43.2% 56.8%
Turn matrix NOT diagonalisable 51.0% 49.0%

This table shows us the proportions of highways and busy beavers when the condition
stated in the first column is verified. Overall, we notice that under most conditions the
formation of busy beavers is visibly favoured. This overlaps with our previous assessment,
where we found that busy beavers tend to create themselves more frequently than high-
ways in the case of the 2-state, 2-colour turmite. From our analysis, we can see that this
was especially the case when the turn matrix is invertible and when the colour matrix
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is not invertible. The only conditions that seem to give preference to the formation of
highways are if the colour matrix is invertible, if the turn matrix is not invertible and if
the turn matrix is not diagonalisable. However, it is important to realise that this could
be due to the low number of possible 2 × 2 colour and turn matrices that have these
properties, giving us a smaller sample size to work with.

4.3 Conjectures

As a result, we have come up with the following conjectures for the overall behaviour of
the 2-state, 2-colour turmite:

� Every single 2-state, 2-colour turmite on a blank grid will eventually either form a
highway or a busy beaver, with the proportions being 43.5% and 56.5% respectively.

� Every single 2-state, 2-colour turmite on a blank grid forms a repeating cycle before
1˙000˙000 steps and before exiting a grid of size 10˙000× 10˙000.

� In general, the invertibility, the symmetry and the diagonalisability of the three rule
matrices do not seem to have a significant impact on the behaviour and outcome of
the 2-state, 2-colour turmite.

5 Extraordinary shapes & patterns

Let us now present some of the more beautiful and fascinating turmites, that were sim-
ulated and captured visually using random, as well as purposefully chosen rule matrices
of all sorts of sizes. Since there are infinitely many possible patterns, we had to narrow
our selection down to just a few. Each example is accompanied by a short description
of the specific rule matrices and by images of the eventual outcome, which we obtained
from our own program.

Golden spiral

First of all, the images down below represent a 2-state, 2-colour turmite after 2˙000,
5˙000 and 8˙000 steps respectively. Here, we can see that it tends to form a spiral which
is very similar to the Golden spiral. The rules for this turmite were taken from [8].
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Snowflake fractal

Moreover, the images down below illustrate a 3-state, 2-colour turmite after 10˙000, 25˙000
and 40˙000 steps respectively. Here, we can observe that it tends to form a fractal which
looks like a snowflake. The rules for this turmite were taken from [8].

Slanted diamond

Furthermore, the images down below represent a 2-state, 2-colour turmite after 2˙000,
4˙000 and 6˙000 steps respectively. Here, we can see that it tends to form a diamond
shape, slanted slightly to the left. The rules for this turmite were taken from [9].

Fan spiral

In addition, the images down below illustrate a 2-state, 2-colour turmite after 2˙000,
6˙000 and 10˙000 steps respectively. Here, we can observe that it tends to form a spiral,
which almost looks like the front of a fan. The rules for this turmite were taken from [9].
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Two turmites symmetric spiral

Finally, we also wanted to present an example of a grid containing two turmites, de-
fined by the same rule matrices. In general, they tended to produce very symmetrical
pictures, as long as there trails did not interfere. The images down below represent two
6-state, 6-colour turmites after 1˙000, 2˙000 and 3˙000 steps respectively. Here, we were
able to notice that both turmites continuously added layer after layer, while circulating
the shape and complementing each other’s growth. This example came up during our
own experiments.
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6 Conclusion

All in all, we can conclude that, even though the movement of the turmite might seem
chaotic and random at first, it will generally form a periodic pattern after a certain num-
ber of steps. We were able to classify the majority of all turmites we simulated into
two main categories, the highways and the busy beavers. We found that the frequency
of both outcomes closely depends on several factors such as the rule matrix sizes, the
total number of simulated steps, the grid size and the initial colour configuration of the
grid. Moreover, we managed to determine further interesting properties like the average
number of steps it takes to reach a repetitive pattern or the average cycle length, as well
as the impact that the rule matrices have on the outcome proportions. Furthermore, we
were able to show a weaker version of our main conjecture, which states that all turmites
eventually form a highway or a busy beaver, by simulating and analysing every possible
2-state, 2-colour turmite.

The principal objective of the ”Experimental mathematics” course is to give young math-
ematicians, like us, the opportunity to independently work on a mathematical project
and gather their very first research experience. Under the guidance of Ms. Tara Trauth-
wein, we were able to broaden our mathematics horizon and explore unfamiliar topics.
Overall, we feel like this whole experience has been very rewarding in many different ways.

Finally, we would like to encourage anybody who is fascinated by all types of cellular
automata and has some knowledge of mathematical and programming concepts, to try
out similar simulations and come up with their very own conjectures.
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7 Appendix

The following two Python codes represent the programs we used to simulate the visual
and analytical versions of the turmite. The majority of the other codes that we used were
based on these two codes and were obtained by simply changing minor details.

1 import pygame

2 from pygame.locals import *

3 from random import randrange

4

5

6 class Square: # here we define the class Square; each square of our

grid will be an object of this class

7 colours = {0: ’white’, 1: ’black’, 2: ’red’, 3: ’blue’, 4: ’yellow ’,

5: ’green’, 6: ’pink’, 7: ’orange ’,

8 8: ’purple ’, 9: ’turquoise ’, 10: ’brown’, 11: ’grey’}

9

10 def __init__(self , x, y, size , state , colour , direction):

11 self.x = x

12 self.y = y

13 self.size = size

14 self.state = state

15 self.colour = colour

16 self.direction = direction

17

18 def draw_square(self , screen):

19 pygame.draw.rect(screen , Color(Square.colours[self.colour ]),

20 (self.size * self.x, self.size * self.y, self.

size , self.size))

21

22

23 class Grid: # here we define the class Grid; in this code we only with

one object of the class Grid at a time , meaning we generate a new

grid each time we change our rule matrices

24 def __init__(self , size , state_matrix , colour_matrix , turn_matrix ,

start_point):

25 self.size = size

26 self.squares = []

27 for x in range(self.size):

28 row = []

29 for y in range(self.size):

30 square = Square(x, y, 10, 0, 0, 0)

31 if (x, y) == start_point:

32 self.turmite = square

33 row.append(square)

34 self.squares.append(row)

35 self.visited_squares = [self.turmite]

36 self.state_matrix = state_matrix

37 self.colour_matrix = colour_matrix

38 self.turn_matrix = turn_matrix

39

40 def draw_grid(self , screen):

41 screen.fill(Color("white"))

42 for s in self.visited_squares:

43 s.draw_square(screen)

44

45 def execute(
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46 self): # this is the essential part of this code; it is

responsible for updating the states , colours & directions and also

moves the turmite to the next square

47 new_state , new_direction = self.state_matrix[self.turmite.state

][self.turmite.colour], (

48 self.turmite.direction + self.turn_matrix[self.turmite.

state ][self.turmite.colour ]) % 4

49 self.turmite.colour = self.colour_matrix[self.turmite.state][

self.turmite.colour]

50 if new_direction == 0 and self.turmite.y > 0:

51 self.turmite = self.squares[self.turmite.x][self.turmite.y -

1]

52 self.turmite.state = new_state

53 self.turmite.direction = new_direction

54 elif new_direction == 1 and self.turmite.x < self.size - 1:

55 self.turmite = self.squares[self.turmite.x + 1][ self.turmite

.y]

56 self.turmite.state = new_state

57 self.turmite.direction = new_direction

58 elif new_direction == 2 and self.turmite.y < self.size - 1:

59 self.turmite = self.squares[self.turmite.x][self.turmite.y +

1]

60 self.turmite.state = new_state

61 self.turmite.direction = new_direction

62 elif new_direction == 3 and self.turmite.x > 0:

63 self.turmite = self.squares[self.turmite.x - 1][ self.turmite

.y]

64 self.turmite.state = new_state

65 self.turmite.direction = new_direction

66 else:

67 return True

68 if self.turmite not in self.visited_squares:

69 self.visited_squares.append(self.turmite)

70 return False

71

72

73 grid_size = 100

74

75 name = input(’Please enter the name of your file : ’)

76 states = int(input(’Please enter number of states your random turmite

should have : ’))

77 colours = int(input(’Please enter the number of colours your random

turmite should have : ’))

78

79 state_matrix = []

80 colour_matrix = []

81 turn_matrix = []

82

83 for i in range(states): # here the different rule matrices are filled

with random valid values

84 state_row , colour_row , turn_row = [], [], []

85 for j in range(colours):

86 state_row.append(randrange(states))

87 colour_row.append(randrange(colours))

88 turn_row.append(randrange (4))

89 state_matrix.append(state_row)

90 colour_matrix.append(colour_row)

91 turn_matrix.append(turn_row)
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92

93 start_point = (grid_size // 2, grid_size // 2)

94

95 grid = Grid(grid_size , state_matrix , colour_matrix , turn_matrix ,

start_point)

96

97 clock = pygame.time.Clock ()

98

99 pygame.init() # here we initialise pygame; this allows us to project

the simulation on to the screen & observe everything visually

100 size = 10 * grid_size

101 FPS = 50

102 screen = pygame.display.set_mode ((size , size))

103 pygame.display.set_caption("Turmites")

104 screen.fill(Color("white"))

105

106 grid.draw_grid(screen)

107 pygame.display.update ()

108 rect = pygame.Rect(0, 0, size , size)

109

110 max_steps = 100000

111 steps = 0

112 done = False

113

114 while not done: # here the simulation begins; the execute function from

above is called at each iteration & the loop only stops when either

the turmite exits the bounded grid or when the maximum number of

steps is reached

115 for event in pygame.event.get():

116 if event.type == QUIT:

117 done = True

118 done = grid.execute ()

119 clock.tick(FPS)

120 grid.draw_grid(screen)

121 pygame.display.update ()

122 steps += 1

123 if steps % 100 == 0 or done:

124 sub = screen.subsurface(rect)

125 screenshot = pygame.Surface ((size , size))

126 screenshot.blit(sub , (0, 0))

127 pygame.image.save(screenshot , f’{name} (after {steps} steps).jpg

’)

128 if steps == max_steps:

129 done = True

130

131 pygame.quit()

132

133 print(f’State matrix: {state_matrix}’)

134 print(f’Colour matrix: {colour_matrix}’)

135 print(f’Turn matrix: {turn_matrix}’)

Listing 1: Code of visual program

1 from random import randrange

2 from xlwt import Workbook

3

4

5 class Square:

6 def __init__(self , x, y, size , state , colour , direction):
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7 self.x = x

8 self.y = y

9 self.size = size

10 self.state = state

11 self.colour = colour

12 self.direction = direction

13

14

15 class Grid:

16 def __init__(self , size , state_matrix , colour_matrix , turn_matrix ,

start_point):

17 self.size = size

18 self.squares = []

19 for x in range(self.size):

20 row = []

21 for y in range(self.size):

22 square = Square(x, y, 10, 0, 0, 0)

23 if (x, y) == start_point:

24 self.turmite = square

25 row.append(square)

26 self.squares.append(row)

27 self.visited_squares = [self.turmite]

28 self.path = [(self.turmite.x, self.turmite.y, self.turmite.state

, self.turmite.colour ,

29 self.turmite.direction)] # this list contains the

sequence of all squares (coordinates , states , colours , directions)

which the turmite has visited (with repetition)

30 self.state_matrix = state_matrix

31 self.colour_matrix = colour_matrix

32 self.turn_matrix = turn_matrix

33

34 def add_to_path(self):

35 self.path.append(

36 (self.turmite.x, self.turmite.y, self.turmite.state , self.

turmite.colour , self.turmite.direction))

37

38 def execute(self):

39 new_state , new_direction = self.state_matrix[self.turmite.state

][self.turmite.colour], (

40 self.turmite.direction + self.turn_matrix[self.turmite.

state ][self.turmite.colour ]) % 4

41 self.turmite.colour = self.colour_matrix[self.turmite.state][

self.turmite.colour]

42 if new_direction == 0 and self.turmite.y > 0:

43 self.turmite = self.squares[self.turmite.x][self.turmite.y -

1]

44 self.turmite.state = new_state

45 self.turmite.direction = new_direction

46 elif new_direction == 1 and self.turmite.x < self.size - 1:

47 self.turmite = self.squares[self.turmite.x + 1][ self.turmite

.y]

48 self.turmite.state = new_state

49 self.turmite.direction = new_direction

50 elif new_direction == 2 and self.turmite.y < self.size - 1:

51 self.turmite = self.squares[self.turmite.x][self.turmite.y +

1]

52 self.turmite.state = new_state

53 self.turmite.direction = new_direction
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54 elif new_direction == 3 and self.turmite.x > 0:

55 self.turmite = self.squares[self.turmite.x - 1][ self.turmite

.y]

56 self.turmite.state = new_state

57 self.turmite.direction = new_direction

58 else:

59 return False

60 if self.turmite not in self.visited_squares:

61 self.visited_squares.append(self.turmite)

62 self.add_to_path ()

63 return True

64

65

66 def pattern_in_path(

67 path): # this is both the most important & most complex part of

the code; it allows us to check for repetitive beahviour of our

turmite

68 counter = 0 # this counter helps us to determine the number of

periodic cycles in a row; here we used the convention that if 5

cycles appear in a row then we can classify the turmite as either a

highway or a busy beaver

69 for i in range(len(path) - 2, 1,

70 -1): # we start at the back of our path list and

search for the most recent square , where our turmite had the same

state , colour & direction as it did for the last square in the path

71 busy_beaver , highway = True , True

72 if path[i][2:] == path [ -1][2:]:

73 for k in range(1,

74 len(path) - i): # after having found the

most recent square having this property , we check if the squares

preceding the most recent square and the squares preceding the last

square of the path share the exact same properties

75 if path[-k - 1][2:] != path[i - k][

76 2:]: # if they don’t have the

same properties (e.g. same colour) then the path from the i th square

to the last square of the path doesn’t represent a full cycle

77 highway = False # so we can conclude that for this

i, we don’t have a highway , nor a busy beaver (since a busy beaver is

a special case of a highway); however , this condition might hold

true for an i situated earlier in the path list

78 counter = 0 # we reset our counter to 0 a break out

of the loop

79 break

80 if busy_beaver and path[-k - 1][:2] != path[i - k][

81 :2]: # if the

squares preceding don’t have the exact same coordinates , then it can’

t be a busy beaver for that particular i (however it could still

possibly be a highway)

82 busy_beaver = False

83 # if it is neither a highway , nor a busy beaver for

this value i, we continue repeating this whole procedure with the

second most recent square , where our turmite had the same state ,

colour & direction as it did for the last square in the path

84 if highway: # here we check if a type of highway was formed

(remember that a busy beaver is simply a special type of highway)

85 counter += 1 # here we increment our counter by 1 since

we have been able to detect a full cycle (either highway or busy

beaver)
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86 if counter == 5: # once we have detected 5 cycles in a

row we can assume that this cycle will repeatedly form itself; this

is the "main weakness" of our program , since we can only check for

repetitive cycles a finite number of times

87 return ’Busy beaver ’ if busy_beaver else ’Highway ’

# here we determine which type of cycle was formed

88 return ’Random movement ’ # if none of the above conditions are

verified , the movement of our turmite can be classified as random

89

90

91 grid_size = 1000

92

93 for t in range(2, 11):

94 wb = Workbook () # here we initialise our excel workbook; this is

essential to keep track of all the important statistics gathered

during the simulation

95 sheet1 = wb.add_sheet(’Sheet 1’)

96 sheet1.write(0, 0, ’Total # of simulations ’)

97 sheet1.write(0, 1, ’Random movement ’)

98 sheet1.write(0, 2, ’Highway ’)

99 sheet1.write(0, 3, ’Busy beaver ’)

100

101 outcome = {’Random movement ’: 0, ’Highway ’: 0, ’Busy beaver ’: 0}

102 max_steps = 100000

103

104 for a in range(1, 10001):

105 state_matrix = []

106 colour_matrix = []

107 turn_matrix = []

108

109 for i in range(t):

110 state_row , colour_row , turn_row = [], [], []

111 for j in range(t):

112 state_row.append(randrange(t))

113 colour_row.append(randrange(t))

114 turn_row.append(randrange (4))

115 state_matrix.append(state_row)

116 colour_matrix.append(colour_row)

117 turn_matrix.append(turn_row)

118

119 start_point = (grid_size // 2, grid_size // 2)

120

121 grid = Grid(grid_size , state_matrix , colour_matrix , turn_matrix ,

start_point)

122

123 result = ’Random movement ’

124

125 for n in range(max_steps):

126 if grid.execute ():

127 if n % 1000 == 0: # every 1000 steps we check to see if

any repetitive pattern can be spotted over the last 1000 steps

128 result = pattern_in_path(grid.path[n - 1000:])

129 if result != ’Random movement ’:

130 break

131 else:

132 result = pattern_in_path(grid.path[max(0, n - 1000) :])

133 break

134
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135 outcome[result] += 1

136

137 print(a)

138 print(result)

139

140 sheet1.write(1, 0, 10000)

141 sheet1.write(1, 1, outcome[’Random movement ’])

142 sheet1.write(1, 2, outcome[’Highway ’])

143 sheet1.write(1, 3, outcome[’Busy beaver ’])

144

145 wb.save(f’Turmites outcome stats for {t}-state , {t}-colour random

matrices (after {max_steps} steps).xls’)

Listing 2: Code of analytical program

As we are unable to showcase all of the data collected during our research period, we have
decided to upload all of our results and Python code to an online folder, which is linked
down below:

https://drive.google.com/drive/folders/1_zZDBcI5Rjq0hsomJOxV_20BYFD9RYOv?usp=

sharing
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