Frobenius Problem

Lou Meylender
Thomas Thalmaier
$31 / 5 / 2023$

Contents

1 Definition 3
2 Coprime 3
3 Computer program 4
4 Independent 6
4.1 Computer program 7
5 Conjecture of formulas 8
5.1 For 2 integers 8
5.2 For 3 integers 8
5.3 for 4 numbers and more 9
5.4 For the maximum with 2 integers 10
6 Formula for the general case 11
7 Special cases 11
7.1 Special case for 2 numbers 11
7.2 Special case when $r=p-1$ 12
7.3 Special case with 5 13
7.4 Special case with modulo 1 and 2 14
8 Graphical interpretation of an example 16

1 Definition

We consider for all positive integers p_{1}, \ldots, p_{r},

$$
S\left(p_{1}, \ldots, p_{r}\right):=\sum_{i=1}^{r} p_{i} \mathbb{N}
$$

$S\left(p_{1}, \ldots, p_{r}\right)$ represents the set of all the numbers that can be obtained by positive linear combination of p_{1}, \ldots, p_{r}.
Similary, we define:

$$
A\left(p_{1}, \ldots, p_{r}\right):=\mathbb{N}-\sum_{i=1}^{r} p_{i} \mathbb{N}
$$

$A\left(p_{1}, \ldots, p_{r}\right)$ represents the set of all integers that are not in the set $S\left(p_{1}, \ldots, p_{r}\right)$ e. g. of all the integers that cannot be obtained by a positive linear combination of p_{1}, \ldots, p_{r}.

$$
g\left(p_{1}, \ldots, p_{r}\right):=\sup A\left(p_{1}, \ldots, p_{r}\right)
$$

$g\left(p_{1}, \ldots, p_{r}\right)$ represents the supremum of $A\left(p_{1}, \ldots, p_{r}\right)$, so the smallest integer, such that all the integer above of it are in $S\left(p_{1}, \ldots, p_{r}\right)$.

$$
a\left(p_{1}, \ldots, p_{r}\right):=\# A\left(p_{1}, \ldots, p_{r}\right)
$$

$a\left(p_{1}, \ldots, p_{r}\right)$ represents the cardinality of $A\left(p_{1}, \ldots, p_{r}\right)$, e. g. the number of integers that cannot be obtained by a positive linear combination of p_{1}, \ldots, p_{r}.

2 Coprime

Theorem 2.1. We have for all $p_{1}, \ldots, p_{r}>1$:

$$
a\left(p_{1}, \ldots, p_{r}\right)<\infty \Leftrightarrow p_{1}, \ldots, p_{r} \text { are coprime. }
$$

Proof. If p_{1}, \ldots, p_{r} are not coprime, there exists $p \in \mathbb{N}, p \neq 1$, such that:

$$
p \mid p_{i}, \forall i \in\{1, \ldots, r\}
$$

Hence, all elements of $S\left(p_{1}, \ldots, p_{r}\right)$ are divisible by p .

$$
\begin{gathered}
p r+1 \in A\left(p_{1}, \ldots, p_{r}\right), \forall r \in \mathbb{N} \\
\Rightarrow \sup A\left(p_{1}, \ldots, p_{r}\right)=\infty \\
\Rightarrow a\left(p_{1}, \ldots, p_{r}\right)=\#\left(A\left(p_{1}, \ldots, p_{r}\right)\right)=\infty
\end{gathered}
$$

If p_{1}, \ldots, p_{r} are coprime, we have by the generalized Bézout identity, that there exists $u_{1}, \ldots, u_{r} \in \mathbb{Z}$, such that:

$$
u_{1} p_{1}+u_{2} p_{2}+\ldots+u_{r} p_{r}=1
$$

Assume $p_{1}=\min \left(p_{1}, \ldots, p_{r}\right)$.
Without loss of generality, suppose $u_{m}<0$, and $u_{i}>0$ for $i \neq m$. We can assume this because the sum equals to 1 , so there must be a positive and a
negative u.
We now replace u_{m} by $-u_{m}$ to get:

$$
\begin{gather*}
u_{1} p_{1}+\ldots-u_{m} p_{m}+\ldots+u_{r} p_{r}=1 \quad \mid+u_{i} p_{i}, \forall 1 \leq i \leq r \tag{1}\\
\Rightarrow 2 u_{1} p_{1}+\ldots-0+\ldots+2 u_{r} p_{r}=1+\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right) \quad \mid+p_{1} u_{i} p_{i}, \forall 1 \leq i \leq r \\
\Rightarrow\left(2+p_{1}\right) u_{1} p_{1}+\ldots+p_{1} u_{m} p_{m}+\ldots+\left(2+p_{1}\right) u_{r} p_{r}=1+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right) \tag{2}
\end{gather*}
$$

Let $q_{1}=1+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right) \in \mathbb{N}$, can be obtained so:

$$
q_{1} \in \sum_{i=1}^{r} p_{i} \mathbb{N}
$$

By adding (1) and (2), we get:
$\left(3+p_{1}\right) u_{1} p_{1}+\ldots+\left(p_{1}-1\right) u_{m} p_{m}+\ldots+\left(3+p_{1}\right) u_{r} p_{r}=2+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right)$
Let $q_{2}=2+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right) \in \mathbb{N}$, which can be obtained:

$$
q_{2} \in \sum_{i=1}^{r} p_{i} \mathbb{N}
$$

We procede p_{1} times in the same way, and we get in the final step:

$$
\left(1+2 p_{1}\right) u_{1} p_{1}+\ldots+u_{m} p_{m}+\ldots+\left(1+2 p_{1}\right) u_{r} p_{r}=p_{1}+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right)
$$

Let $q_{p_{1}}=p_{1}+\left(p_{1}+1\right)\left(u_{1} p_{1}+\ldots+u_{r} p_{r}\right) \in \mathbb{N}$, which can be obtained:

$$
q_{p_{1}} \in \sum_{i=1}^{r} p_{i} \mathbb{N}
$$

So we have $q_{1}, q_{2}, \ldots, q_{p_{1}} \in \mathbb{N}$, p_{1} consecutive numbers, that can be obtained by linear combination of p_{1}, \ldots, p_{r}. So, every number over q_{1} lies in $S\left(p_{1}, \ldots, p_{r}\right)$. So, we have:

$$
\begin{gathered}
g\left(p_{1}, \ldots, p_{r}\right)<q_{1} \\
\Rightarrow a\left(p_{1}, \ldots, p_{r}\right)<\infty
\end{gathered}
$$

3 Computer program

First of all, by Theorem 2.1, we have to compute if the numbers are coprime. For that, we create a function, which computes the gcd of a list of integers.

```
def pgcd(li):
    pgcd=1
    minimum = li[0]
    for i in range(1, minimum + 1):
        e = True
        for j in li:
            if j % i != 0
                e = False
                break
            if e == True:
            pgcd = i
    return pgcd
```

Then, we create a list of all integers different from p_{1}, \ldots, p_{r} that will later represent the integers in $A\left(p_{1}, \ldots, p_{r}\right)$.

```
def calculate_maximum(li):
    s}=
    for i in li:
        s += i**2
    result = 1 + (li[0] + 1) * s
    return result
def generate_list(listp, M):
    li=[]
    for i in range(1, M):
        if i not in listp:
            li.append(i)
    return li
```

We also create a function which checks if there are p_{1} consecutive numbers not in the list, which would mean that all integers over these numbers are in $S\left(p_{1}, \ldots, p_{r}\right)$.

```
def checks(li, p, M):
    if (li[-1] < M):
        M = li[-1]
    i = 0
    a = len(li)
    while (i < a - 1):
        if (li[i] + <= li[i + 1] - p) and li[i] < M:
            M = li[i]
        i += 1
    return M
```

If such a maximum is found, we have a function which deletes all the integers above this maximum.

```
def check_list_max(li, M):
    i}=
    a = len(li)
    while (i < len(li)):
        if li[i] >= M:
            del li[i]
            i -= 1
        i += 1
    return li
```

The most important part of the program consistes of a function, which deletes from the list all the integers that can be obtained by adding p_{1}, \cdots, p_{r}.

```
def calculate(listp, li, maximum):
    for i in range(1, maximum):
        if i not in li:
            for j in listp:
            if ((i + j) in li):
                    li.remove(i+j)
    return li
```

Finally, we create a loop, which uses all the above functions, to delete integers of $S\left(p_{1}, \cdots, p_{r}\right)$ and tries to find a maximum with p_{1} conscutive numbers in
$S\left(p_{1}, \cdots, p_{r}\right)$. The loop stops when no element is deleted and the function returns $a\left(p_{1}, \cdots, p_{r}\right)$.

```
def calculate_a(listp):
    p = listp[0]
    maximum = calculate_maximum(listp)
    li = generate_list(listp, maximum)
    old_len = len(li)
    while True:
        li = calculate(listp, li, maximum)
        maximum = checks(li, p, maximum)
        new_len = len(li)
        if new_len == old_len:
            break
        old_len = new_len
    return len(li)
```

Similarly, we can also create a function, which computes and returns $g\left(p_{1}, \cdots, p_{r}\right)$ and $A\left(p_{1}, \cdots, p_{r}\right)$.

```
def calculate_g(listp):
    p = listp[0]
    maximum = calculate_maximum(listp)
    li = generate_list(listp, maximum)
    old_len = len(li)
    while True:
        li = calculate(listp, li, maximum)
        maximum = checks(li, p, maximum)
        new_len = len(li)
        if new_len == old_len:
            break
        old_len = new_len
    return li[-1]
def calculate_A(listp):
    p = listp[0]
    maximum = calculate_maximum(listp)
    li = generate_list(listp, maximum)
    old_len = len(li)
    while True:
        li = calculate(listp, li, maximum)
        maximum = checks(li, p, maximum)
        new_len = len(li)
        if new_len == old_len:
            break
        old_len = new_len
    return li
```

We will use this computer program in order to find conjectures for the formulas in part 5 .

4 Independent

Definition 1. We call $p_{1}, p_{2}, \ldots, p_{r}$ independent, if:
(i) $0<p_{1}<p_{2}<\ldots<p_{r}$ are integers;
(ii) the p_{i} are coprime;
(iii) none of the p_{i} is a sum of the others.

Lemma 4.1. If $p, q_{1}, q_{2}, \ldots, q_{r}$ are independent, then $r<p$.
Proof. Assume $p, q_{1}, q_{2}, \ldots, q_{r}$ are independent, so $p<q_{1}<q_{2}<\ldots<q_{r} \in \mathbb{N}$.
By euclidean division we get for every i in $\{1,2, \ldots, r\}$:

$$
q_{i}=k_{i} \times p+m_{i} \quad\left(k_{i}, m_{i} \in \mathbb{N}\right)
$$

so $1 \leq m_{i} \leq p-1$
Show that the m_{i} are unique.
By contradiction, assume $m_{i}=m_{j}$, we have $\left(i<j \Rightarrow q_{i}<q_{j}\right)$:

$$
\begin{gathered}
q_{i}=k_{i} \times p+m_{i} \\
q_{j}=k_{j} \times p+m_{j}=k_{j} \times p+m_{i}
\end{gathered}
$$

So, we get:

$$
\begin{gathered}
\quad q_{i}-k_{i} \times p=q_{j}-k_{j} \times p \\
\Rightarrow q_{j}=\left(k_{j}-k_{i}\right) \times p+q_{i}
\end{gathered}
$$

Contradiction, because none of the q_{i} is a sum of the others.

$$
\Rightarrow \text { all } m_{i} \text { are unique. }
$$

So, we have that $\left\{m_{1}, m_{2}, \ldots, m_{r}\right\} \subseteq\{1,2, \ldots, p-1\}$

$$
\begin{gathered}
\Rightarrow \#\left\{m_{1}, m_{2}, \ldots, m_{r}\right\} \leq \#\{1,2, \ldots, p-1\} \\
\Rightarrow r \leq p-1 \\
\Rightarrow r<p
\end{gathered}
$$

4.1 Computer program

We have the following code in order to determine if the $p_{1}, p_{2}, \ldots, p_{r}$ in the list li are independent or not. In the examples below we always assume that the integers are independent.

```
def are_independent(li):
    li.sort()
    li.reverse()
    if pgcd(li) == 1:
        li2 = li.copy()
        while li2 != []:
            i = li2[0]
            del li2[0]
            if len(li2) >= 1
                if i not in calculate_A(li2.copy()):
                    return False
                else:
                    if i % li[1] == 0 or li[1] % i == 0:
                    return False
                li.reverse()
            return True
        return False
```


5 Conjecture of formulas

5.1 For 2 integers

We are searching by conjecture a formula for two integers.
For $a(2, i)$, we have:

$$
\begin{aligned}
& a(2,3)=1 \\
& a(2,5)=2 \\
& a(2,7)=3
\end{aligned}
$$

We realise computationally that for every i, such that a and i are indepedent, we have:

$$
\begin{gathered}
i=2 a(2, i)+i \\
\Rightarrow a(2, i)=\frac{i-1}{2}
\end{gathered}
$$

Similarly for $a(3, i)$, we have that:

$$
a(3, i) \times \frac{2}{i-1}=2
$$

And, for $a(4, i)$:

$$
a(4, i) \times \frac{2}{i-1}=3
$$

So, we seem to have the following formula:

$$
a(p, q)=\frac{(p-1)(q-1)}{2}
$$

5.2 For 3 integers

We are now searching by conjecture for a formula for three integers:
For $a(3,10, q)$, we get:

$$
\begin{aligned}
& a(3,10,11)=6 \\
& a(3,10,14)=7 \\
& a(3,10,17)=8
\end{aligned}
$$

$\frac{1}{3} \times 11+s=6 \Rightarrow s=6-\frac{11}{3}=\frac{7}{3}=\frac{10-3}{3}=\frac{10}{3}-1$
So the slope is $\frac{7}{3}$.

$$
\text { So, } a(3,10, q)=\frac{1}{3} q+\frac{7}{3}
$$

For $a(3,10, q)$, we get:

$$
\begin{aligned}
& a(3,11,13)=7 \\
& a(3,11,16)=8 \\
& a(3,11,19)=9
\end{aligned}
$$

$$
\begin{aligned}
& \frac{1}{3} \times 13+s=7 \Rightarrow s=7-\frac{13}{3}=\frac{8}{3}=\frac{11-3}{3}=\frac{11}{3}-1 \\
& \text { So the slope is } \frac{8}{3} \text {. }
\end{aligned}
$$

$$
\text { So, } a(3,11, q)=\frac{1}{3} q+\frac{8}{3}
$$

For $a(3,13, q)$, we get:

$$
\begin{gathered}
a(3,13,14)=8 \\
a(3,13,17)=9 \\
a(3,13,20)=10
\end{gathered}
$$

$\frac{1}{3} \times 14+s=8 \Rightarrow s=8-\frac{14}{3}=\frac{10}{3}=\frac{13-3}{3}=\frac{13}{3}-1$
So the slope is $\frac{10}{3}$.

$$
\text { So, } a(3,13, q)=\frac{1}{3} q+\frac{10}{3}
$$

So, we finally get:

$$
a(3, p, q)=\frac{p+q}{3}-1
$$

5.3 for 4 numbers and more

We are now searching by conjecture for a formula with four integers:
For $a\left(4,9,11, p_{4}\right)$, we get:

$$
\begin{gathered}
a(4,9,11,6)=5 \\
a(4,9,11,10)=6 \\
a(4,9,11,14)=7
\end{gathered}
$$

$\frac{1}{4} \times 6+s=5 \Rightarrow s=5-\frac{3}{2}=\frac{7}{2}=\frac{14}{4}=\frac{11+3}{4}$
So the slope is $\frac{7}{2}$.

$$
\text { So, } a\left(4,9,11, p_{4}\right)=\frac{1}{4} p_{4}+\frac{7}{2}
$$

For $a\left(4,9,14, p_{4}\right)$, we get:

$$
\begin{aligned}
& a(4,9,14,11)=7 \\
& a(4,9,14,15)=8 \\
& a(4,9,14,19)=9
\end{aligned}
$$

$\frac{1}{4} \times 11+s=7 \Rightarrow s=7-\frac{11}{4}=\frac{17}{4}=\frac{14+3}{4}$
So the slope is $\frac{17}{4}$.

$$
\text { So, } a\left(4,9,14, p_{4}\right)=\frac{1}{4} p_{4}+\frac{17}{4}
$$

For $a\left(4,9,10, p_{4}\right)$, we get:

$$
\begin{gathered}
a(4,9,10,7)=5 \\
a(4,9,10,11)=6 \\
a(4,9,10,15)=7
\end{gathered}
$$

$\frac{1}{4} \times 7+s=5 \Rightarrow s=5-\frac{7}{4}=\frac{13}{4}=\frac{10+3}{4}$
So the slope is $\frac{13}{4}$.

$$
\text { So, } a\left(4,9,10, p_{4}\right)=\frac{1}{4} p_{4}+\frac{13}{4}
$$

So we have:

$$
\begin{aligned}
a\left(4,9, p_{3}, p_{4}\right) & =\frac{1}{4} p_{4}+\frac{1}{4} p_{3}+\frac{3}{4} \\
& =\frac{p_{3}+p_{4}}{4}+\frac{3}{4}
\end{aligned}
$$

Since $\frac{3}{4}=\frac{9-6}{4}=\frac{9}{4}-\frac{3}{2}$, we find:

$$
a\left(4, p_{2}, p_{3}, p_{4}\right)=\frac{p_{2}+p_{3}+p_{4}}{4}-\frac{3}{2}
$$

Let's check this formula:
$a(4,21,22,23)=\frac{21+22+23}{4}-\frac{3}{2}=15$
$a(4,6,7,9)=\frac{6+7+9}{4}-\frac{3}{2}=4$
$a(4,15,17,18)=\frac{4}{} \frac{15+17+18}{4}-\frac{3}{2}=11$
Since we find the same results with the computer program, we assume the formula is true.

Similarly, we also find by conjecture that:

$$
a\left(5, p_{2}, p_{3}, p_{4}, p_{5}\right)=\frac{p_{2}+p_{3}+p_{4}+p_{5}}{5}-2
$$

and

$$
a\left(6, p_{2}, p_{3}, p_{4}, p_{5}, p_{6}\right)=\frac{p_{2}+p_{3}+p_{4}+p_{5}+p_{6}}{6}-\frac{5}{2}
$$

So it seems to be, that the formula is:

$$
a\left(p, q_{2}, q_{3}, \ldots, q_{p}\right)=\frac{\sum_{k=1}^{p} p_{k}}{p}-\frac{p-1}{2}
$$

5.4 For the maximum with 2 integers

We now want to find the formula for $g(p, q)$, where $p, g>1$ coprime integers. For $g(2, i)$:

$$
\begin{gathered}
g(2,3)=1 \\
g(2,5)=3 \\
g(2,7)=5 \\
g(2,9)=7 \\
\text { So, } g(2, i)=(i-1)-1
\end{gathered}
$$

For $g(3, i)$:

$$
\begin{gathered}
g(3,4)=5 \\
g(3,5)=7 \\
g(3,7)=11 \\
g(3,8)=13
\end{gathered}
$$

$i+1 \Rightarrow g+2$, so the slope is 2 .
$g(3, i)=2 i-3=2(i-1)-1=(3-1)(i-1)-1$

$$
\text { So, } g(3, i)=(3-1)(i-1)-1
$$

For $g(4, i)$

$$
\begin{gathered}
g(4,5)=11 \\
g(4,7)=17 \\
g(4,9)=23 \\
g(4,11)=29
\end{gathered}
$$

$i+2 \Rightarrow g+6$, so the slope is 3 .
$g(4, i)=3 i-4=3(i-1)-1=(4-1)(i-1)-1$

$$
\text { So, } g(4, i)=(4-1)(i-1)-1
$$

So we find the following formula:

$$
g(p, q)=(p-1)(q-1)-1
$$

6 Formula for the general case

Let p, q_{1}, \ldots, q_{r} be independent
Then,

$$
\begin{equation*}
a\left(p, q_{1}, \ldots, q_{r}\right)=\frac{m_{1}+\ldots+m_{p-1}}{p}-\frac{p-1}{2} \tag{3}
\end{equation*}
$$

with $m_{i}=\min \left\{m \in S\left(p, q_{1}, \ldots, q_{r}\right) \mid m \equiv i \bmod p\right\}$

$7 \quad$ Special cases

7.1 Special case for 2 numbers

For two independent numbers $p, q>1$, we have found by conjecture, in section 5 , the following formula:

$$
a(p, q)=\frac{(p-1)(q-1)}{2}
$$

We will now prove this formula.
Proof. We have that:

$$
\begin{aligned}
m_{i} & =i \quad \bmod p \\
\Rightarrow m_{i} & =i+k p, k \in \mathbb{N}
\end{aligned}
$$

We also know that $m_{i} \in \mathrm{~S}(\mathrm{p}, \mathrm{q})$, so there exists $a_{1}, a_{2} \in \mathbb{N}$, such that:

$$
a_{1} p+a_{2} q=i+k p
$$

Suppose $a_{1} \neq 0$, this would mean that:

$$
\left(a_{1}-1\right) p+a_{2} q \in S(p, q)
$$

Contradiction, because this would mean that m_{i} is not the minimum. So,

$$
m_{i}=a_{2} q \Rightarrow q \mid m_{i}, \forall 1 \leq i \leq p-1
$$

Suppose $m_{i}=m_{j}$

$$
\begin{aligned}
\Rightarrow i \quad \bmod p & =i \quad \bmod q \\
\Rightarrow i & =j
\end{aligned}
$$

So, because $q \mid m_{i}$, all m_{i} are distinct and $m_{i}<p q$ (by minimality of m_{i}), we have that:

$$
\begin{equation*}
\left\{m_{i} \mid 1 \leq i \leq p-1\right\}=\{i q \mid 1 \leq i \leq p-1\} \tag{4}
\end{equation*}
$$

So by (4) we can say that:

$$
\left\{m_{i} \mid 1 \leq i \leq p-1\right\}=\{q, 2 q, 3 q, \cdots,(p-1) q\}
$$

And so by applying (3), we get:

$$
\begin{aligned}
a(p, q) & =\frac{q+2 q+\cdots+(p-1) q}{p}-\frac{p-1}{2} \\
& =\frac{q}{p} \sum_{i=1}^{p-1} i-\frac{p-1}{2} \\
& =\frac{q}{p} \frac{p(p-1)}{2}-\frac{p-1}{2} \\
& =\frac{q(p-1)}{2}-\frac{p-1}{2} \\
& =\frac{q(p-1)-(p-1)}{2} \\
& =\frac{(q-1)(p-1)}{2}
\end{aligned}
$$

7.2 Special case when $\mathbf{r}=\mathrm{p}-1$

For $p, q_{1}, \ldots, q_{p-1}$ independent numbers, we have found the following conjecture in section 5 :

$$
a\left(p, q_{1}, \ldots, q_{p-1}\right)=\frac{p+q_{1}+\ldots+q_{p-1}}{p}-\frac{p-1}{2}
$$

We will now prove this formula.
Proof. By Lemma 4.2, we know that for all $1 \leq i \leq p-1$, there is $1 \leq j \leq p-1$, such that:

$$
\begin{gathered}
q_{j_{i}}=k_{i} p+i, k_{i} \in \mathbb{N} \\
\Rightarrow q_{j_{i}} \equiv i \quad \bmod p
\end{gathered}
$$

So, $q_{j_{i}} \in\left\{m \in S\left(p, q_{1}, \cdots, q_{p-1}\right) \mid m \equiv i \bmod p\right\}$
Show that it is the minimum.

Suppose $m_{i}<q_{j_{i}}$
So, we have:

$$
\begin{gathered}
m_{i} \equiv i \quad \bmod p \\
\Rightarrow m_{i}=i+l_{i} p, \quad l_{i} \in \mathbb{N}
\end{gathered}
$$

We know that $l_{i}<k_{i}$, because $m_{i}<q_{j_{i}}$, so there exists an $\epsilon \in \mathbb{N}$, such that $k_{i}=l_{i}+\epsilon, \epsilon>0$, so we get:

$$
m_{i}+\epsilon_{p}=i+k_{i} p=q_{j_{i}}
$$

So, there is a linear combination in $S\left(p, q_{1}, \cdots, q_{j_{i}-1}\right)$ to optain q_{i}. So q_{i} is not independent.
So, we can conclude that $q_{j_{i}}$ is the minimum of the set and that $m_{i}=q_{j_{i}}$ So,

$$
a\left(p, q_{1}, \cdots, q_{p-1}\right)=\frac{q_{1}+\cdots+q_{p-1}}{p}-\frac{p-1}{2}
$$

7.3 Special case with 5

Suppose $5, p, q$ are independent, with:

$$
p \equiv 1 \quad \bmod 5 \quad \text { and } \quad q \equiv 2 \quad \bmod 5
$$

We have $m_{1}=p$, because $p \equiv 1 \bmod 5$.
For m_{2}, we would have the minimum between q and $2 p$.
By contradiction, suppose $q>2 p$ Because $q \equiv 2 \bmod 5$ and $2 p \equiv 2 \bmod 5$, there must exist a $k \in \mathbb{N}$, such that:

$$
q=2 p+5 k
$$

Contradiction, because q is independent and cannot be obtained by a positive linear combination of p and 5 .
So, $m_{2}=q$.
Similary, we have:

$$
m_{3}=q+p \quad \text { and } \quad m_{4}=2 q
$$

So, we get by applying (3):

$$
\begin{aligned}
a(5, p, q) & =\frac{m_{1}+m_{2}+m_{3}+m_{4}}{5}-\frac{5-1}{2} \\
& =\frac{p+q+p+q+2 q}{5}-2 \\
& =\frac{2 p+4 q}{5}-2 \\
& =\frac{2 p+4 q-10}{5}
\end{aligned}
$$

7.4 Special case with modulo 1 and 2

Let $p<q<r$ be three independent numbers, with p odd, such that:

$$
q \equiv 1 \quad \bmod p \quad \text { and } \quad r \equiv 2 \quad \bmod p
$$

We want to show that:

$$
\begin{gather*}
m_{2 k}=k r \tag{5}\\
m_{2 k+1}=k r+q \tag{6}
\end{gather*}
$$

We first want to show (5). First, we can say that there exists $a, b, c \geq 0$, such that:

$$
m_{2 k}=a p+b q+c r
$$

Suppose $a \neq 0$. We know that $m_{2 k} \equiv 2 k \bmod p$, so we would get:

$$
m_{2 k}-p \equiv 2 k \quad \bmod p
$$

Contradition, because $m_{2 k}$ must be the minimum. So, $a=0$ and

$$
m_{2 k}=b q+c r
$$

By contradiction, assume now that b is odd, so there exists $l \in \mathbb{N}$, such that $b=2 l+1$. So, we get:

$$
\begin{aligned}
m_{2 k} & =(2 l+1) q+r c \\
& =2 q l+q+r c
\end{aligned}
$$

We know that $2 q \equiv 2 \bmod p$ and $r \equiv 2 \bmod p$, so $(2 q l+r c) \equiv 2 m \bmod p$, with $m \in \mathbb{N}$.
But, $q \equiv 1 \bmod p$, so $m_{2 k} \equiv(2 m+1) \bmod p$.
This is a contradiction, because $2 k$ is even and $2 m+1$ is odd. So, we know that b is even, we get for some $l \in \mathbb{N}$:

$$
m_{2 k}=2 l q+c r
$$

Moreover we can say that $r<2 q$, because otherwise p, q, r would not be independent (the proof is identical as for the case 5 in subsection 7.5).
So, by assuming that $l \neq 0$, we know that:

$$
2 l q+c r \equiv 2 k \quad \bmod p
$$

But, because $r<2 q$ and $r \equiv 2 \bmod p$ as well as $2 q \equiv 2 \bmod p$, we get that:

$$
2(l-1) q+(c+1) r \equiv 2 k \quad \bmod p \quad \text { and } \quad 2(l-1) q+(c+1) r<2 l q+c r
$$

This is a contradiction, because this would mean that $m_{2 k}$ is not the minimum. So, we get that $l=0$ and:

$$
m_{2 k}=c r
$$

Finally, we know that $r \equiv 2 \bmod p$, so $c r \equiv 2 c \bmod p$, so the smallest c such that $c r \equiv 2 k \bmod p$ is $c=k$.
So, we get:

$$
m_{2 k}=k r
$$

One proceeds similarly to prove (6).
We now want to find a formula for any even integer p.
So, we have:

$$
\begin{aligned}
m_{2 k-1}+m_{2 k} & =k r+(k-1) r+q \\
& =(2 k-1) r+q
\end{aligned}
$$

So, by considering u an odd number, we get:

$$
\begin{aligned}
\sum_{k=1}^{u} m_{k} & =\sum_{k=1}^{\frac{u-1}{2}}((2 k-1) r+q) \\
& =\sum_{k=1}^{\frac{u-1}{2}} 2 k r-\sum_{k=1}^{\frac{u-1}{2}} r+\sum_{k=1}^{\frac{u-1}{2}} q \\
& =2 r \sum_{k=1}^{\frac{u-1}{2}} k-r \frac{u-1}{2}+q \frac{p-1}{2} \\
& =2 r \frac{\left(\frac{u-1}{2}\right)\left(\frac{u-1}{2}+1\right)}{2}-r \frac{u-1}{2}+q \frac{u-1}{2} \\
& =\left(\frac{u-1}{2}\right)\left(r \frac{u+1}{2}-r+q\right) \\
& =\left(\frac{u-1}{4}\right)(2 q+r u-r)
\end{aligned}
$$

For every p even, we have that $p-1$ odd. And, we know that:

$$
m_{p-1}=m_{p-2+1}=m_{2\left(\frac{p-2}{2}\right)+1}=\left(\frac{p-2}{2}\right) r+q
$$

So, by using the above formula by replacing u by $p-1$ (in order to remove the two last terms), and by adding the last element, we get:

$$
\begin{aligned}
\sum_{i=1}^{p-1} m_{i} & =\left(\frac{p-2}{4}\right)(2 q+r(p-1)-r)+\left(\frac{p-2}{2}\right) r+q \\
& =\left(\frac{p-2}{4}\right)(2 q+r p-r-r+2 r)+q \\
& =\frac{(p-2)(2 q+r p)+4 q}{4} \\
& =\frac{\left(2 p q+r p^{2}-2 r p+4 q\right.}{4} \\
& =\frac{2 p q+r p^{2}-2 r p}{4} \\
& =\frac{p(2 q+r p-2 r)}{4}
\end{aligned}
$$

So, we get:

$$
\begin{aligned}
a(p, q, r) & =\frac{p(2 q+r p-2 r)}{4 p}-\frac{p-1}{2} \\
& =\frac{2 q+r p-2 r-2 p+2}{4}
\end{aligned}
$$

8 Graphical interpretation of an example

Let's consider the example, where $p_{1}=6$ and $p_{2}=7$. We have the following graphical interpretation, where every line represents the set of points which satisfy $6 \times x+7 \times y=i$ for i in \mathbb{N}.

When the line crosses one of the points which have non negative integers as coordinates, i is in $S(6,7)$ and the line is grey. Otherwise, i is in $A(6,7)$ and the line is red.
From the graph, we can see:

$$
\begin{gathered}
S(6,7)=\{0,6,7,12,13,14,18,19,20,21,24,25,26,27,28,30,31, \ldots\} \\
A(6,7)=\{1,2,3,4,5,8,9,10,11,15,16,17,22,23,29\} \\
g(6,7)=29 \\
a(6,7)=15
\end{gathered}
$$

If we check with the formulas:

$$
\begin{gathered}
g(6,7)=(6-1)(7-1)-1=5 \times 6-1=29 \\
a(6,7)=\frac{(6-1)(7-1)}{2}=\frac{5 \times 6}{2}=15
\end{gathered}
$$

We find the same results as before.

References

[1] S. J. E. Brauer, Alfred. On a problem of frobenius. Journal für die reine und angewandte Mathematik, 211:215-220, 1962.
[2] J. J. Sylvester. On subvariants, ie semi-invariants to binary quantics of an unlimited order. American Journal of Mathematics, 5(1):79-136, 1882.

