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1 Definition
We consider for all positive integers p1, . . . , pr,

S(p1, . . . , pr) :=

r∑
i=1

piN

S(p1, . . . , pr) represents the set of all the numbers that can be obtained by
positive linear combination of p1, . . . , pr.
Similary, we define:

A(p1, . . . , pr) := N−
r∑

i=1

piN

A(p1, . . . , pr) represents the set of all integers that are not in the set S(p1, . . . , pr)
e. g. of all the integers that cannot be obtained by a positive linear combination
of p1, . . . , pr.

g(p1, . . . , pr) := supA(p1, . . . , pr)

g(p1, . . . , pr) represents the supremum of A(p1, . . . , pr), so the smallest integer,
such that all the integer above of it are in S(p1, . . . , pr).

a(p1, . . . , pr) := #A(p1, . . . , pr)

a(p1, . . . , pr) represents the cardinality of A(p1, . . . , pr), e. g. the number of
integers that cannot be obtained by a positive linear combination of p1, . . . , pr.

2 Coprime
Theorem 2.1. We have for all p1, . . . , pr > 1:

a(p1, . . . , pr) < ∞ ⇔ p1, . . . , pr are coprime.

Proof. If p1, . . . , pr are not coprime, there exists p ∈ N, p ̸= 1, such that :

p | pi, ∀i ∈ {1, . . . , r}

Hence, all elements of S(p1, . . . , pr) are divisible by p.

pr + 1 ∈ A(p1, . . . , pr),∀r ∈ N

⇒ supA(p1, . . . , pr) = ∞

⇒ a(p1, . . . , pr) = #(A(p1, . . . , pr)) = ∞

If p1, . . . , pr are coprime, we have by the generalized Bézout identity, that
there exists u1, . . . , ur ∈ Z, such that:

u1p1 + u2p2 + . . .+ urpr = 1

Assume p1 = min(p1, . . . , pr).
Without loss of generality, suppose um < 0, and ui > 0 for i ̸= m. We can
assume this because the sum equals to 1, so there must be a positive and a
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negative u.
We now replace um by−um to get:

u1p1 + . . .− umpm + . . .+ urpr = 1 |+ uipi,∀1 ≤ i ≤ r (1)

⇒ 2u1p1+ . . .−0+ . . .+2urpr = 1+(u1p1+ . . .+urpr) |+p1uipi,∀1 ≤ i ≤ r

⇒ (2+p1)u1p1+. . .+p1umpm+. . .+(2+p1)urpr = 1+(p1+1)(u1p1+. . .+urpr)
(2)

Let q1 = 1 + (p1 + 1)(u1p1 + . . .+ urpr) ∈ N, can be obtained so:

q1 ∈
r∑

i=1

piN

By adding (1) and (2), we get:

(3+p1)u1p1+. . .+(p1−1)umpm+. . .+(3+p1)urpr = 2+(p1+1)(u1p1+. . .+urpr)

Let q2 = 2 + (p1 + 1)(u1p1 + . . .+ urpr) ∈ N, which can be obtained:

q2 ∈
r∑

i=1

piN

We procede p1 times in the same way, and we get in the final step:

(1+2p1)u1p1+ . . .+umpm+ . . .+(1+2p1)urpr = p1+(p1+1)(u1p1+ . . .+urpr)

Let qp1
= p1 + (p1 + 1)(u1p1 + . . .+ urpr) ∈ N, which can be obtained:

qp1
∈

r∑
i=1

piN

So we have q1, q2, . . . , qp1
∈ N, p1 consecutive numbers, that can be obtained by

linear combination of p1, . . . , pr. So, every number over q1 lies in S(p1, . . . , pr).
So, we have:

g(p1, . . . , pr) < q1

⇒ a(p1, . . . , pr) < ∞

3 Computer program
First of all, by Theorem 2.1, we have to compute if the numbers are coprime.
For that, we create a function, which computes the gcd of a list of integers.

def pgcd(li):
pgcd = 1
minimum = li[0]
for i in range(1, minimum + 1):

e = True
for j in li:

if j % i != 0:
e = False
break

if e == True:
pgcd = i

return pgcd
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Then, we create a list of all integers different from p1, . . . , pr that will later
represent the integers in A(p1, . . . , pr).

def calculate_maximum(li):
s = 0
for i in li:

s += i **2
result = 1 + (li[0] + 1) * s
return result

def generate_list(listp , M):
li = []
for i in range(1, M):

if i not in listp:
li.append(i)

return li

We also create a function which checks if there are p1 consecutive numbers
not in the list, which would mean that all integers over these numbers are in
S(p1, . . . , pr).

def checks(li , p, M):
if (li[-1] < M):

M = li[-1]
i = 0
a = len(li)
while (i < a - 1):

if (li[i] + 1 <= li[i + 1] - p) and li[i] < M:
M = li[i]

i += 1
return M

If such a maximum is found, we have a function which deletes all the integers
above this maximum.

def check_list_max(li , M):
i = 0
a = len(li)
while (i < len(li)):

if li[i] >= M:
del li[i]
i -= 1

i += 1
return li

The most important part of the program consistes of a function, which deletes
from the list all the integers that can be obtained by adding p1, · · · , pr.

def calculate(listp , li, maximum):
for i in range(1, maximum):

if i not in li:
for j in listp:

if ((i + j) in li):
li.remove(i+j)

return li

Finally, we create a loop, which uses all the above functions, to delete integers
of S(p1, · · · , pr) and tries to find a maximum with p1 conscutive numbers in
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S(p1, · · · , pr). The loop stops when no element is deleted and the function
returns a(p1, · · · , pr).

def calculate_a(listp):
p = listp[0]
maximum = calculate_maximum(listp)
li = generate_list(listp , maximum)
old_len = len(li)
while True:

li = calculate(listp , li , maximum)
maximum = checks(li, p, maximum)
new_len = len(li)
if new_len == old_len:

break
old_len = new_len

return len(li)

Similarly, we can also create a function, which computes and returns g(p1, · · · , pr)
and A(p1, · · · , pr).

def calculate_g(listp):
p = listp[0]
maximum = calculate_maximum(listp)
li = generate_list(listp , maximum)
old_len = len(li)
while True:

li = calculate(listp , li , maximum)
maximum = checks(li, p, maximum)
new_len = len(li)
if new_len == old_len:

break
old_len = new_len

return li[-1]

def calculate_A(listp):
p = listp[0]
maximum = calculate_maximum(listp)
li = generate_list(listp , maximum)
old_len = len(li)
while True:

li = calculate(listp , li , maximum)
maximum = checks(li, p, maximum)
new_len = len(li)
if new_len == old_len:

break
old_len = new_len

return li

We will use this computer program in order to find conjectures for the formulas
in part 5.

4 Independent
Definition 1. We call p1, p2, ..., pr independent, if:

(i) 0 < p1 < p2 < ... < pr are integers;

(ii) the pi are coprime;
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(iii) none of the pi is a sum of the others.

Lemma 4.1. If p, q1, q2, ..., qr are independent, then r < p.

Proof. Assume p, q1, q2, ..., qr are independent, so p < q1 < q2 < ... < qr ∈ N.
By euclidean division we get for every i in {1, 2, ..., r}:

qi = ki × p+mi (ki,mi ∈ N),
so 1 ≤ mi ≤ p− 1
Show that the mi are unique.
By contradiction, assume mi = mj , we have (i < j ⇒ qi < qj):

qi = ki × p+mi

qj = kj × p+mj = kj × p+mi

So, we get:
qi − ki × p = qj − kj × p

⇒ qj = (kj − ki)× p+ qi  

Contradiction, because none of the qi is a sum of the others.

⇒ all mi are unique.

So, we have that {m1,m2, ...,mr} ⊆ {1, 2, ..., p− 1}

⇒ #{m1,m2, ...,mr} ≤ #{1, 2, ..., p− 1}
⇒ r ≤ p− 1

⇒ r < p

4.1 Computer program
We have the following code in order to determine if the p1, p2, ..., pr in the list
li are independent or not. In the examples below we always assume that the
integers are independent.

def are_independent(li):
li.sort()
li.reverse ()
if pgcd(li) == 1:

li2 = li.copy()
while li2 != []:

i = li2[0]
del li2[0]
if len(li2) >= 1:

if i not in calculate_A(li2.copy()):
return False

else:
if i % li[1] == 0 or li[1] % i == 0:

return False
li.reverse ()

return True
return False
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5 Conjecture of formulas

5.1 For 2 integers
We are searching by conjecture a formula for two integers.
For a(2, i), we have:

a(2, 3) = 1
a(2, 5) = 2
a(2, 7) = 3

We realise computationally that for every i, such that a and i are indepedent,
we have:

i = 2a(2, i) + i

⇒ a(2, i) =
i− 1

2

Similarly for a(3, i), we have that:

a(3, i)× 2

i− 1
= 2

And, for a(4, i):

a(4, i)× 2

i− 1
= 3

So, we seem to have the following formula:

a(p, q) =
(p− 1)(q − 1)

2

5.2 For 3 integers
We are now searching by conjecture for a formula for three integers:

For a(3, 10, q), we get:

a(3, 10, 11) = 6
a(3, 10, 14) = 7
a(3, 10, 17) = 8

1
3 × 11 + s = 6 ⇒ s = 6− 11

3 = 7
3 = 10−3

3 = 10
3 − 1

So the slope is 7
3 .

So, a(3, 10, q) =
1

3
q +

7

3

For a(3, 10, q), we get:

a(3, 11, 13) = 7
a(3, 11, 16) = 8
a(3, 11, 19) = 9

1
3 × 13 + s = 7 ⇒ s = 7− 13

3 = 8
3 = 11−3

3 = 11
3 − 1

So the slope is 8
3 .

8



So, a(3, 11, q) =
1

3
q +

8

3

For a(3, 13, q), we get:

a(3, 13, 14) = 8
a(3, 13, 17) = 9
a(3, 13, 20) = 10

1
3 × 14 + s = 8 ⇒ s = 8− 14

3 = 10
3 = 13−3

3 = 13
3 − 1

So the slope is 10
3 .

So, a(3, 13, q) =
1

3
q +

10

3

So, we finally get:

a(3, p, q) =
p+ q

3
− 1

5.3 for 4 numbers and more
We are now searching by conjecture for a formula with four integers:

For a(4, 9, 11, p4), we get:

a(4, 9, 11, 6) = 5
a(4, 9, 11, 10) = 6
a(4, 9, 11, 14) = 7

1
4 × 6 + s = 5 ⇒ s = 5− 3

2 = 7
2 = 14

4 = 11+3
4

So the slope is 7
2 .

So, a(4, 9, 11, p4) =
1

4
p4 +

7

2

For a(4, 9, 14, p4), we get:

a(4, 9, 14, 11) = 7
a(4, 9, 14, 15) = 8
a(4, 9, 14, 19) = 9

1
4 × 11 + s = 7 ⇒ s = 7− 11

4 = 17
4 = 14+3

4
So the slope is 17

4 .

So, a(4, 9, 14, p4) =
1

4
p4 +

17

4

For a(4, 9, 10, p4), we get:

a(4, 9, 10, 7) = 5
a(4, 9, 10, 11) = 6
a(4, 9, 10, 15) = 7

1
4 × 7 + s = 5 ⇒ s = 5− 7

4 = 13
4 = 10+3

4
So the slope is 13

4 .
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So, a(4, 9, 10, p4) =
1

4
p4 +

13

4

So we have:

a(4, 9, p3, p4) =
1

4
p4 +

1

4
p3 +

3

4

=
p3 + p4

4
+

3

4

Since 3
4 = 9−6

4 = 9
4 − 3

2 , we find:

a(4, p2, p3, p4) =
p2 + p3 + p4

4
− 3

2

Let’s check this formula:
a(4, 21, 22, 23) = 21+22+23

4 − 3
2 = 15

a(4, 6, 7, 9) = 6+7+9
4 − 3

2 = 4
a(4, 15, 17, 18) = 15+17+18

4 − 3
2 = 11

Since we find the same results with the computer program, we assume the
formula is true.

Similarly, we also find by conjecture that:

a(5, p2, p3, p4, p5) =
p2 + p3 + p4 + p5

5
− 2

and

a(6, p2, p3, p4, p5, p6) =
p2 + p3 + p4 + p5 + p6

6
− 5

2

So it seems to be, that the formula is:

a(p, q2, q3, ..., qp) =

p∑
k=1

pk

p
− p− 1

2

5.4 For the maximum with 2 integers
We now want to find the formula for g(p, q), where p, g > 1 coprime integers.
For g(2, i):

g(2, 3) = 1
g(2, 5) = 3
g(2, 7) = 5
g(2, 9) = 7

So, g(2, i) = (i− 1)− 1

For g(3, i):

g(3, 4) = 5
g(3, 5) = 7
g(3, 7) = 11
g(3, 8) = 13
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i+ 1 ⇒ g + 2, so the slope is 2.
g(3, i) = 2i− 3 = 2(i− 1)− 1 = (3− 1)(i− 1)− 1

So, g(3, i) = (3− 1)(i− 1)− 1

For g(4, i)

g(4, 5) = 11
g(4, 7) = 17
g(4, 9) = 23
g(4, 11) = 29

i+ 2 ⇒ g + 6, so the slope is 3.
g(4, i) = 3i− 4 = 3(i− 1)− 1 = (4− 1)(i− 1)− 1

So, g(4, i) = (4− 1)(i− 1)− 1

So we find the following formula:

g(p, q) = (p− 1)(q − 1)− 1

6 Formula for the general case
Let p, q1, . . . , qr be independent
Then,

a(p, q1, . . . , qr) =
m1 + . . .+mp−1

p
− p− 1

2
(3)

with mi = min {m ∈ S(p, q1, . . . , qr) | m ≡ i mod p}

7 Special cases

7.1 Special case for 2 numbers
For two independent numbers p, q > 1, we have found by conjecture, in section
5, the following formula:

a(p, q) =
(p− 1)(q − 1)

2

We will now prove this formula.

Proof. We have that:
mi = i mod p

⇒ mi = i+ kp, k ∈ N

We also know that mi ∈ S(p,q), so there exists a1, a2 ∈ N, such that:

a1p+ a2q = i+ kp

Suppose a1 ̸= 0, this would mean that:

(a1 − 1)p+ a2q ∈ S(p, q)  
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Contradiction, because this would mean that mi is not the minimum. So,

mi = a2q ⇒ q|mi,∀1 ≤ i ≤ p− 1

Suppose mi = mj

⇒ i mod p = i mod q

⇒ i = j

So, because q|mi, all mi are distinct and mi < pq (by minimality of mi), we
have that:

{mi | 1 ≤ i ≤ p− 1} = {iq | 1 ≤ i ≤ p− 1} (4)

So by (4) we can say that:

{mi | 1 ≤ i ≤ p− 1} = {q, 2q, 3q, · · · , (p− 1)q}

And so by applying (3), we get:

a(p, q) =
q + 2q + · · ·+ (p− 1)q

p
− p− 1

2

=
q

p

p−1∑
i=1

i− p− 1

2

=
q

p

p(p− 1)

2
− p− 1

2

=
q(p− 1)

2
− p− 1

2

=
q(p− 1)− (p− 1)

2

=
(q − 1)(p− 1)

2

7.2 Special case when r = p - 1
For p, q1, . . . , qp−1 independent numbers, we have found the following conjecture
in section 5:

a(p, q1, . . . , qp−1) =
p+ q1 + . . .+ qp−1

p
− p− 1

2

We will now prove this formula.

Proof. By Lemma 4.2, we know that for all 1 ≤ i ≤ p−1, there is 1 ≤ j ≤ p−1,
such that:

qji = kip+ i, ki ∈ N

⇒ qji ≡ i mod p

So, qji ∈ {m ∈ S(p, q1, · · · , qp−1) | m ≡ i mod p}
Show that it is the minimum.
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Suppose mi < qji
So, we have:

mi ≡ i mod p

⇒ mi = i+ lip, li ∈ N

We know that li < ki, because mi < qji , so there exists an ϵ ∈ N, such that
ki = li + ϵ, ϵ > 0, so we get:

mi + ϵp = i+ kip = qji

So, there is a linear combination in S(p, q1, · · · , qji−1) to optain qi. So qi is not
independent.
So, we can conclude that qji is the minimum of the set and that mi = qji
So,

a(p, q1, · · · , qp−1) =
q1 + · · ·+ qp−1

p
− p− 1

2

7.3 Special case with 5
Suppose 5, p, q are independent, with:

p ≡ 1 mod 5 and q ≡ 2 mod 5

We have m1 = p, because p ≡ 1 mod 5.
For m2, we would have the minimum between q and 2p.
By contradiction, suppose q > 2p Because q ≡ 2 mod 5 and 2p ≡ 2 mod 5,
there must exist a k ∈ N, such that:

q = 2p+ 5k  

Contradiction, because q is independent and cannot be obtained by a positive
linear combination of p and 5.
So, m2 = q.
Similary, we have:

m3 = q + p and m4 = 2q

So, we get by applying (3):

a(5, p, q) =
m1 +m2 +m3 +m4

5
− 5− 1

2

=
p+ q + p+ q + 2q

5
− 2

=
2p+ 4q

5
− 2

=
2p+ 4q − 10

5

13



7.4 Special case with modulo 1 and 2
Let p < q < r be three independent numbers, with p odd, such that:

q ≡ 1 mod p and r ≡ 2 mod p

We want to show that:
m2k = kr (5)

m2k+1 = kr + q (6)

We first want to show (5). First, we can say that there exists a, b, c ≥ 0,
such that:

m2k = ap+ bq + cr

Suppose a ̸= 0. We know that m2k ≡ 2k mod p, so we would get:

m2k − p ≡ 2k mod p  

Contradition, because m2k must be the minimum. So, a = 0 and

m2k = bq + cr

By contradiction, assume now that b is odd, so there exists l ∈ N, such that
b = 2l + 1. So, we get:

m2k = (2l + 1)q + rc

= 2ql + q + rc

We know that 2q ≡ 2 mod p and r ≡ 2 mod p, so (2ql + rc) ≡ 2m mod p,
with m ∈ N.
But, q ≡ 1 mod p, so m2k ≡ (2m+ 1) mod p.  
This is a contradiction, because 2k is even and 2m+1 is odd. So, we know that
b is even, we get for some l ∈ N:

m2k = 2lq + cr

Moreover we can say that r < 2q, because otherwise p, q, r would not be inde-
pendent (the proof is identical as for the case 5 in subsection 7.5).
So, by assuming that l ̸= 0, we know that:

2lq + cr ≡ 2k mod p

But, because r < 2q and r ≡ 2 mod p as well as 2q ≡ 2 mod p, we get that:

2(l − 1)q + (c+ 1)r ≡ 2k mod p and 2(l − 1)q + (c+ 1)r < 2lq + cr

This is a contradiction, because this would mean that m2k is not the minimum.
So, we get that l = 0 and:

m2k = cr

Finally, we know that r ≡ 2 mod p, so cr ≡ 2c mod p, so the smallest c such
that cr ≡ 2k mod p is c = k.
So, we get:

m2k = kr

14



One proceeds similarly to prove (6).
We now want to find a formula for any even integer p.

So, we have:

m2k−1 +m2k = kr + (k − 1)r + q

= (2k − 1)r + q

So, by considering u an odd number, we get:

u∑
k=1

mk =

u−1
2∑

k=1

((2k − 1)r + q)

=

u−1
2∑

k=1

2kr −

u−1
2∑

k=1

r +

u−1
2∑

k=1

q

= 2r

u−1
2∑

k=1

k − r
u− 1

2
+ q

p− 1

2

= 2r
(u−1

2 )(u−1
2 + 1)

2
− r

u− 1

2
+ q

u− 1

2

= (
u− 1

2
)(r

u+ 1

2
− r + q)

= (
u− 1

4
)(2q + ru− r)

For every p even, we have that p− 1 odd. And, we know that:

mp−1 = mp−2+1 = m2( p−2
2 )+1 = (

p− 2

2
)r + q

So, by using the above formula by replacing u by p− 1 (in order to remove the
two last terms), and by adding the last element, we get:

p−1∑
i=1

mi = (
p− 2

4
)(2q + r(p− 1)− r) + (

p− 2

2
)r + q

= (
p− 2

4
)(2q + rp− r − r + 2r) + q

=
(p− 2)(2q + rp) + 4q

4

=
(2pq + rp2 − 2rp+ 4q

4

=
2pq + rp2 − 2rp

4

=
p(2q + rp− 2r)

4
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So, we get:

a(p, q, r) =
p(2q + rp− 2r)

4p
− p− 1

2

=
2q + rp− 2r − 2p+ 2

4

8 Graphical interpretation of an example
Let’s consider the example, where p1 = 6 and p2 = 7. We have the following
graphical interpretation, where every line represents the set of points which
satisfy 6× x+ 7× y = i for i in N.

When the line crosses one of the points which have non negative integers as
coordinates, i is in S(6, 7) and the line is grey. Otherwise, i is in A(6, 7) and
the line is red.
From the graph, we can see:

S(6, 7) = {0, 6, 7, 12, 13, 14, 18, 19, 20, 21, 24, 25, 26, 27, 28, 30, 31, . . .}

A(6, 7) = {1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 22, 23, 29}

g(6, 7) = 29

a(6, 7) = 15
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If we check with the formulas:

g(6, 7) = (6− 1)(7− 1)− 1 = 5× 6− 1 = 29

a(6, 7) =
(6− 1)(7− 1)

2
=

5× 6

2
= 15

We find the same results as before.
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