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1 Introduction
Our project for the class of “Mathématiques expérimentales” was all about the Discrete
Fourier Transform Matrix, also known as the DFT Matrix.

Before we could start working on it, we had to learn a few things about the matrix in
question, how to compute it and what are its properties. Later, we will write programs
to calculate this DFT matrix and a certain mysterious number dn investigating their
properties and seeing some interesting facts.
At the end we create beautiful images based on these DFT matrices.
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2 Euler’s totient function
We start by defining Euler’s totient function, which will later help us to determine the
dimension of the DFT matrix:

2.1 Definition of the function

The map

θ : N∗ −→ N
n 7−→ #(Z/nZ) = #{0 ≤ k ≤ n | gcd(k, n) = 1}

is called Euler’s totient function.

We computed a few examples to get familiar with the function:

θ(5) = #{0 ≤ k ≤ 5 | gcd(k, 5) = 1} = #{1, 2, 3, 4} = 4

θ(7) = #{0 ≤ k ≤ 7 | gcd(k, 7) = 1} = #{1, 2, 3, 4, 5, 6} = 6

θ(11) = #{0 ≤ k ≤ 11 | gcd(k, 11) = 1} = #{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} = 10

θ(6) = #{0 ≤ k ≤ 6 | gcd(k, 6) = 1} = #{1, 5} = 2

Let n be a prime number. We observe that θ(n) = n− 1

Now we introduce two more properties of the Euler’s totient function to help us calculate
the image of much larger numbers:

2.2 Proposition of the function

Let θ be the Euler’s totient function.

(i) If m,n ≥ 1 are coprime, then θ(m · n) = θ(m) · θ(n)

(ii) If p is prime and r ≥ 1, then θ(pr) = pr − pr−1

For example:

θ(50) = θ(2 · 52) = θ(2) · θ(52) = 1 · (52 − 51) = 25− 5 = 20

θ(180) = θ(22 · 5 · 32) = θ(22) · θ(32) · θ(5) = (22 − 21) · 4 · (32 − 31) = 2 · 4 · 6 = 48
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3 Discrete Fourier Transform Matrix
Before defining the DFT matrix, we have to define one more thing:

3.1 Definition of wn

We define for n ≥ 1 :

wn := exp

(
2πi

n

)
= cos

(
2π

n

)
+ i sin

(
2π

n

)

We now come to the main part of this entire project, what actually is the DFT matrix
and how do we compute it?

3.2 Definition of the DFT matrix

We define the DFT (Discrete Fourier Transform) matrix of order n to be:

Dn := (wn
ij)i,j

for i & j running through (Z/nZ)∗ and {0, ..., θ(n)− 1}, respectively.

K∗ := {x ∈ K | x invertible}

Examples of DFT matrices:

If n = 5, put w := w5. Then

D5 =


w0 w1 w2 w3

w0 w2 w4 w6

w0 w3 w6 w9

w0 w4 w8 w12

 =


1 w w2 w3

1 w2 w4 w
1 w3 w w4

1 w4 w3 w2



If n = 12, put w := w12. Then

D12 =


w0 w1 w2 w3

w0 w5 w10 w15

w0 w7 w14 w21

w0 w11 w22 w33

 =


1 w w2 w3

1 w2 w10 w3

1 w7 w2 w9

1 w11 w10 w9


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Now that we know how to compute the DFT matrix, we define a few properties and
functions that will help us find what we’re looking for in this DFT matrix.

3.3 Proposition of the DFT matrix

For every n ≥ 1, Dn is square and invertible.

Proof

As #(Z/nZ) = #{0, ..., θ(n)− 1}, Dn is a square matrix.

To check the invertibility of the DFT matrix, we will use the Vandermonde Matrix.
Let (z0, ..., zk−1) ∈ C and consider the Vandermonde Matrix:

V =


1 z0 z0

2 . . . z0
k−1

1 z1 z1
2 . . . z1

k−1

...
...

... . . . ...
1 zk−1 zk−1

2 . . . zk−1
k−1


Then det(V ) =

∏
i≤j

(zj − zi) ̸= 0 for zi ̸= zj

Let us now consider the DFT matrix with n = 5:

D5 =


1 w w2 w3

1 w2 w4 w6

1 w3 w6 w9

1 w4 w8 w12

 =


1 w (w)2 (w)3

1 w2 (w2)2 (w2)3

1 w3 (w3)2 (w3)3

1 w4 (w4)2 (w4)3


We see that the D5 has exactly the form of the Vandermonde Matrix for z0 = w,
z1 = w2, z2 = w3 and z3 = w4 and

det(D5) =
∏

1≤i<j≤4

(wj−wi) ̸= 0 as wi ̸= wj

We can compute every DFT matrix with n ≥ 1 in a form of a Vandermonde Matrix.

So det(Dn) =
∏
i<j

(wj −wi) ̸= 0 as wi ̸= wj

As det(Dn) ̸= 0, we proved that Dn is invertible.



Husson Lola & Reichert Noa & Sachsen Tom Mathématiques expérimentales 2

4 Infinity norm of the inverse DFT matrix
For now, we still need to define one function in relation to matrices that will helps us
determine what we’re looking for.

4.1 Definition of the infinity form

Let A = (aij) ∈ Mm,n(C). The infinity norm of A is defined as the following:

||A||∞ := max
i=1,...,n

(
n∑

j=1

|aij|

)
Example:

∥∥∥∥( 1 2
−1 4

)∥∥∥∥
∞

= 5 and ∥D12∥∞ = 4

We now come to the main subject of our project. We will now define a number,
that is being computed using infinity norm and the inverse DFT matrix. Number in
question hasn’t been named yet, so in this document we will just keep calling it ”dn”
for simplification. This number is what we will analyze and see if we can spot patterns
for certain DFT matrices.

4.2 Definition of dn
We define for n ≥ 1:

dn := ||Dn
−1||∞

In non-mathematical terms, dn is the infinity norm of the inverse of the DFT matrix
for a certain n ≥ 1.
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5 Programing and Exploring

5.1 Programing Dn & dn

After we had defined all this and got a little bit familiar with the DFT matrix and our
dn number, we got given the following tasks:

1. Write a program which outputs Dn & dn for given n ≥ 1

2. Create a plot depicting the points (n, dn) for n ≤ 200

Here are our results of the tasks:

1. For the begin we wrote the following program which computed Dn & dn for us:

Figure 1: Program for Dn & dn

We wrote a program to get the value of the Euler’s totient function but we took
the existing euler_phi function so that the computer can work better.
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Example

Figure 2: Matrix D3 & Value of d3

For more efficiency in our programs we imported numpy which does not take so
many decimal places in the calculations:

Figure 3: Program for Dn & dn with numpy
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2. We then created the following plot depicting the point (n, dn) for n ≤ 200:

Figure 4: Plot (n, dn)

5.2 Properties of dn
To study some properties of dn, we got given the following tasks:

1. Take some n ≥ 2 & compute dn, then take p | n prime & compute dpn, dp2n,dp3n.
Repeat it and note your observations.

2. Compute dp for primes p ≤ 500 & depict them. Can you guess the actual value
of limp→∞ dp ?

3. Take some n ≥ 2 & odd & compute dn, then compute d2n. Repeat it and note
your observations.

4. Take some n ≥ 2, then dn only depends on the odd prime factors of n.
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Here are our results of the tasks:

1. We choose n = 6 and p = 3. p is a prime number and p | n works.

Figure 5: Value of d6, d18, d54 & d162

We see that they are all the same. Before making our assumption, we tried the
same for n = 10 and p = 5:

Figure 6: Value of d10, d50, d250 & d1250

Again, we obtain the same results, so we made the following assumption:
For every n ≥ 2, for every p | n prime, we have dn = dpn = dp2n = dp3n
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2. To compute the limit of dp we started by looking in our plot what dp tends to.

Figure 7: Plot (n, dn) & n prime

With the plot we can see that dp tends to ≈ 1, 275.
To get a further approximation, we computed d499 = 1.273235339136858
With the help of Wolfram Alpha, we found that:

lim
p→+∞

dp =
4

π

3. Lastly computing dn and d2n for n ≥ 2 & odd, we tried for n ∈ {7, 13, 17}:

d7 = 1.251796076438521 ≈ d14 = 1.2517960764385205

d13 = 1.267037069922848 ≈ d26 = 1.2670370699228455

d17 = 1.269613959677841 ≈ d34 = 1.2696139596778349

So we made the assumption that for every n ≥ 2 & odd, we have dn = d2n

4. In other words, if m is the product of all odd prime factor of n, then dn = dm.

Example

d50 = d2·52 = d52 = d5

d90 = d2·32·5 = d32·5 = d3·5 = d15
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With this theorem we can now compute the dn of higher numbers easier and
faster, by decomposing n into prime numbers and keeping only the odd prime
factors of n.
Like for example let’s compute:

d14348907 = d315 = d3 = 1.1547005383792517

d5184 = d26·34 = d3 = 1.1547005383792517

d893025 = d36·52·72 = d3·5·7 = d105 = 3.6154773875055364

5.3 Plots of distinct odd prime numbers

Let us now create a plot depicting (n, dn) for n ≤ 500 being the product of distinct odd
primes.

Figure 8: Program to check n distinct prime

The function begins with a check to see if the input n is even (n % 2 == 0). If n
is even, the function returns False, indicating that n is not a distinct prime number.
Next, the code iterates over the prime factors stored in F . F is a list of tuples, where
each tuple represents a prime factor and its exponent. The loop checks if any prime
factor has an exponent other than 1 (F [i][1] ! = 1). If such a case is found, the function
returns False, indicating that n is not a distinct prime number. If none of the prime
factors have an exponent other than 1, the function returns True, indicating that n is
a distinct prime number.
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Now that we defined this function, we can write the program that considers the plot of
(n, dn) for n ≤ 500 product of distinct odd primes. When we run the program, we get
the following plot:

Figure 9: Plot (n, dn) & n distinct prime

Looking at the plot, we notice that some horizontal lines appear on the graph. For
three such lines, let’s find a criterion for a point (n, dn) to lie on them. We observe
the behaviour of these three lines to find their asymptotic behaviour and find a general
conjecture.
After observations we notice that for q ≥ 3 prime, there is kq such that

lim
p→+∞ prime

dp·q = kq ∈ R

We also notice that the first horizontal asymptote is 4
π

as its the line containing only
prime numbers. We deduce it with the theorem that claims

lim
p→+∞ prime

dp =
4

π

To get a better view of the three first lines, we create a plot containing these lines and
their horizontal asymptotes.
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First, we compute the three first lines. The first one is defined as dn for n prime. The
second line and third line are defined respectively as dn·3 and dn·5 & n still prime.

Figure 10: First three lines

Then, we compute the asymptote for each line. For the first line we claimed that it’s
equal to 4

π
. And for the two other asymptotes we take the maximum value it takes on

each line and we define it as their horizontal asymptotes.

Figure 11: Horizontal asymptotes

Now we only have to put everything together.
To make the lines more apparent, we coloured each one with their horizontal asymptotes
with different colors.

Figure 12: Final program of the plot
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After running the program, we get the following plot:

Figure 13: Plot of the three first ’lines’
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6 Maximal and Minimal rows in D−1
n

We will now concentrate on finding which rows are maximal and minimal in D−1
n .

6.1 Maximal rows

We first ask ourselves which rows of D−1
n are maximal. In other words, we want to find

all rows i ∈ {0, ..., ϕ(n)− 1} for which we have∣∣∣∣∣∣
 ∑

j∈(Z/nZ)∗
|eij|

− dn

∣∣∣∣∣∣ < 10−6 (∗)

where D−1
n = (eij) with i and j running through {0, ..., ϕ(n)− 1} and (Z/nZ)∗, respec-

tively.
Here we actually want to find all rows for which (∗) is equal to 0, but since we’re
working on a computer program it will never be exactly 0. So we have to put this
condition to make it work. 10−6 is so small small enough to be consider as almost 0, so
it’s enough to take outputs underneath this number.

For the program, we define the function as follows:

1. First, we define the function as ’dnumber_numpy’ of n.

2. We store the result of the DFT matrix for size n in the matrix A.

3. This line computes the inverse of the DFT matrix A using NumPy’s np.linalg.inv
function. The result is stored in the matrix B.

4. We use the LA.norm function to compute the matrix norm of B. The parameter
np.inf indicates that the function should compute the spectral norm, which is the
maximum singular value of the matrix. In other words, it calculates the maximum
absolute column sum of the matrix B. The result is assigned to the variable dn.

5. Finally we can return dn.

Figure 14: Maximal dnumber_numpy
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6.2 Minimal rows

We now have to do the same but now for the minimal row.

Dn :

{
i ∈ (Z/nZ)∗

j ∈ {0, ..., ϕ(n)− 1}

D−1
n :

{
j ∈ {0, ..., ϕ(n)− 1}
i ∈ (Z/nZ)∗

For this program, we define the function almost the same as the previous one, expect
for the variable dn. The parameter changes from np.inf to -np.inf, which corresponds
to the minimum absolute row sum.

Figure 15: Minimal dnumber_numpy

6.3 Difference between maximum & minimum rows

Now we will focus on the difference between the maximal row of D−1
n and the minimal

row of D−1
n and how this difference change with n. First, we write the program who

computes this difference:

Figure 16: Difference between maximum & minimal row

The program is quite simple since we only need to use our functions from before,
who compute the maximum and minimum number from the matrix and compute the
difference of these.
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Example

Figure 17: Differences

Those examples show that the difference between the maximal row and minimal row of
D−1

n is 0.
Let us now compute a plot of the difference to better see how the difference between
the maximal row of D−1

n and the minimal row of D−1
n change with n.

Figure 18: Plot of the difference between minimal & maximal rows

We can see that most of these differences are equal to 0, but only for distinct odd prime
numbers, there exist a difference ≥ 0
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Let us show the plot (n, difference_dnumber(n)) for n distinct odd prime numbers.

Figure 19: Plot of the lines of difference_dnumber(n)
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7 Matrix Plots
When we take the absolute value of D−1

n , we can create some beautiful images with the
program matrix_plot of SageMath.
Let us first write a program to get the absolute value of D−1

n :

Figure 20: Absolute value of the inverse DFT matrix

With the help of the program matrix_plot we can write a function to create the
images:

Figure 21: Program matrix_plot

Figure 22: Image D−1
205

The color of the images can of course be exchanged.
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We can observe some interesting patterns for a certain n in these images:

Let us write a program to create many images to produce a video with these images
where we can observe the patterns.

Figure 23: Creating images

Let p be a prime number. This program create the images for 5p.

Here you can find the link for the video:

https://www.youtube.com/watch?v=8w_scM6KU_w

We can observe that the images are divided into horizontal and vertical segments. Let
p be prime bumber and q such that p < q, then the image of D−1

p·q has p− 1 horizontal
segments and p vertical segments.

https://www.youtube.com/watch?v=8w_scM6KU_w
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