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Abstract

The purpose of this paper is to study the properties of the Fibonacci Word Frac-
tal and the Fibonacci Snowflake and explore possible generalizations through the
lens of stochastic fractals and complex analysis. We begin with the recursive con-
struction of the Fibonacci word to define the fractal curve using the Odd-Even
Drawing rule, implemented using Python’s Turtle library. We establish its main
geometric properties, including the study of the possible patterns, the symmetry
and the self-similarities. We first rigorously compute the fractal dimension of the
Fibonacci Word Fractal curve using thermodynamic formalism and proving formally
the equality between the Hausdorff dimension and the Box-Counting dimension at
s = 3 ln(φ)(ln(1 +

√
2))−1, followed by the computation of its boundary dimension,

s = ln(3)(ln(1 +
√
2))−1. The study then extends to Fibonacci Snowflakes, giving

their perimeter, L(n) = 4A3n+1, and their area, S(n) = P (2n + 1), respectively as
functions of Fibonacci and Pell numbers. Finally, we generalize the definition of the
Fibonacci Word Fractal into a n-dimensional space (n ≥ 3), introducing a stochastic
orientation-switching parameter, analyse the resulting dimensional variance and we
conclude with an algebraic study of original fractal in the complex plane.

Keywords: Fibonacci Word, Fibonacci Word Fractal, Combinatoric on Words,
Fractal Dimension, Hausdorff Dimension, Box-counting Dimension, Thermodynamic
Formalism, Iterated Function System, Fibonacci Snowflake, Golden Ratio, Stochas-
tic Fractals, Generalization of the Fibonacci Word Fractal, Pell Numbers, Python,
Turtle, Matplotlib.
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1 Introduction
In 1975, Benoit Mandelbrot (1924–2010) formalized fractal geometry, putting together
the work of Felix Hausdorff on fractional dimensions and of his mentor Paul Lévy on
Brownian motions [20]. He introduced the notion of a fractal—from the Latin fractus
(designating shattering or "disrupted," "erratic" objects)—which he characterized by its
irregularity, its dimension, and illustrative examples. In this work, we focus on the Fi-
bonacci word fractal: a fractal curve defined on the plane following the Fibonacci word, a
Sturmian sequence closely related to the Golden Ratio and the Fibonacci numbers. The
Fibonacci Word Fractal serves as a rigorous bridge between combinatorics on words and
geometry constructed using a mapping known as the Odd-Even Drawing rule, resulting
in a curve with intricate symmetries and a recursive structure.
Following the foundational work of Monnerot-Dumaine [21], the purpose of this paper is
to analyse the properties of the Fibonacci Word Fractal, its variants, and the Fibonacci
Snowflake, while exploring generalizations through the lens of stochastic fractals. This
provides a solid background to understand complex research involving the Fibonacci Word
and Fibonacci Word Fractals, such as Fibonacci Quasicrystals.
The work is organized as follows: In Section 2, we define the Fibonacci Word and study
its main properties and its fundamental link with Fibonacci numbers, leading to Section
3, where we construct the Fibonacci Word Fractal and detail its geometric properties, cov-
ering the similarity of successive patterns and studying their symmetry. Using different
proofs and computations, we introduce fractal dimension in Section 4, constituting the
core theoretical contribution. Using Measure Theory and Thermodynamic Formalism, we
compute the Box-Counting dimension and the Hausdorff dimension of the Fibonacci Word
Fractal curve, concluding by showing their equality with the Open Set Condition. Assum-
ing identical conditions, we then compute the Box-Counting dimension of the boundary
of the Fibonacci Word Fractal.In the fifth section, we extend our study to the Fibonacci
Snowflakes, the construction of which shows that sequences derived from Fibonacci words
define closed, non-self-intersecting paths that bound a planar region. Using combinato-
rial methods presented in the appendix, we show that these curves are characterized as
well-defined polyominoes and provide their geometric properties, such as their perimeter
and area, respectively determined as functions of Fibonacci and Pell numbers. Section
6 explores an extension of the Fibonacci Word Fractal into n-dimensional space (n ≥ 3)
by introducing a stochastic orientation-switching parameter. We analyse the resulting
dimension and the effect the stochastic switching probability has on it, noting its "Jump"
and "Plateau" behaviour. Finally, we conclude in Section 7 by representing the Fibonacci
Word Fractal in the complex plane, enabling a transition from a geometric analysis to
an algebraic and arithmetic approach by associating the endpoint of each path with a
complex number.
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2 The Fibonacci Word [21]
This section introduces the Fibonacci Word Fractal. The aim is to define the Fibonacci
Word Fractal and prove its main properties using [21].

Definition 2.1 (The Fibonacci Word). The n-th Fibonacci Word, denoted by Sn, is
defined iteratively by the concatenation of Sn−1 and Sn−2 for all n ≥ 3. We let S1 =
1 and S2 = 0. The Fibonacci Word is obtained as n → ∞.

In other words, for all n ≥ 3, Sn = Sn−1Sn−2, with Si, ∀i ∈ N, strings. We can also define
the morphism

σ :

{
0 7→ 01

1 7→ 0
(S )

that maps each character (reading the word from left to right) of Sn−1 to a defined
subword (01 or 0) of the Fibonacci Word. By an abuse of terminology, we also use the
name Fibonacci Word to describe the n−th Fibonacci Word Sn, with n < ∞.

Remark 2.1. Multiple definitions of the Fibonacci Word exist, differing in their initial val-
ues S1 and S2. We have selected this specific definition to maintain a direct mathematical
alignment with the Fibonacci Numbers.

Remark 2.2. The 8 first Fibonacci Words are :

• S1 = 1
• S2 = 0
• S3 = 01
• S4 = 010
• S5 = 01001
• S6 = 01001010
• S7 = 0100101001001
• S8 = 010010100100101001010

Definition 2.2. A sequence of letters in a Fibonacci Word is called subword.

Remark 2.3. In some literatures, subword may define a possibly non-contiguous subse-
quence of a word. Contiguous subwords are then called factors. In this document, we
consider subwords as factors.

Definition 2.3. We define the length of a finite Fibonacci Word Sn as the number of
letters of Sn, denoted |Sn|.

2.1 Some properties of the Fibonacci words

Proposition 2.1. For n ≥ 3, the two last letters ab of a Fibonacci Word Sn are 01 or 10
if n is odd or if n is even, respectively.

Proof. We prove this statement using induction with base cases S3 = 01 and S4 = 010,
both verifying Proposition 2.1. We assume n is odd, meaning that (n−1) and (n−2) are
respectively even and odd and therefore, that Sn−1 ends by the subword (10) and Sn−2 by
(01) (induction hypothesis). Since Sn = Sn−1Sn−2 and that string concatenation preserves
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the order of the characters of each substrings, it follows that the two last letters of Sn are
the same as the ones of Sn−2, i.e. 01. We have therefore shown that for n ≥ 3 odd, the
last two letters of Sn are 01. The proof for n even is analogous. ■

Proposition 2.2. The subwords (11) and (000) can’t appear in a Fibonacci Word

Proof. We proceed by induction. Let us first prove that (11) is not a subword of Sn ∀n ∈
N. Given as base cases S1, S2, S3, S4 (all verifying our property), we assume that Sn−1
and Sn−2 do not contain the subword (11) and prove our statement for Sn. Since Sn =
Sn−1Sn−2 but neither Sn−1 nor Sn−2 contain (11), we have to show that (11) can’t be
formed by crossing the boundary of Sn−1 and Sn−2. From Proposition 2.1, we have that
only for n odd, Sn ends by the letter 1 and moreover the morphism σ (S ) shows that
any letter is mapped to either 0, or 01, i.e. two subwords starting with 0, meaning that
Sn−2 can’t start by the letter 1. Therefore, all possible subwords of length 2 formed by
crossing the boundary of Sn−1 and Sn−2 are (00) or (10). Hence we have shown that (11)
is not a subword of Sn ∀n ∈ N.
We apply the same principle for the subword (000), using as base cases Si with i ∈
{1, ..., 5} and assuming neither Sn−1 nor Sn−2 contains (000). We can reformulate the
problem as proving that no Fibonacci Word starts or ends by the substring (00), as it
is the only way that (000) is formed by crossing the boundary of Sn−1 and Sn−2. By
Proposition 2.1, we already know that no Fibonacci word ends by the letters (00) and we
have already discussed that ∀n ≥ 2, Sn starts by (0), therefore, (S ), 0 7→ 01 and hence
∀n ≥ 2, Sn+1 must start by (01). In conclusion, (000) is not a subword of the Fibonacci
word sequence. ■

Before stating the next propositions, we define a new function that takes as an input a
finite word of any alphabet and returns that word but reversed, in other words:
Definition 2.4. Let Σ∗ be the set of all sequences of letters from a non-empty finite set
of letters Σ, called an alphabet. We define the application

← : Σ∗ → Σ∗

such that for all s ∈ Σ∗, s = a1a2...an−1an, s← = anan−1...a2a1 ∈ Σ∗, where a1, ..., an ∈ Σ.

Let s = ab ∈ Σ∗, where a = a1...an and b = b1...bm with a1, ..., an, b1, ..., bm ∈ Σ. We
can verify that s← = b←a←. Indeed, s← = bm...b1an...a1 = (bm...b1)(an...a1) = b←a←.
Moreover, since, {0, 1} is an alphabet, any Fibonacci word belongs to {0, 1}∗, where ← is
defined.

Proposition 2.3. If Sn = pnab with n ≥ 4, where the suffix ab represents the last two
letters of Sn , then pn is a palindrome.

Proof. Proving by induction on n, we have for n = 4, 5, 6, Sn=4 = 010, S5 = 01001, S6 =
01001010, as base cases and p4 = 0, p5 = 010, p6 = 010010 are palindromes. Our induction
hypothesis states that Sn−2 and Sn−3 without their two last letters forms respectively
pn−2 and pn−3, both palindromes. We therefore need to show that pn = Sn−1pn−2 is
a palindrome, meaning that Sn−1pn−2 = (Sn−1pn−2)

← . By Proposition 2.1 and since
{0, 1} is our alphabet if Sn−2 ends by ab, then Sn−3 must end by ba. Therefore, Sn−1 =

3



Sn−2Sn−3 = pn−2abpn−3ba and hence, Sn = Sn−1Sn−2 = pn−2abpn−3bapn−2ab =⇒ pn =
pn−2abpn−3bapn−2 = p←n . This all implies that pn is a palindrome. ■

Proposition 2.4. p′n = baSn = bapnab is a palindrome.

Proof. Applying Definition 2.4, we have that : (p′n)
← = S←n (ba)← = (ab)←p←n b←a← =

bapnba = p′n, showing that p′n is a palindrome. ■

The two following statements will be very useful to prove geometric properties of the
Fibonacci Word Fractal.

Theorem 2.1. Let Sn = pnab and define tn = pnba. Then for every n > 6,

Sn = Sn−3Sn−3Sn−6tn−3tn−3

Proof.

Sn = Sn−1Sn−2

= Sn−2Sn−3Sn−3Sn−4

= Sn−3Sn−4Sn−5Sn−6Sn−5Sn−4Sn−5Sn−4

One can show using induction that Sn = Sn−2tn−1 and tn = Sn−2Sn−1. One can proof it us-
ing as base case n = 5 and then assuming that Sn = Sn−2tn−1 and tn = Sn−2Sn−1 as induc-
tion step. Indeed, we get that tn+1 = pn+1ab = Snpn−1ab = Sntn−1 = Sn−1(Sn−2tn−1) =
Sn−1Sn. Therefore,

Sn = (Sn−3)(Sn−4Sn−5)(Sn−6)(Sn−5Sn−4)(Sn−5Sn−4)

= Sn−3Sn−3Sn−6tn−3tn−3

■

Corollary 2.1. For every n > 6 pn = pn−3 ab pn−3 pn−6 pn−3 ba pn−3.

Proof. Applying Proposition 2.3 to the result shown in Theorem 2.1, one gets

Sn = Sn−3Sn−3Sn−6tn−3tn−3

= (pn−3ab)(pn−3ab)Sn−6(pn−3ba)(pn−3ba)

= (pn−3ab)pn−3(abSn−6)pn−3ba(pn−3ba)

= pn−3abpn−3p
′
n−6pn−3bapn−3ba (1)

(1) since Sn−6 = pn−6ba by Proposition 2.1.
■

Also, note that the Fibonacci Word is a classical example of Sturmian words. We will
not prove this property, but it helps understanding how the ratio computed in Proposition
2.7 appears in the Fibonacci Word Sequence and the construction of the Fibonacci Word
Fractal.
Definition 2.5 (Sturmian Words). Let Σ = {a, b} be an alphabet. An infinite word
on Σ is called Sturmian if its complexity (measured by the subword complexity function
p : N → N) is p(n) = n + 1. That is, s ∈ Σ∗ is Sturmian if for all n ≥ 1, s has n + 1
subwords (factors) of length n, denoted |s′| where s′ is a subword of s. Moreover, all finite
subwords of s are Sturmian.
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2.2 Relation with the Fibonacci Numbers

Definition 2.6. The n-th Fibonacci Number, denoted as An, is defined by An = An−1 +
An−2 for all n ≥ 3. We let A1 = 1 and A2 = 1.

Remark 2.4. The 8 first Fibonacci numbers are :

• A1 = 1
• A2 = 1
• A3 = 2
• A4 = 3
• A5 = 5
• A6 = 8
• A7 = 13
• A8 = 21

Proposition 2.5. The length of the Fibonacci Word |Sn| is the Fibonacci number An,
∀n ≥ 1.

Proof. We can prove this by induction. The base cases for n = 1 and n = 2 are done, as
shown above. Let’s now assume that |Sn−1| = An−1 and |Sn−2| = An−2. We have to show
that |Sn| = An, which can directly be shown by adding the two last equalities. ■

Proposition 2.6. The ratio An+1

An
tends to φ, the Golden ratio, as n → +∞.

Proof. Let rn = An+1

An
and L = limn→∞ rn

By definition of the Fibonacci number, we get :

rn =
An+1

An

=
An + An−1

An

= 1 +
An−1

An

= 1 +
1

rn−1
Taking the limit, we get :

L = 1 +
1

L

Solving for L, we obtain L =
1±

√
5

2
Since An , An−1 > 0 ∀n and rn > 0 ∀n
We get L > 0

Hence L=
1 +

√
5

2

We have successfully proven that An++1

An
tends to φ = 1+

√
5

2
, the Golden ratio. ■
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Proposition 2.7. The n-th Fibonacci number An is even ⇔ n ≡ 0 mod 3, ∀n ≥ 1

Proof. It suffices to prove that : 
A3k+1 is odd,
A3k+2 is odd,
A3k+3 is even.

Let’s proceed by induction.
Base case : k = 0

For k = 0, we have

A1 = 1 (odd), A2 = 1 (odd), A3 = 2 (even),

Inductive step
Assume that, for k ≥ 0, 

A3k+1 is odd,
A3k+2 is odd,
A3k+3 is even,

Using definition 2.6, we obtain :

• A3k+4 = A3k+3︸ ︷︷ ︸
even

+A3k+2︸ ︷︷ ︸
odd

⇒ A3k+4 is odd.

• A3k+5 = A3k+4︸ ︷︷ ︸
odd

+A3k+3︸ ︷︷ ︸
even

⇒ A3k+5 is odd.

• A3k+6 = A3k+5︸ ︷︷ ︸
odd

+A3k+4︸ ︷︷ ︸
odd

⇒ A3k+6 is even.

This proves that :
An is even ⇐⇒ n ≡ 0 (mod 3).

■
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3 Construction and geometrical properties of the Fi-
bonacci Word Fractal

3.1 The construction of the Fibonacci Word Fractal

We now introduce the Fibonacci Word Fractal (sometimes noted FWF) itself. By a slight
abuse of terminology, we refer to the finite curves as "fractals", we call n-th Fibonacci
Word Fractal Fn, obtained from the Fibonacci word Sn. The actual Fibonacci Word
Fractal is obtained only in the limit, as n → ∞. To emphasize the finiteness of Fn

for instance in the context of Iterated Function System (a method of constructing fractal),
we later use the notion of pre-fractal for Fn with n < ∞.
Definition 3.1 (The n-th Fibonacci Word Fractal). The n-th Fibonacci Word Fractal is a
geometric representation of the n-th Fibonacci word. It is generated by interpreting each
letter of the sequence Sn as a specific movement command in the plane. This construction
follows the Odd-Even Drawing Rule (OEDR):
∀ letter in the k-th position:

1. If the letter is 1, draw a line segment in the previous direction of length 1.

2. If the letter is 0, draw a line segment of length 1 after rotating 90 °

(a) to the right if k is even

(b) to the left if k is odd

Throughout this document, we will use Python to build Fibonacci Word Fractals and
variants, as changing the angle of rotation whenever the letter 0 occurs, or considering for
instance a new dimension to our Fractal, see Definition 6.1 . We will mainly use Turtle
for the classical definition and classical angle of rotation changes and Matplotlib for more
complex programs.
The following code generate a Fibonacci Word Fractal for any given n.

1 from turtle import *
2 from math import *
3

4 def fibonacci_word(n):
5 if n == 1:
6 return "1"
7 elif n == 2:
8 return "0"
9 else: return fibonacci_word(n-1)+fibonacci_word(n-2)

10

11 def draw_fibonacci_word_fractal(word , step):
12

13 speed (0)
14 penup()
15 setposition (-200,0) #Initial position of the turtle
16 pendown ()
17 setheading (90) #Initial orientation of the turtle (in degrees)
18

19 #The characters of f_n and their index are stored in a list:
20 fwinlist = list(enumerate(word))

7



21

22 #The fractal is constructed using OEDR:
23

24 for i, c in fwinlist: #Where i, the index and c, the character
25 forward(step)
26 if c == "0":
27 if (len(fwinlist) - i) % 2 == 0:
28 left (90)
29 else:
30 right (90)
31

32 done()
33

34

35 n = int(input("Please give a positive non -zero number: "))
36 s = float(input("Give a step measure: "))
37 w = fibonacci_word(n)
38

39 print(w) #To print the Fibonacci Word
40 draw_fibonacci_word_fractal(w,s,a) #Draws the Fractal

Remark 3.1. A more elaborate version of the code can be found in the document The
Fibonacci Word Fractal - Construction and Geometric Properties - Final >
Codes. In this version, we provide a solution to:

1. Center the fractal and compute the optimal step size to draw the fractal in a given
window. Given a step measure, we can determine the size of the window the fractal
will be centered in by simulating the OEDR with the given step size. We keep trace
of the "bounds", meaning that, choosing the initial position of the turtle to be the
origin of the Cartesian plane with x-axis and y-axis, we store the maximum and min-
imum values of x and y the curve goes through and use them to compute the width
and height of the wanted window using the formulas width = (maxx −minx+100)
and height = (maxy −miny +100), adding a margin of 100 pixels.
Given the window, we use the same technique as described above, computing the
"bounds" and the necessary window measures simulating a Fibonacci Word Frac-
tal with an initial step of size 1. The optimal step size is given by the minimal
value found computing the ratio between the width of the preferred window and
the newly computed width and between the height of the preferred window and the
newly computed one.

2. Get directly the drawn fractal using tracer() and update() methods.

3. Enable generating variants of the Fibonacci Word Fractal, where we replace 90
degrees turns by other angle turns (usual examples are the 60° and the 72° variants).
We define outside of draw_fibonacci_word_fractal() the following function:

1 def alternating_turn(i, word_len , chosen_angle):
2 return chosen_angle if (word_len - i) % 2 == 0 else -

chosen_angle

8



We obtain the variants passing alternating_angle() as a new argument of
draw_fibonacci_word_fractal():

1 def draw_fibonacci_word(word , step , chosen_angle , turn_rule):
2

3 speed (0)
4 penup()
5 setposition (-200,0)
6 pendown ()
7 setheading (90)
8

9 for i, c in enumerate(word):
10 forward(step)
11 if c == "0":
12 angle_change = turn_rule(i, len(word), base_angle)
13 left(angle_change)

We therefore can generalize Definition 3.1:

Definition 3.2. We consider α° ∈ [0, 2π].
The α°-variant of n-th Fibonacci Word Fractal is constructed using the Odd-Even Drawing
Rule (OEDR), consisting in :
∀ letter in the k-th position:

1. If the letter is 1, draw a line segment in the previous direction of length 1.

2. If the letter is 0, draw a line segment of length 1 rotate with an angle of

(a) +α° if k is even

(b) −α° if k is odd

If α = 90°, we call the variant the n−th Fibonacci Word Fractal.

The above algorithms output the following curves:

Figure 2: F23 with α = 60° Figure 3: F23 with α = 72°
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Figure 1: F23 with α = 90°

Note that not all α°-variant of n-th Fibonacci Word Fractal is a self-similar set or satisfy
the property of not overlapping or intersecting with itself, as in Figures 4 and 5. Later,
when studying the fractal dimension of the curve of the α°-variant of the Fibonacci Word
Fractal, we will only consider α ∈ [0, π

2
] as we assume these variants don’t overlap, see

Theorem 3.3.

Figure 4: F23 with α = 100° Figure 5: F23 with α = 120°

Remark 3.2. The overlapping and self intersection properties of Figures 4 and 5 can
be emphasized using Manim Python script and switching from the set of points repre-
senting F23, α = 90° to the variants with α = 100° and α = 120 with the function
ReplacementTransform(old_fractal, new_fractal). The code structure and the main
new functions are provided in Appendix 8.4.
Let us now define the following terms, useful to study the properties of the fractal.

Definition 3.3. The resulting angle of a word ω is defined as the change in angle from
the first to the last angle of the curve generated by the word ω.

10



Definition 3.4. The pattern Pn describes the global drawing of the n-th FWF.

Definition 3.5. The length of the fractal Fn, denoted by Ln, is defined by the length of
the straight line from first to last point drawn.

Definition 3.6. The height of the fractal Fn, denoted by Hn, is defined by the maximal
distance separating an arbitrary point of the fractal and the straight line from first to last
point drawn.

3.2 Similarity of the patterns Pn and Pn−3

The following proposition is needed for the proof of theorem 3.1.

Proposition 3.1. If a morphism ϑ preserves the parity of the length, then it preserves
the parity of the position.

Proof.
ϑ preserves the parity of length :↔ |ϑ(x)| = |x| mod 2 for all words x.
We want to show that letters that are in odd (resp. even) positions before the morphism
remain in odd (resp. even) positions under the morphism ϑ.
Here are our assumptions :

1. x = x1x2 . . . xn is the n-th Fibonacci Word where the xi are its letters ∀i ∈ {1, . . . , n}

2. ϑ is such that |ϑ(x)| = |x| mod 2

3. pk := position of the first letter of ϑ(xk) in ϑ(x)

Let’s now prove by induction that pk ≡ k mod 2

Base case :
p1 ≡ 1 because p1 = 1, it’s the first letter of the word.

Inductive step :
Assume that pk ≡ k mod 2

pk+1 = pk + |ϑ(xk)|
⇒ pk+1 ≡ pk + |ϑ(xk)| mod 2

⇒ pk+1 ≡ pk + |xk| mod 2

⇒ pk+1 ≡ k + |xk| mod 2

⇒ pk+1 ≡ k + 1 mod 2

■

We now have the tools to state and prove the following theorem :

Theorem 3.1. The pattern Pn is similar to the pattern Pn−3, ∀n > 3

11



Proof. The goal is to find a morphism ϑ that will transform the word ω into another word,
that guarantees the odd-even drawing alternation required by the odd-even drawing rule.
In order to show that, we have to construct ϑ such that :

1. ϑ preserves the parity of position (by proposition 3.1, we just have to show the
parity of length)

2. The resulting angle of a pattern must be preserved or inverted by ϑ .

Let’s first show point 1.
Let σ be the morphism that generates the infinite Fibonacci Word. (S )
Then, we get 1 :

σ(00) = 0101

σ(01) = 010

σ(10) = 001

Hence, σ is not the morphism we are looking for, as |σ(ω)| can be odd for ω even.
Let’s examine if σ2 is the desired morphism.

σ2(00) = σ(0101) = 010010

σ2(01) = σ(010) = 01001

σ2(10) = σ(001) = 01010

σ2 doesn’t meet our requirements, as |σ2(ω)| can be odd for ω even.
Let us determine if σ3 is the morphism we are looking for.

σ3(00) = σ(010010) = 0100101001

σ3(01) = σ(01001) = 01001010

σ3(10) = σ(01010) = 01001001

Let’s now verify that this statement also holds for odd numbers :

σ3(0) = σ(σ(σ(0))) = 01001

σ3(1) = σ(σ(σ(1))) = 010

By induction and the fact that Fibonacci words are constructed by an iterative concate-
nation, it follows that for all words ω of odd (resp. even) length, |σ3(ω)| is always odd
(resp. even).

1We do not consider the case σ(11) as the subword 11 does not exist by proposition 2.2
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We successfully proved the first point : the morphism σ3 preserves the parity of length,
and hence the parity of position.

Let’s now consider point 2 :
The goal is to prove that the resulting angle of a pattern must be preserved or inverted
by σ3.
Let a(ω) be the function that gives the resulting angle of a word ω through the odd-even
drawing rule.
We have : 2

a(0) = α

a(1) = 0

a(00) = 0

a(01) = α

a(10) = −α

Following the OEDR introduced in the definition 3.1, one can also show that :

a(σ3(0)) = a(01001) = α

a(σ3(1)) = a(010) = 0

a(σ3(00)) = a(0100101001) = 0

a(σ3(01)) = a(0100101001) = −α

a(σ3(10)) = a(0100101001) = α

As before, the general case can be shown using induction.

We successfully proved the second point : the resulting angle of a pattern is preserved or
inverted by σ3.

This concludes the proof that Pn is similar to Pn−3. ■

Remark 3.3. One can observe that one can extend this theorem to the α°-variant of n-th
Fibonacci Word Fractal.

3.3 The 3 different patterns for the Fibonacci Word Fractal

By proposition 3.1, we know that the pattern Pn is similar to the pattern Pn−3.
There exists therefore up to three patterns for the Fibonacci Word Fractal : P3k−2, P3k−1
and P3k.

Pn for n = 22 Pn for n = 23 Pn for n = 24

2One can check these easily with the definition 3.1

13



3.4 The symmetries of the patterns of the Fibonacci Word Fractal

Proposition 3.2.

1. The pattern P3k−2 has a diagonal axis symmetry.

2. The pattern P3k−1 has a orthogonal symmetry.

3. The pattern P3k has a central symmetry.

This proposition will not be proven here.

Remark 3.4.
An idea for the proof was to use complex numbers (see section 7 of the miscellaneous
section).

The following three figures illustrate the symmetries of the fractal.

Pn for n = 22 Pn for n = 23 Pn for n = 24

3.5 Some geometrical proportions of the pattern of the FWF

We here state and prove some properties of the Fibonacci Word Fractal that will be used
afterwards.
Proposition 3.3. The pattern Pn is built in the following way: it begins with a pattern
Pn−3; after a right-angled turn, another Pn−3 follows, then a single Pn−6, another Pn−3,
and finally, after a right-angled turn in the opposite direction to the first, one last Pn−3.

Proof. By corollary 2.1, we have

pn = pn−3 ab pn−3 pn−6 pn−3 ba pn−3.

As previously established in proposition 2.1, (ab) ∈ {(01), (10)}.
From this observation, it follows that the first two copies of Pn−3 are orthogonal.
Consequently, the pattern Pn can be expressed as

Pn = Pn−3 turn 90° Pn−3 Pn−6 Pn−3 turn − 90°Pn−3.

■

Remark 3.5. Let’s observe that we can extend this proposition to the α°-variant of n-th
Fibonacci Word Fractal, for α ∈ [0, π

2
].
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Proposition 3.4. Ln = 2Ln−3 + Ln−6 ∀n > 6

Proof. We know that : Ln = Ln−3 · cos(90◦) + Ln−3 + Ln−6 + Ln−3 + cos(90◦) · Ln−3 by
the previous proposition.
The result follows. ■

Remark 3.6. We can again generalize this proposition to the α°-variant of n-th Fibonacci
Word Fractal. The length would then be Ln = 2Ln−3 + 2Ln−3 cos(α) + Ln−6.

Theorem 3.2. The contracting ratio r between Pn and Pn−3 is 1
1+
√
2
.

Proof. From proposition 3.4, we have Ln = 2Ln−3 + Ln−6.
We also know that, by definition, the contracting ratio r = Ln−3

Ln
= Ln−6

Ln−3
.

By applying the relations established above and given that r is positive, it is possible to
calculate:

⇒ r =
Ln−3

Ln

⇒ r · Ln = Ln−3

⇒ r · (2 · Ln−3 + Ln−6) = Ln−3

⇒ r · (2 · Ln−3 + r · Ln−3) = Ln−3

⇒ 2r + r2 = 1

⇒ r =
√
2− 1 =

1

1 +
√
2

■

Theorem 3.3. The α°-variant of the n-th Fibonacci Word Fractal is non-overlapping for
α ∈ [0, π

2
].

This theorem will be assumed here.

Proposition 3.5. The ratio length
height of the P3k+2 rectangle is

√
2.

Proof. Using proposition 3.3, we know that the height of the pattern Pn is equal to the
length of Pn−3 plus the height of Pn−3.
Hence, Hn = Ln−3 +Hn−3.
Moreover, by theorem 3.2, we know that the contracting ratio between Pn and Pn−3 is

1
1+
√
2

Thus, Hn−3 =
Hn

1+
√
2

and Ln−3 =
Ln

1+
√
2
.

⇒ Hn =
Ln

1 +
√
2
+

Hn

1 +
√
2

⇒ (1 +
√
2)Hn = Ln +Hn

⇒
√
2Hn = Ln

⇒ Ln

Hn

=
√
2

■
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Figure 6: The geometrical proportions P3k+2

On the pattern presented in figure 6, we have normalized the height of the fractal.
Proposition 3.5 and theorem 3.2 are used to find the other proportions. The computations
made are detailed in the following remark.

Remark 3.7.
• In orange, we have that the length l1 of the fractal is

√
2, by proposition 3.5.

• The teal distance h2 is
√
2− 1 by the contraction ratio, as it’s the height of P3k−3.

• In violet, h3 is a simple subtraction from the height of the pattern P3k and
√
2− 1.

The distance is hence 1− (
√
2− 1) = 2−

√
2.

• The distance l2 in cyan is equal to 2−
√
2, as it is the length of the pattern P3k−3,

which is precisely the violet distance h3 .
• The distance in blue l3 is equal to

√
2− (2−

√
2)− (2−

√
2) =

√
2(
√
2− 1)2.

• The distance in brown l4 is the height of a pattern P3k−3, which is precisely the teal
distance h2, it is hence equal to

√
2− 1.

• The distance in green l5 is the length of the fractal minus twice the brown distance
l4, it’s hence equal to

√
2− (

√
2− 1)− (

√
2− 1) = 2−

√
2.

• The distance in purple h5 is the height of a pattern P3k−6, which is equal to :√
2−1

1+
√
2
= (

√
2− 1)2
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4 The Fractal Dimension
In [20], Mandelbroot provides a mathematical answer to the Coastline Paradox, or the
question "How long is the coast of Britain?". He shows, based on a data-driven work
by Lewis Fry Richardson (1881-1983), that as the measuring scale becomes smaller and
more precise, the estimated length of the coastline increases rather than converging to
a fixed value. As this measure fails, the notion of dimension is introduced. In this
section, we introduce and apply to the Fibonacci Word Fractal two dimensions used in
Fractal geometry: the box-counting dimension, also known as the Minkowski-Bouligand
dimension, and the Hausdorff dimension. We then compute the dimension of the boundary
and of the curve3 of the Fibonacci Word Fractal.

4.1 The box-counting dimension of the curve of the Fibonacci
Word Fractal

This section aims to prove the box-counting dimension of the Fibonacci Word Fractal,
which is log(φ3)

log(1+
√
2)

.

Definition 4.1 (Box-counting dimension). Let F ⊂ Rd a fractal.
For r > 0, denote by N(r) the minimal number of closed boxes of side length r required
to cover F .
The box-counting dimension of F is :

dimB(F ) = lim
ε→0

logN(ε)

log(1/ε)

The following theorem comes from a proof in document [21] (theorem of section 5.1).

Theorem 4.1. Let F ⊂ R2 be a self-similar non empty non overlapping fractal.
Then the box-counting dimension of F exists and equals

dimB F =
logM

log(1/r′)
=

logM

− log r′
.

We denote by M the ratio indicating how the number of segments increase after an iteration
and by r’ the contracting ratio after an iteration.

Next, we provide and prove a proposition required for the following theorem :

Proposition 4.1. logM
log(1/r′)

= logM3

log(1/(r′)3)

Proof. Indeed, logM3

log(1/(r′)3)
= 3 logM

3 log(1/r′)
= logM

log(1/r′)
. ■

We know from theorem 3.1 that the pattern Pn is similar to the pattern Pn−3.
Moreover, by theorem 3.2, we know the contracting ratio r = (r′)3 between Pn−3 and Pn.
We let N := M3. These theorems together with proposition 4.1 enable us to state the
following theorem :

3In the following sections and in literature, one calls the box-counting dimension or the Hausdorff
dimension of the curve of a fractal the dimension of the fractal itself
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Theorem 4.2. Let F be the Fibonacci Word Fractal.
dimB(F ) = logN

log(1/r)
for N the ratio indicating how the number of segments increase

between Pn−3 and Pn and for r the contracting ratio between Pn−3 and Pn.

Theorem 4.3. N = φ3, where N is defined in the previous theorem.

Proof. By propositions 2.6 and 2.5, |Sn|
|Sn−1| → φ :

N = lim
n→∞

|Sn|
|Sn−3|

=
|Sn|
|Sn−1|

· |Sn−1|
|Sn−2|

· |Sn−2|
|Sn−3|

= φ3

■

Theorem 4.4. The box-counting dimension of the curve of the Fibonacci Word Fractal
is dimB(FC) =

log(φ3)

log(1+
√
2)

Proof. It follows from theorems 4.2, 3.2 and 4.3. ■

4.2 The box-counting dimension of the the α°-variant of n-th Fi-
bonacci Word Fractal

This section aims to extend the box-counting dimension of the curve to definition 3.2.
The previous subsection stated and proved the box-counting dimension of the fractal with
rotational angle 90°.
Here, we will state and prove its value for angles α° as long as the fractal does not overlap
itself.

Theorem 4.5. The box-counting dimension of the curve of the the Fibonacci Word Frac-
tal for a rotational angle α ∈ [0, π

2
], such that the fractal does not overlap itself, is :

log(φ3)

log(1+cos(α)+
√

(1+cos(α))2+1)

Proof. We use theorem 4.2. We observe that the N from the theorem does not change
with the change of rotational angle, it is still φ3.
Let’s calculate the r from the formula :
By generalisation of proposition 3.3, we have Ln = 2Ln−3 + 2Ln−3 cos(α) + Ln−6.
We also know that, by definition, the contracting ratio r = Ln−3

Ln
= Ln−6

Ln−3
. Hence,

⇒ r =
Ln−3

Ln

=
Ln−6

Ln−3

⇒ r · Ln = Ln−3

⇒ r · (2 · Ln−3 + 2Ln−3 cos(α) + Ln−6) = Ln−3

⇒ r · (2 · Ln−3 + 2Ln−3 cos(α) + r · Ln−3) = Ln−3

⇒ 2r + 2r cos(α) + r2 = 1

⇒ r2 + 2(1 + cosα)r − 1 = 0

⇒ r = −1− cosα ±
√
(1 + cosα)2 + 1

⇒ r = −1− cosα +
√
(1 + cosα)2 + 1
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The last implication comes from the fact that r is positive.
This shows that the dimension is
dimB F = logN

log(1/r)
= log(φ3)

− log(−1−cos(α)+
√

(1+cos(α))2+1)
= log(φ3)

log(1+cos(α)+
√

(1+cos(α))2+1)
,

where the last equality comes from properties of the logarithms. ■

4.3 The Hausdorff dimension

A common dimension used in fractal geometry is the Hausdorff dimension. This sec-
tion is dedicated to show how thermodynamic formalism and potential theory can be
used to compute the Hausdorff dimension of the Fibonacci Word Fractal. The goal is
however wider, one with knowledge in dimension theory can note that the box-counting
dimension and the Hausdorff dimension coincides, since the Fibonacci Word Fractal is a
self-similarity satisfying the Open Set Condition (OSC), as later proved in Section 4.3.2.
The following shows the Hausdorff dimension fractal under the previous hypothesises and
strictly following thermodynamic formalism logic, as it was presented in the works of the
mathematicians Bowen and Ruelle. A rigorous alternative is using potential theory, as in
[14]. Nevertheless, although this method formally gives us a lower bound candidate for
the Hausdorff dimension without the need of proving the OSC nor assuming that the Fi-
bonacci Word Fractal never intersects itself, it requires complex computational techniques
we won’t present here. However, it relies on useful statements one can use to formally
prove the equivalence between the box-counting dimension and the Hausdorff dimension
through the construction of a Gibbs measure satisfying the Mass Distribution Princi-
ple (Proposition 4.2). Reminders of measure theory and the definition of the Hausdorff
measure and dimension can be found in the Appendix, sections 8.1 and 8.2.

4.3.1 Computing the Hausdorff dimension of the Fibonacci Word Fractal

In the previous sections, we have visualized the Fibonacci Word Fractal using the OEDR
rule, providing a deterministic mapping for each Fn we call pre-fractals. As n → ∞, these
pre-fractals converges to the Fibonacci Word Fractal one can see as a compact set called
an attractor. A widely used technique in the computation of the Hausdorff dimension is
introduced in [14] and requires the following affirmation:

Proposition 4.2 (Mass Distribution Principle). Let E ⊂ Rn be a Borel subset.If there is
a Borelian probabilitya measure µ supported by E such that for all x ∈ Rn, r > 0,

µ(B(x, r)) ≤ Crs

for some constant C > 0, then one has that Hs(E) ≥ 1
C
µ(E). In particular, we have that

dimH(E) ≥ s

aThe proof holds for any measure that satisfies µ(E) > 0. In particular, a probability measure is a
measure where µ(E) = 1. An example of possible probability measure is the Gibbs measure.

Proof. Let {Ui}i∈I be a cover of E, where I ⊆ N. Let {ri}i∈I be such that for all i ∈ I,
ri > |Ui| where | · | denotes the diameter of Ui. It follows that, for all xi ∈ Ui:

µ(Ui) ≤ µ(B(xi, ri)) ≤ Crsi
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Let ri → |Ui| for all i ∈ I. As {Ui}i∈I is a cover of E, we get the following inequality:

µ(E)

C
≤
∑
i∈I

µ(Ui)

C
≤
∑
i∈I

|Ui|s

In particular, choosing {Ui}i∈I to be any δ−cover of E and taking the infimum, we have
that

µ(E)

C
≤ Hs(E)

Moreover, by the definition of the Hausdorff dimension, since µ is a probability measure
and C is a non-zero constant, we have that 0 < Hs(E), meaning that dimH(E) ≥ s. ■

[3] provides consequences (Frostman’s Lemma) and generalizations (Billingsley’s Lemma)
of the Mass Distribution Theorem, directly related to a formal computation of the Haus-
dorff dimension of such set E. However, we follow here a physic approach using potential
theory as in [14]. Note that computing the Hausdorff dimension strictly using the Mass
Distribution Principle requires checking every possible ball of the Fibonacci Word Fractal
(attractor). Falconer proves that the local condition of this principle is satisfied if the
following integral converges

Is(µ) =

∫∫
dµ(x)dµ(y)

|x− y|s
=

∫
Φs(x)dµ(x)

where Is is called the s−energy and Φs the s−potential at a point x ∈ Rn due to the mass
distribution µ on E and convergence therefore implies that dimH(E) ≥ s. Although we
don’t delve in the theory of dynamical systems, we can consider the construction of the
Fibonacci Word Fractal as an iterative process where the fractal is its limit. Constructing
the pre-fractals is therefore a state in our system and the attractor is its final stable shape.
Hence, as the fractal we get is a stable object, we associate it a mass, or a Borel proba-
bility measure for instance, as our set is well-defined on Borel subsets. The self-similarity
property of the Fibonacci Word Fractal therefore ensures that the local mass µ(B(x, r))
behaves like rs. Intuitively, assigning all the points a "pressure", we can move from a
local condition as described in Proposition 4.2 to a global one, where Φ(µ) at a point x
measures the total repulsive force that all y ∈ Rn ⊃ E exert on the fractal and Is is the
potential energy.

The following theorem will be very important for later computations:
Theorem 4.6 (Perron-Frobenius Theorem for primitive matrices [30]). Let A be a non-
negative primitive matrix, i.e. there exists k > 0 such that Ak

ij > 0 for all i, j. Then, there
exists a positive eigenvalue ρ(A), the spectral radius, such that for any other eigenvalue
λ, ρ(A) > |λ|. Moreover, ρ(A) has algebraic and geometric multiplicity 1, i.e. there exists
a unique eigenvector v > 0 associated with ρ(A).

To the Fibonacci Word defined with the substitution rule S we can assign the following
incidence matrix

M =

(
1 1
1 0

)
where σ(0) produces the vector

(
1
1

)
, and σ(1) the vector

(
1
0

)
. The incidence matrix of a

substitution σ is indeed a square matrix M = mij, where mij is the number of occurrence
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Figure 7: Convergence of the Fibonacci Word Fractal Attractor

of the letter i in σ(j). As M is primitive (take k = 2), the theorem of Perron-Frobenius
ensures the existence of a biggest eigenvalue, in our case the Golden ratio φ, corresponding
to the spectral radius and telling how fast the number of segments of the Fibonacci Word
Fractal is multiplying as n → ∞. Moreover, inspired by the work of defining Fibonacci
Snowflakes in the complex plane (see Section 8.3) let us represent the construction of the
Fibonacci Word Fractal in C. One can find the following relation

zn = zn−1 + i|Sn−1|zn−2

where zn ∈ C represents the total displacement vector of the n−th iteration of the Fi-
bonacci Word Fractal Fn and i a 90° rotation. This construction emphasis that the
geometric orientation of the pre-fractals of the Fibonacci Word resets every three itera-
tions as π(2) = 3 [16], where π(2) is called the second Pisano period, which is the period
with which (Ai)i∈N taken modulo 2 repeats, as shown in Proposition 3.1. This means that

the average contracting ratio r per single substitution is indeed on average ϱ =
(

1
1+
√
2

) 1
3 ,

using Theorem 3.2.
Proposition 4.3 (Ruelle Operator/ Transfer Operator of the Fibonacci Word Fractal).
Let ({0, 1}∗, σ−1) be a dynamical system, where σ is the substitution rule S . Let ϕ :
{0, 1}∗ → R : y 7→ −s ln(1

ϱ
) = s ln(ϱ) be the potential. The Ruelle operator of the

Fibonacci Word Fractal is equivalent to

Lϕ = rs ·M = M(s) =

(
rs rs

rs 0

)
(2)

where M is this incidence matrix associated to the substitution rule σ and ϱ =
(

1
1+
√
2

) 1
3 .

Remark 4.1. A complex proof using Gibbs state can show formally the link between the
s−potential at x Φs(x) =

∫
|x−y|−sdµ(y) and ϕ = s ln(ϱ). One can find further details in

[26] Intuitively, one can see that the distance between two sequences x, y ∈ Σ∗ = {0, 1}∗
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will be smaller if they share a greater common prefix of length k. Therefore we get
|x− y| ≈ ϱk. For instance, if x and y differ completely, then k = 0 =⇒ |x− y| = 1 which
represents the whole fractal in a probabilistic view!

Proof. For any continuous function f in {0, 1}∗ the Ruelle Operator is defined by Lϕ(f)(x) =∑
y∈σ(x) e

ϕ(y)f(y), see [32]. Since ϕ(y) = s ln ϱ, we have that:∑
y∈σ(x)

eϕ(y)f(y) = ϱs
∑

y∈σ(x)

f(y)

= ϱsMf (3)

Note that (3) follows from the definition of the substitution σ. Indeed
∑

y∈σ(x) f(y) counts
how many times each symbol appears in σ(x), when representing f as the vector

f =

(
f(0)
f(1)

)
and therefore

Lϕ(f)(x) = ϱs
(
1 1
1 0

)(
f(0)
f(1)

)
=⇒ Lϕ = ϱsM (4)

■

Remark 4.2. It is direct that M(s) is a primitive linear operator. Therefore, the Perron-
Frobenius Theorem ensures that ρ(M(s)) exists and is well-defined and intuitively char-
acterizes the s−mass of the Fibonacci Word Fractal.

Proposition 4.4 (Topological Pressure). The topological pressure of the Fibonacci Word
Fractal is given by

P (s) = log(ρ(M(s)))

Remark 4.3. As originally defined in [9] by Bowel, the topological pressure of such sub-
stitution systems can be derived from P (s) = limn→∞

1
n
lnZn(s) where Zn is a partition

function. Moreover, assuming Zn is here equivalent to ρ(M(s)n), we can easily link the
fact that limn→∞

1
n
log ρ(M(s)n) = log ρ(M(s)) with the result shown in [10] and saying

that, under the hypothesis of being in a IFSm, if there exists a positive number ρ = ρ(Lϕ),
the spectral radius, and a positive function h : {0, 1}∗ → R such that Lϕ(h) = ρh, then
the limit limn→∞

1
n
logLϕ(1)(x) = log ρ exists and is therefore the topological pressure.

However, let us assume the following theorem, proved in [10], which applies directly
to the case of the Fibonacci Word Fractal.

Theorem 4.7. In a Iterated Function System with a measure (IFSm) where the potential
ϕ is positive and continuous, if there exists a positive number ρ = ρ(Lϕ), the spectral
radius, and a positive function h : {0, 1}∗ → R such that Lϕ(h) = ρh, then the topological
pressure is given by P (s) = log ρ(Lϕ)

Proof of Proposition 4.4. By Proposition 4.3, we have that Lϕ = M(s) and is primitive,
ensuring by Perron Frobenius theorem the existence of ρ(M(s)) > 0 and of a unique
associated eigenvector h > 0. It follows that P (s) = log(ρ(Lϕ)) = log(ρ(M(s))). ■
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The following theorem is the key to compute the Hausdorff dimension, proved by Bowen
in [8] for quasi-circles and hyperbolic systems.

Theorem 4.8 (Bowen’s Equation). The Hausdorff dimension dimH(E) is the unique
solution to P (s) = 0. That is, in the case of the Fibonacci Word Fractal, the Hausdorff
dimension can be found computing

ρ(M(s)) = 1

Therefore, the Hausdorff dimension of the Fibonacci Word Fractal is equal to 3 ln(φ)

1+
√
2

Proof.

ρ(M(s)) = 1 ⇐⇒ ρ(ϱsM) = 1

⇐⇒ ϱsρ(M) = 1

⇐⇒
(

1

1 +
√
2

) s
3

φ = 1

⇐⇒ ln(φ)− s

3
ln(1 +

√
2) = 0 ⇐⇒ ln(φ) =

s

3
ln(1 +

√
2)

Therefore, we have that

s = dimH(FC) =
3 ln(φ)

ln(1 +
√
2)

Which precisely corresponds to the result found in Theorem 4.4. ■

4.3.2 On the equivalence of the box-counting dimension and the Hausdorff
dimension

Definition 4.2 (Open Set Condition [14]). Let Si(F ) be the components (the pre-fractals)
of an attractor F (the Fibonacci Word Fractal)a. We say that the Si satisfy the open set
condition if there exists V ̸= ∅, open and bounded, such that:

m⊔
i=1

Si(V ) ⊂ V

where
⊔

is the disjoint union operator.
aThis notation comes directly from [14] and may not be confused with the notation Sn for the n−th

Fibonacci Word.

Kenneth proves that, under the Open Set Condition, the box-counting dimension and
the Hausdorff dimension are equivalent.

Theorem 4.9. The Fibonacci Word Fractal F verifies the Open Set Condition for all Fn.

Proof. In the article of the American Mathematical Society Separation Properties for
Self-Similar Sets, Andreas Schief [27] shows the following theorem:
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Theorem 4.10. Let K be a self-similar set such that K =
⋃m

i=1 Si(K). The following are
equivalent:

1. The components of K verify the Open Set Condition

2. Hα(K) > 0

where α is the unique solution satisfying
∑m

i=1 r
α
i = 1 and ri is the ratio of the similarity

Si for each i ∈ {1, . . . ,m}.

We have already shown the the Fibonacci Word Fractal is a self-similar set (Proposition
3.1). One can see that all the possible patterns the Fibonacci Word Fractal can be writ-
ten as a (disjoint) union of 5 self-similarities. As in Figure 6, taking 1 as the height
of the Fibonacci Word Fractal, one can compute that four self-similarities have ratio
r{1,2,3,4} =

√
2− 1 and one r5 = (

√
2− 1)2. We therefore have that:

5∑
i=1

rαi = 4(
√
2− 1)α + (

√
2− 1)2α = 1

⇐⇒ 4(
√
2− 1)α + (

√
2− 1)2α − 1 = 0

Let X = (
√
2− 1)α. We solve X2 + 4X − 1 = 0. The positive solution is X = −2 +

√
5.

Substitution back, we get that (
√
2 − 1)α = −2 +

√
5 ⇐⇒ α = log(

√
2−1)(−2 +

√
5) =

log(−2+
√
5)

log(
√
2−1) ≈ 1, 63 . . . , which is precisely the Hausdorff dimension of the Fibonacci Word

Fractal computed in Theorem 4.8. We thereofore have that dimH(FC) = log(−2+
√
5)

log(
√
2−1) =

α =⇒ Hα > 0. In conclusion, all the similarities of the Fibonacci Word Fractal satisfy
the Open Set Condition. This implies and checks that dimH(FC) = dimB(FC).

■
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4.4 The fractal dimension of the boundary of the Fibonacci Word
Fractal

The dimension of the curve of the Fibonacci Word Fractal is not the same as that of its
boundary. One can define the boundary of the fractal as a self-similar set itself. Assuming
the Open Set Condition, we compute in this section the dimension of the boundary of the
Fibonacci Word Fractal using only the box-counting dimension.

Curve of the 23rd FWF Boundary of the 23rd FWF Iterative steps to construct
the boundary of the FWF

At each iteration, there are segments of two different lengths. This leads us to the following
definition :
Definition 4.3 (long segment). We define long segments as the longest segments at an
iteration.
We denote by l(n) the number of long segments at the n-th iteration.

Definition 4.4 (small segment). We define small segments as the smallest segments at
an iteration.
We denote by s(n) the number of small segments at the n-th iteration.

The boundary of the Fibonacci Word Fractal is constructed iteratively from an initial
segment of length k, by the following method :

1. Transform the long segment of length k into 2 segments of length k
1+
√
2

on the sides,
and 3 segments placed in the center, with right angles, of length k

(1+
√
2)2

2. Iterate this rule for each long segment.

Remark 4.4. By construction, at each iteration, the long segments will generate 2 long
segments and 3 short segments, while the short segments will become 3 long segments.

Theorem 4.11. The box-counting dimension of the boundary of the Fibonacci Word Frac-
tal is dimB(FB) =

log(3)

log(1+
√
2)

Proof. Let’s use theorem 4.1 as the boundary of the fractal is not intersecting itself.
We will more precisely use the formula dimB F = logM

− log r′
, where r′ denotes the contracting

ratio after 1 iteration and M the ratio indicating how the number of segments increase
after an iteration.

We already know that the contracting ratio r′ = 1 +
√
2, by the construction described

above.
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Let’s now find M :
By remark 4.4, we get that :

• l(n+ 1) = 2l(n) + s(n)
• s(n+ 1) = 3l(n)

Hence, l(n) = 2l(n− 1) + s(n− 1) = 2l(n− 1) + 3l(n− 2)
The initial conditions are l(0)=0 and l(1)=1.
This is a linear induction of order 2.
Its characteristic equation is λ2 = 2λ+ 3.
Its roots are λ1 = 3 and λ2 = −1.
We therefore have that l(n) = α · 3n + β · (−1)n, for α, β ∈ R.
By the initial conditions, we get that :

l(n) =
1

4
(3n − (−1)n)

If n is even, we have l(n) = 3n−1
4

=
⌊
3n

4
+ 1

2

⌋
.

If n is odd, we have l(n) = 3n+1
4

=
⌊
3n

4
+ 1

2

⌋
.

Hence,

l(n) =

⌊
3n

4
+

1

2

⌋
s(n) = 3 ·

⌊
3n−1

4
+

1

2

⌋
Remark 4.5. The long and small segments don’t have the same length.
It is easily seen that the length of the long segments are 1 +

√
2 longer then the small

segments.
We then define t(n) the total number of segments, of the same length as the small seg-
ments, at the n-th iteration.
We get that t(n) = l(n) · (1 +

√
2) + s(n).

Now,

M = lim
n→+∞

t(n+ 1)

t(n)

= lim
n→+∞

⌊
3n+1

4
+ 1

2

⌋
· (1 +

√
2) + 3 ·

⌊
3n

4
+ 1

2

⌋⌊
3n

4
+ 1

2

⌋
· (1 +

√
2) + 3 ·

⌊
3n−1

4
+ 1

2

⌋
= lim

n→+∞

⌊
3n+1

4

⌋
· (1 +

√
2) + 3 ·

⌊
3n

4

⌋⌊
3n

4

⌋
· (1 +

√
2) + 3 ·

⌊
3n−1

4

⌋
=

3 · (1 +
√
2) + 3

1 +
√
2 + 3 · 1

3

=
6 + 3

√
2

2 +
√
2

= 3

Hence, dimB(FB) =
log(3)

log(1+
√
2)

■
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5 The Fibonacci Snowflake
In order to understand the definitions and theorems stated below, please refer to the
section 8.3, in the Appendix, where the terminology is explained and some facts used in
the proofs of this section are proven.

5.1 Constructions towards the definition of the Fibonacci snowflake

Definition 5.1. We define a sequence (qn)n∈N in T ∗ by

q0 = ε, q1 = R,

and for every n ≥ 2,

qn =

{
qn−1 qn−2, if n ≡ 2 (mod 3),

qn−1 qn−2, if n ≡ 0, 1 (mod 3).

Remark 5.1. The first terms of the sequence (qn)n∈N are :

– q0 = ε,
– q1 = R,
– q2 = R,
– q3 = RL,
– q4 = RLL,
– q5 = RLLRL,
– q6 = RLLRLLRR,
– q7 = RLLRLLRRLRRLR,
– q8 = RLLRLLRRLRRLRRLLRLLRR.

Proposition 5.1. The length of the n-th term |qn| is the Fibonacci number An.

Proof. The proof is analogous to the one of proposition 2.5.
We also prove this by induction. The base cases for n = 0 and n = 1 are done, as shown
above. Let’s now assume that |qn−1| = An−1 and |qn−2| = An−2. We have |qn| = An as
|qn−2| = |qn−2|. ■

Proposition 5.2. Let n ∈ N. There exists an antipalindrome t, two palindroms p, r and
a letter a ∈ {L,R} such that:

• q3n+1 = ta
• q3n+2 = pa
• q3n+3 = ra

Proof. Let’s prove the three points by induction.

• Base case : n = 0
q1 = εR
Inductive step :
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Assume that q3n+1 = ta.
Then :

q3n+4 = q3n+3q3n+2

= q3n+2q3n+1q3n+2

= patapa

= patap︸ ︷︷ ︸
antipalindrome

a︸︷︷︸
letter

• Base case : n = 0
q2 = εR
Inductive step :
Assume that q3n+2 = pa.
Then :

q3n+5 = q3n+4q3n+3

= q3n+3q3n+2q3n+3

= rapara

= rapar︸ ︷︷ ︸
palindrome

a︸︷︷︸
letter

• Base case : n = 0
q3 = RL
Inductive step :
Assume that q3n+3 = ra.
Then :

q3n+6 = q3n+5q3n+4

= q3n+4q3n+3q3n+4

= pataparapatap a

= pataparapatap︸ ︷︷ ︸
palindrome

a︸︷︷︸
letter

■

Proposition 5.2 tells us that the winding number can only take three values.
These values are specified in the next proposition.
Proposition 5.3. Let n ∈ N. Then, we have :

• ∆(q3n) = 0

• ∆(q3n+1) = ∆(q3n+2) = (−1)n+1

Proof.

• We have q3n+3 = q3n+2q3n+1 = q3n+1q3nq3n+1.

By additivity of the winding number, we get that :
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∆(q3n+3) = ∆(q3n+1) + ∆(q3n) + ∆(q3n+1).

By the fourth property of proposition 8.2, we get that ∆(q3n+3) = ∆(q3n).
Moreover, ∆(q3) = 0 as q3 = RL.

Hence, by induction, ∆(q3n) = 0 ∀n ∈ N.

• We have q3n+2 = q3n+1q3n.

By additivity of the winding number, we get that :
∆(q3n+2) = ∆(q3n+1) + ∆(q3n).
Hence, by the previous point, ∆(q3n+2) = ∆(q3n+1).

Moreover, by proposition 5.2, we know that q3n+1 = ta,
for t a antipalindrome and a a letter in {R,L}.

By propositions 2.7 and 5.1, we know that |q3n+1| is odd.
This implies that |t| is even.

Furthermore, we know that ∆(t) = 0, as t is an antipalindrome of even length.
Hence, ∆(q3n+1) = ∆(t) + ∆(a) = ∆(a) = ±1.

Let’s now show by induction that ∆(q3n+1) = (−1)n+1.
Base case : n = 0
∆(q1) = −1

Inductive step :
Assume that ∆(q3n+1) = (−1)n+1.
Recall that q3n+4 = q3n+2q3n+1 q3n+2 Then :

∆(q3n+4) = ∆(q3n+2) + ∆(q3n+1) + ∆(q3n+2)

= ∆(q3n+1)

= −∆(q3n+1)

= (−1)n+2

This shows that ∆(q3n+1) = ∆(q3n+2) = (−1)n+1.

■

Definition 5.2. We define Qn to be the smallest rectangle box containing q−n .
The sides of Qn are determined by the origin and the endpoint of q−n .

Remark 5.2. Each Qn is contained in Qn+1 as q−n is a prefix of q−n+1
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Theorem 5.1. For all n ∈ N, the paths qn satisfy the following properties:

1. The path (q3n+1)
3 q−3n+1 is closed.

2. The path (q3n+2)
3 q−3n+2 is closed.

3. The path qn is non-intersecting.

4. The path (q3n+1)
3 q−3n+1 is non-intersecting.

Proof. 1. The goal is to show that αq3n+1 = ±iα.
This will imply that (q3n+1)

3q−3n+1 is closed by theorem 8.3.
By proposition 5.2, we know that q3n+1 = ta, for t an even antipalindrome and
a ∈ {R,L}.
By theorem 8.2, we know that αw = i∆(w)α.
As already stated in the proof of proposition 5.3, we have ∆(ta) = ∆(a) = ±1 as t
is an even antipalindrome.

Using the recalled properties above, we have : αq3n+1 = i±1α = ±iα

2. It follows from the first point together with the fact that ∆(q3n+1) = ∆(q3n+2) by
proposition 5.3.

3. By construction, each qn is a prefix of qn+1.
Hence, if qn has an intersection, then qn+1 also has an intersection.
It therefore suffices to show that q3n is non-intersecting ∀n ∈ N.

As q3n is intersecting itself iff q−3n is, we will work on q−3n, to be able to afterwards
work with Qn.

Let’s first of all prove that q−3n = q3n−2q
−
3n−1.

Base case : n=1
We have q−3 = R, q1 = R, q−2 = ε.
Hence, q−3 = q1q

−
2

Inductive step: Assume that q−3n = q3n−2q
−
3n−1.

Then :

q−3n+3 = q3n+2 · q−3n+1

= q3n+1q3n · q3nq−3n−1
= q3n+1q3n · q3n−1q3n−2 · q−3n−1
= q3n+1 · q3nq3n−1 · q3n−2q−3n−1
= q3n+1 · q3n+1 · q−3n
= q3n+1 · q−3n+2

This ends the inductive proof that q−3n = q3n−2q
−
3n−1.

The statement q−3n = q3n−2q
−
3n−1 implies that Q3n = Q3n−2Q3n−1.

Let’s now assume that q−3n−1 is non-intersecting.
Then, q−3n−k is non-intersecting ∀k ∈ N such that 1 ≤ k ≤ 3n− 1.
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⇒ there are no intersections in the rectangle Q3n−1 nor in the rectangle Q3n−2.
⇒ there is no intersection in Q3n.
⇒ q−3n is non-intersecting.
⇒ q3n is non-intersecting.
⇒ qn is non-intersecting.

4. By theorem 8.3, we know that the word w3w− defines a closed path if αw = ±i α.
It suffices then to show that (q3n+1)

2 is non-intersecting.

(q3n+1)
2 = q3nq3n−1 · q3nq3n−1
= q3n · q3n−1q3n−1 · q3n−2 q3n−1

We know by the third point that none of these factors are intersecting.

This implies that the path (q3n+1)
3 q−3n+1 is non-intersecting.

■

The first and fourth points of theorem 5.1 make sense of the following definition :

Definition 5.3. A Fibonacci Snowflake of order n is a polynomino TF (n) represented by
the word (q3n+1)

3 q−3n+1, where n ∈ N.

5.2 Generating the Fibonacci Snowflake

Given Definitions 5.1 and 5.3, we generate the Fibonacci Snowflakes using Turtle Library
in Python.

1 import turtle
2

3 def q_sequence(n):
4

5 q = ["", "R"] # q0 = \epsilon , q1 = R
6

7 for k in range(2, n+1):
8 if k % 3 == 2:
9 q.append(q[k-1] + q[k-2])

10 else:
11 q.append(q[k-1] + invert(q[k-2]))
12

13 return q[n]
14

15 def draw_fibonacci_flake(word , step=5, angle =90):
16

17 turtle.tracer(0, 0) #To directly output the Snowflake.
18 t = turtle.Turtle ()
19 t.speed (0)
20 t.penup()
21 t.goto(-200, 0)
22 t.pendown ()
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23

24 #The program recognizes that the drawn path is indeed closed as
the turtle gets back to its initial position. This allows filling
the Snowflake with a colour:

25 t.color("black", "paleturquoise")
26 t.begin_fill ()
27

28 for c in word:
29 if c == ’R’:
30 t.right(angle)
31 elif c == ’L’:
32 t.left(angle)
33 t.forward(step)
34

35

36 t.end_fill ()
37 t.hideturtle ()
38 turtle.update ()
39 turtle.done()
40

41

42 n = int(input("Enter a natural number less or equal than 7: "))
43 #From Theorems 4.2 and 4.3 and as Proposition 5.1 links the sequence

q_n to A_n , we have that this program has a complexity of \Theta(\
phi^{3n}), explaining why we limit the input at n = 7.

44 k = 3*n + 1 #By Definition 5.3
45 q = q_sequence(k)
46 flake_word = q + q + q + q
47 draw_fibonacci_flake(flake_word , step=4, angle =90)

Remark 5.3. The following figures illustrate the Fibonacci Snowflakes corresponding to
the five first orders.

TF (1) TF (2) TF (3)
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TF (4) TF (5)

Remark 5.4. As for the n-th Fibonacci Fractal, see Remark 3.1, there exists a more
elaborate version of the code in The Fibonacci Word Fractal - Construction and
Geometric Properties - Final > Codes. There, we provide a solution to optimize the
size of a step in a given window, using the same technique as described in Remark 3.1.

5.3 Perimeter of the Fibonacci Snowflake

Theorem 5.2. The perimeter of a Fibonacci Snowflake of order n is

L(n) = 4A3n+1 =
4√
5

(
1+
√
5

2

)3n+1

− 4√
5

(
1−
√
5

2

)3n+1

.

Proof. By definition, the Fibonacci Snowflake of order n is represented by the word :
(q3n+1)

3 q−3n+1.
The perimeter is then four times the length of q3n+1.
Moreover, |q3n+1| = A3n+1, by proposition 5.1.
This shows that : L(n) = 4A3n+1.
The second equality comes from the Binet formula, which will not be proven in this
document. One can find the proof in [15]. ■

5.4 Area of the Fibonacci Snowflake

5.4.1 Some useful propositions for the next section

This subsection contains three propositions that will be used in the proof of theorem 5.3.
We will assume them to be true.

Proposition 5.4. P (n+ 1)2 + P (n)2 = P (2n+ 1) for P (n) the n-th Pell number.
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Proposition 5.5. Let w ∈ T ∗ and Γ its corresponding polygonal line. Let α ∈ E and M
be the midpoint of the vector z = −→αw.

1. w is a palindrome if and only if the perpendicular to −→αw at M is a symmetry axis
for Γ.

2. w is an antipalindrome if and only if Γ is symmetric with respect to M .

Proposition 5.6. Let α ∈ E. Then for all n ∈ N, we have :
−−→
αq−3n = α · (P (n), (−1)nP (n))
−−−−→
αq−3n+1 = α · (P (n+ 1), (−1)nP (n))
−−−−→
αq−3n+2 = α · (P (n) + P (n+ 1), 0)

5.4.2 The area of the Fibonacci Snowflake

Theorem 5.3. The area of a Fibonacci snowflake of order n is
S(n) = P (2n+ 1), where P (n) is the n-th Pell number.

Proof. We know by proposition 5.2 that q−3n+1 is an antipalindrome.
By the first point of theorem 8.3 and proposition 5.5, we know that the area determined
by the word (q3n+1)

3q−3n+1 is the area of the square of side
−−−−→
αq−3n+1.

By proposition 5.6, we know that
−−−−→
αq−3n+1 = α · (P (n+ 1), (−1)nP (n)).

Hence,

S(n) = α2 · (P (n+ 1)2 + (−1)2nP (n)2) (5)
= P (n+ 1)2 + (−1)2nP (n)2 (6)
= P (n+ 1)2 + P (n)2 (7)
= P (2n+ 1) (8)

The first equality comes from the fact that the area of a square is the square of the length
of its side.
The second equality holds as α2 ∈ {−1, 1} and α2 ̸= −1, as the surface would otherwise
be negative.
The fourth equality comes from proposition 5.4.

We successfully showed that the area of a Fibonacci snowflake of order n is S(n) =
P (2n+ 1). ■
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6 A Generalization of the Fibonacci Word Fractal in
Higher Dimensions

This section introduces a stochastic generalization of the Fibonacci Word Fractal (FWF)
in Rn. Unlike the traditional deterministic construction, this approach incorporates prob-
abilistic plane switching to govern the fractal’s trajectory. To the best of our knowledge,
this n-dimensional stochastic extension represents a novel contribution to the literature.
Definition 6.1 (The Generalized Fibonacci Word Fractal). Let n ∈ N≥2 be the ambient
dimension, φ ∈ R be the rotation angle (previously denoted as α), and p ∈ [0, 1] be a
stochastic switching probability. Let W = (wi)i∈N be the infinite Fibonacci Word.

Fractal Construction
The fractal is defined as the discrete trajectory of points (Xi)i∈N in Rn. Let the state at
step i be given by (Xi,Bi), where Xi ∈ Rn is the position and Bi = (u

(i)
1 , u

(i)
2 , . . . , u

(i)
n ) is

an orthonormal basis representing the local orientation.
Initialization: X0 = 0 and B0 = (e1, . . . , en) is the canonical basis of Rn.
Iteration: For each step i ≥ 0, let symbol L = wi.

1. Orientation Update:

• If L = 1: The orientation remains unchanged, B∗i = Bi.
• If L = 0:

(a) Stochastic Plane Switch (if n > 2): With probability p, swap the vector
u
(i)
2 with a randomly selected vector u

(i)
k where k ∈ {3, . . . , n}.

(b) Rotation: Rotate the first two vectors (u(i)
1 , u

(i)
2 ) in their spanned plane by

an angle θi, determined by the OEDR rule:

θi = (−1)iφ

The new basis B∗i is obtained by updating u1 and u2 via the standard 2D
rotation matrix R(θi).

2. Position Update: Regardless of the symbol s, the position advances in the direc-
tion of the current heading:

Xi+1 = Xi + u
∗(i)
1 and Bi+1 = B∗i

6.1 Exploration of the Newly Defined Fractal

We created three Python scripts with the aim to explore both the properties and the
shape of the Generalized Fibonacci Word Fractal (GFWF). Code generation assistance
was provided by Gemini 3 Deep Think4. Our first objective has been to visualise the
3-dimensional fractal at different orders, angles, and values of p.

4All used codes are available in the document The Fibonacci Word Fractal - Construction and
Geometric Properties - Final > Codes and have been almost thoroughly apprehended. Only Shapiro-
Wilk and D’Agostino’s K2 tests have not been entirely understood as the mathematics behind them were
too complex for us to grasp.
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Remark 6.1. The definition used in the codes to generate the Fibonacci words of a user-set
order differs from the one used elsewhere in this report. Indeed, the former begins the
recursion with "0" and "01" whereas the latter starts it with "1" and "0". This does not
change the limit as the order approaches infinity. However, if you wish to retrieve our
normal Fibonacci Word Fractal, you must shift the indexes by 2.

Looking at the graphs, we were amazed to discover how different they appeared. When
p is low (as seen in the third plot, p = 0.02), the fractal tends to remain "trapped" within
a primary plane for longer sequences. This results in a structure that appears locally
planar but undergoes occasional "bursts" into the third dimension. Conversely, when p is
high (as seen in the first and second plots, p = 0.4 and p = 0.97), the frequent switching
between the vectors leads to a structure resembling a pseudo-random walk in a finite box.
The fourth plot (k = 24, p = 1.0, φ = 30◦) reveals a phenomenon that first surprised us
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but ended up being absolutely logical. When the probability of switching the rotation
plane is maximised, the trajectory loses its dense "clumping" and begins to resemble
the 2D corresponding Fibonacci Word Fractal. Because there are only 3 directions in 3D,
when p = 1,the system becomes deterministic, and you lose any randomness. These visual
variations suggest that the GFWF does not possess a single Box-Counting dimension, but
rather a spectrum of dimensions depending on the choice of p and φ.

6.2 A Seemingly Normal Distribution of the Dimension

When we first decided to numerically approximate the Box-Counting dimension, our code
had some errors in it that had gone unnoticed. Nonetheless, it was correct enough to
make us realize that given fixed parameters (n, k, p, φ), the approximated dimension could
greatly vary between trials. Thus, for our second code, we opted to run multiple sim-
ulations with the fixed parameters and then display the approximated dimensions in a
histogram. Once more, we were surprised to observe that the results seemed to be normally
distributed for the values tested (except for the case p = 0 and the case p = 1, n = 3).5

5We tested only values with angles in the range ]0, π
2 ] and did not write them down at the beginning.

Nonetheless, here are some values that have been tested with the format (dimension, order, probability,
angle, number of simulations) : (2, 37, 0.0, 30, 1),(3, 22, 0.02, 30, 2000),(3, 24, 0.0, 30, 100),(3, 24, 1.0,
30, 2000),(3, 29, 0.02, 30, 1000),(3, 29, 0.5, 30, 1000),(3, 30, 0.0, 30, 10),(3, 34, 0.00001, 30, 100),(3, 34,
0.02, 30, 50),(10, 25, 1.0, 30, 500)
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Following an external suggestion, we employed a Q-Q plot to verify normality. We were
drawn to its simplicity, though we recognize that it relies primarily on visual assessment.
Thus, we continued our search for more rigorous tests and stumbled upon D’Agostino’s
K2 and Shapiro-Wilk tests. We implemented them into our code and the results are
mixed. We do not really understand why they sometimes reject the null hypothesis while
the Q-Q plot appears to be in favour of it. The opposite is also true. It has happened
that the Q-Q plot appeared to deviate from normality and still they did not reject it.
However, what we can be sure of is that the analysis of the Q-Q plots from those two
pictures, the distribution seems to be right-skewed. This is coherent with the fact that
the dimension is bounded below by the topological dimension of the curve which is 1 and
above by the ambient dimensions which are respectively 3 and 10, both further away from
the mean than 1. Unfortunately, every one of our attempts to explain the reason behind
this apparent normality has come short of doing so.

Figure 8: These texts have been generated alongside the two distribution. One can observe more clearly
the time taken, the mean estimated dimensions and the standard deviations

6.3 Influence of the Parameter p on the Estimated Box-Counting
Dimension

Having observed that the fractal dimension seems to follow a right-skewed normal distribu-
tion for some fixed parameters6, we now turn our attention to the functional relationship
between the switching probability p and the resulting mean dimension. By performing a
parameter sweep across the interval p ∈ [0, 1] with fixed ambient dimension, angles and
orders, we observed a non-linear and again surprising evolution of the fractal’s space-filling
properties. We mainly focused on the 3 dimensional variant but believe to have possibly
found an inherent pattern. Indeed, as illustrated in the various "Sweep" plots below, the
dimension exhibits two distinct regimes of behaviour:

• The Jump (p → 0+): The most striking feature is the extreme sensitivity of the
dimension to the introduction of randomness. For p = 0, the trajectory is strictly
planar and its dimension is minimized. However, even an infinitesimal probability

6The theoretical derivation of this distribution remains an open problem for future research.
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(e.g., p = 10−4) is sufficient to "break" the planar confinement, causing the dimen-
sion to leap toward a significantly higher value. Indeed, we believe that the sharp
increase occurring around p = 0 is due to the exponential length of the fibonacci
sequence and subsequently the exponential number of 0’s in the word.

• The Plateau: After the sharp increase and over a wide range of intermediate values,
the estimated dimension remains remarkably stable, fluctuating slightly around a
mean plateau. This suggests that once the trajectory has enough freedom to ex-
plore the ambient space, increasing the frequency of the plane-switching does not
necessarily increase the "density" of the resulting fractal; and if it does, it does so
very slowly.

Remark 6.2. The Plateau behaviour is significantly disturbed when the ambient dimension
is chosen to be 3. Indeed, near p = 1, the graph plunges rapidly. We believe that this
is due to the form of deterministic "order" in the construction, preventing the chaotic
exploration found at lower probabilities and causing the trajectory to simplify its path,
thereby reducing its box-counting dimension. In the 3-dimensional case, p = 1 represents
a state where the rotation plane is switched at every possible iteration. with only one
other possibility.
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Remark 6.3. Preliminary observations from our 3D, 4D, and 10D data suggest that
the "plateau" of the fractal dimension scales with n, but the precise nature of this
growth—whether linear, logarithmic, or asymptotic—remains unknown.

40



7 The Fibonacci Word Fractal in the complex plane
This section will present the Fibonacci Word Fractal as a fractal living in the complex
plane.
By convention, the Fibonacci Word Fractal starts at the origin of the complex plane.

Figure 9: F24 in the complex plane

This approach of using the complex plane is motivated by the fact that we can approach
complex numbers algebraically, and represent them geometrically.

Definition 7.1. The complex number associated to the n-th Fibonacci Word is the com-
plex number zn corresponding to the coordinate of the end point of n-th Fibonacci Word
Fractal.

The following table contains the first 30 Fibonacci Words (FW), their associated complex
number zn = an + ibn, their modules to the square and the orientation of the final line
segment of their Fibonacci Word Fractal.
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n FW zn |zn|2 Orientation
1 1 1i 1 N
2 0 1i 1 E
3 01 1 + i 2 E
4 010 2 + i 5 S
5 0100 3 9 E
6 . . . 4 + 2i 20 O
7 4 + 5i 41 N
8 7i 49 E
9 5 + 11i 146 E
10 12 + 11i 265 S
11 17 289 E
12 28 + 12i 928 O
13 28 + 29i 1625 N
14 41i 1681 E
15 29 + 69i 5602 E
16 70 + 69i 9661 S
17 99 9801 E
18 168 + 70i 33 124 O
19 168 + 169i 56 785 N
20 239i 57 121 E
21 169 + 407i 194 210 E
22 408 + 407i 332 113 S
23 577 332 929 E
24 984 + 408i 1 134 720 O
25 984 + 985i 1 938 481 N
26 1393i 1 940 449 E
27 985 + 2377i 6 620 354 E
28 2378 + 2377i 11 305 013 S
29 3363 11 309 769 E
30 5740 + 2378i 38 602 484 O

A lot of interesting properties can be found. Here is a list of a few of them :

• zn for n ≡ 5 mod 6 is real.
• zn for n ≡ 2 mod 6 is pure imaginary. (see in orange in the table)
• The Pell number Pn = b3n−2 for n odd and Pn = a3n−2 for n even.
• The module of a the complex numbers zn for n = 2 mod 6 and n = 5 mod 6 are

integers. (this comes fom the fact that either an or bn is zero)
• For n = 2 mod 6 and n = 5 mod 6, zn = 6zn−1 − zn−2.
• n = 0 mod 3 ⇒ an

bn
→

√
2 + 1 as n → +∞

• n = 1 mod 3 ⇒ an
bn

→ 1 as n → +∞
• n = 2 mod 6 ⇒ an

bn
= 0

• n = 5 mod 6 ⇒ bn
an

= 0
• The sequence of the modules is strictly increasing for n > 1.
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Remark 7.1. The non-overlappingness of the Fibonacci Word Fractal is assumed in the
document. A heuristic approach involved using the modules of the complex number asso-
ciated to the n-th Fibonacci Word, along with the properties of concatenation. However,
owing to time limitations, this investigation remains an open avenue for future research.

The following code generates the n-th Fibonacci Word, the orientation of the final line of
their Fibonacci Word Fractal and its associated complex number.

1 def fibonacci_word(n):
2 if n == 1:
3 return "1"
4 elif n == 2:
5 return "0"
6 else: return fibonacci_word(n-1)+fibonacci_word(n-2)
7

8 def turn(orientation , direction):
9 #This function updates the direction towards which the pen will

continue drawing the fractal.
10 compass = ["N", "E", "S", "W"] #Plays the role of a compass.
11 i = directions.index(orientation)
12

13 if direction == ’right’:
14 return compass [(i + 1) % 4]
15 elif direction == ’left’:
16 return compass [(i - 1) % 4]
17 else:
18 return orientation
19

20 def forward(orientation):
21 #Given the orientation (N, E, S, W) of the pen , this function adds to

the current position of the pen in the complex space its new
displacement vector (a complex number).

22 step_size = 1
23

24 match orientation:
25 case "N":
26 return complex (0,1)*step_size
27 case "E":
28 return complex (1,0)*step_size
29 case "S":
30 return complex (0,-1)*step_size
31 case "W":
32 return complex (-1,0)*step_size
33 case _:
34 return "A problem occured executing forward ()"
35

36 def complex_fibonacci_fractal(n):
37

38 #This function gives the final position of the pen once it has
completely drawn the n-th Fibonacci Word Fractal in the complex
plane.
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39 word = fibonacci_word(n)
40 compass = "N" # Initial orientation of the pen
41 complex_position = complex (0,0) # Initial position of the pen in

the complex plane
42

43 for index , character in enumerate(word):
44

45 complex_position += forward(compass)
46

47 if character == "0":
48 if (index + 1) % 2 == 0:
49 compass = turn(compass , "left")
50 else:
51 compass = turn(compass , "right")
52

53 return [complex_position , compass]
54

55 def sequence_of_complex_fibonacci(last_term):
56 #This function gives all final positions of the pen for the Fibonacci

Words S_1 , ..., S_last_term.
57

58 return [(f"S_{a+1}", complex_fibonacci_fractal(a+1) [0]) for a in
range(last_term)]
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8 Appendix

8.1 Measure theory [12], [7], [28], [25]

Definition 8.1 (σ−algebra). Let X be a set. A non-empty collection of subsets of X A
is called a σ−algebra if the following properties are satisfied:

1. X ∈ A.

2. If A ∈ A, then A ∈ A, where A is the complementary of A in X.

3. For any family (Ai)i∈I of elements of A, with I a countable set (|I| = |N|), then⋃
i∈I Ai ∈ A.

Remark 8.1. We have ∅ ∈ A and A closed under countable intersection, as it is closed
under complementation and countable union. The pair (X,A) is called measurable space.
Moreover, every topological space (X,T ), where T defines a topology on X, with for
elements open subsets of X, is naturally associated to a σ−algebra, the Borel σ−algebra
BX . It is the σ−algebra generated by T and its elements are called Borel sets. A proof
showing that a Borel σ−algebra is indeed a σ−algebra can be found in [12]. In further
definitions, we work on A = BRn to ensure ensure consistency.

Definition 8.2 (Measure). Let (X,A) be a measurable set. A measure µ on A is an
application

µ : A → [0,+∞]

A 7→ µ(A)

that verifies the two following properties:

1. µ(∅) = 0,

2. µ is countably additive. That is, for any sequence (Ai)i∈N of A such that ∀i ̸= j ∈ N,
Ai ∩ Aj,

µ(
⋃
i≥1

Ai) =
∑
i≥1

µ(Ai) (9)

The triplet (X,A, µ) is called a measure space.

Simple but important consequences follow from this definition. Let (X,A, µ) be a mea-
sure space and A,B ∈ A such that B ⊆ A. If µ(B) < +∞, we have that µ(A\B) =
µ(A−B) = µ(A)− µ(B). In particular, if B ⊆ A, then µ(B) ≤ µ(A). The proof follows
considering µ(A) = µ(B ∪ A\B) since B ⊆ A and using (9) as B ∩ (A\B) = ∅.
Moreover, for any arbitrary sequences of set that belongs to A (Ai)i∈N,

µ(
⋃
i≥1

Ai) ≤
∑
i≥1

µ(Ai)

Indeed, let (Bi)i∈N be defined as B1 = A1, Bk = Ak\
⋃k−1

i=1 Ai. Note that ∀i ̸= j ∈
N,Bi ∈ A and Bi ∩ Bj = ∅. We therefore have

⋃
i≥1 Ai =

⋃
i≥1Bi by construction and

µ(
⋃

i≥1 Bi) =
∑

i≥1 µ(Bi). Furthermore, by the previously statement consequence of the
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definition of a measure, as ∀k ∈ N, Bk ⊆ Ak, µ(Bk) ≤ µ(Ak). It then follows:

µ(
⋃
i≥1

Ai) = µ(
⋃
i≥1

Bi) =
∑
i≥1

µ(Bi) ≤
∑
i≥1

µ(Ai)

Countable additivity cannot be guaranteed for arbitrary subsets, since some sets are
non-measurable and have no consistent generalization of "area." To overcome this, one
first introduces the less restrictive notion of outer measure, from which a measure can
later be constructed.
Definition 8.3. Outer measure Let X be a set and P(X) denote its powerset, the col-
lection of all the subsets of X. An outer measure µ∗ : P(X) → [0,+∞] is an application
satisfying the following properties:

1. µ∗(∅) = 0,

2. For A,B ∈ P(X), if A ⊆ B, then µ∗(A) ≤ µ∗(B) (monotonicity),

3. µ∗ is countably subadditive. That is, for any sequence (Ai)i∈N of A such that
∀i ̸= j ∈ N, Ai ∩ Aj:

µ∗(
⋃
i≥1

Ai) ≤
∑
i≥1

µ∗(Ai) (10)

Moreover, we say that A ∈ P(X) is µ∗−measurable if ∀B ∈ P(X),

µ∗(B) = µ∗(A ∩B) + µ∗(A ∩B)

In other words, A is µ∗−measurable if it divides X in a way that the measured "sizes"
of all subsets of X by µ∗ add properly. Such subsets satisfy µ∗(A) = 0 ∨ µ∗(A) = 0.
Note that µ∗(B) ≤ µ∗(A ∩ B) + µ∗(A ∩ B) is provided by the countably subadditiv-
ity of the outer measure. Assuming for instance µ∗(A) = 0, we have µ∗(A ∩ B) ≤
µ∗(A) = 0 =⇒ µ∗(A ∩ B) = 0 and µ∗(A ∩ B) ≤ µ∗(B) by monotonicity of µ∗, implying
µ∗(B) ≥ µ∗(A ∩B) + µ∗(A ∩B) and thus, A is µ∗−measurable.7

The next theorem is fundamental in the construction of a measure from outer measures.
For a proof see Theorem 1.3.6 of [12].

Theorem 8.1. Let X, be a set and µ∗ an outer measure on X. Let Mµ∗ := {A ∈ P(X) |
A is µ∗−measurable }. Then:

1. Mµ∗ is a σ−algebra,

2. The restriction of µ∗ on Mµ∗ is a measure on Mµ∗

Example 8.1. The Lebesgue outer measure on R is an application L∗1 : P(X) → [0,+∞],
such that:

L∗1(A) = inf

{
∞∑
i=1

(bi − ai)

∣∣∣∣∣A ⊂
∞⋃
i=1

[ai, bi]

}
Note that for any open or closed intervals of R, L∗1((a − b)) = L∗1([a − b]) = a − b. The
Lebesgue outer measure indeed extends the notion of "length" to any arbitrary subsets of R.

7The proof for µ∗(A) = 0 =⇒ A is µ∗−measurable is analogous.
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The Lebesgue outer measure is an outer measure, as it satisfies L∗1(∅) = 0 and monotonic-
ity. Moreover, considering the countable subadditivity, let (Ai)i∈N be an arbitrary sequence
of subsets of R. Let us assume

∑
i L∗1(Ai) < +∞ (otherwise, the inequality holds) and let

ϵ > 0 be arbitrary. For each i, choose (ai,k, bi,k) such that Ai ⊂
⋃∞

k=1[ai,k, bi,k] and

∞∑
k=1

(bi,k − ai,k) < L∗1(Ai) +
ϵ

2i
(11)

Using for instance Cantor’s pairing function, we combine (ai,k, bi,k) ∀i in (aj, bj). We
have that:

∞∑
j=1

(bj − aj)
(11)
<

∞∑
i=1

(
L∗1(Ai) +

ϵ

2i

)
=
∞∑
i=1

(L∗1(Ai)) + ϵ

Notice that
⋃

iAi ⊆
⋃

j(aj, bj). Letting ϵ → 0 and using Lebesgue outer measure definition,
we then have:

L∗1

(⋃
i≥1

Ai

)
≤ L∗1

(⋃
j≥1

(ai, bj)

)
=
∞∑
j=1

(bj − aj) ≤
∞∑
i=1

(L∗1(Ai))

Showing (10). Therefore, the Lebesgue outer measure is an outer measure. Moreover,
applying Theorem 8.1, one can show that ML∗1 , the collection of Lebesgue measurable
subsets of R, corresponds to the Borel σ−algebra BR (Proposition 1.3.7,[12])8. Analo-
gously, if A = {(x1, ..., xn) ∈ Rn | ∀i ∈ {1, ..., n}, ∃ai, bi ∈ R : ai ≤ xi ≤ bi} with
voln(A) =

∏n
i=1(bi − ai), A is called a coordinate parallepiped in Rn. Now, we define the

n-dimensional Lebesgue outer measure L∗n on any arbitrary set A ⊆ Rn:

L∗n(A) = inf

{
∞∑
i=1

voln(Ai)

∣∣∣∣∣A ⊂
∞⋃
i=1

Ai

}

Note that L∗n(A) = voln(A) if A is a coordinate parallelepiped in Rn. The n-dimensional
Lebesgue outer measure L∗n is an outer measure (the proof is analogous to the one of L∗1, see
Proposition 1.3.4 in [12]), that generalizes the notion of "length" (if n = 1, L∗n = L∗1), of
"area" (n = 2), of "volume" (n = 3) and n-dimensional volume. Moreover, (Rn,BRn ,Ln)
is a measure space, where Ln := L∗n : BRn → [0,+∞] [12].

However, mathematicians like Hausdorff showed the existence of objects which dimension
n is not a natural number but either a rational or an irrational number.9 To measure
subsets of lower dimensions than n, like fractal sets, we define the Hausdorff measure, a
generalization of the Lebesgue measure.

8.2 Defining the Hausdorff dimension

To define de Hausdorff dimension, we first need to define the Hausdorff measure. Some
definitions are required.

8Theorem 8.1 is an essential key to a more general theorem we don’t state in this project, the
Carathéodory’s extension theorem, which guarantees that restricting an outer measure requiring a natural
pre-measure (i.e., the usual length, voln, etc.) to the Borel σ-algebra is a measure.

9Some literature refers to this as a fractional dimension, although the correct term is fractal dimension.
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Definition 8.4 (The diameter of U). Let U ⊂ Rn be non-empty. We define the diameter
of |U | as

|U | = sup{|x− y|
∣∣x, y ∈ U}

where |x− y| denotes the Euclidean norm.

Definition 8.5 (δ-cover). A δ−cover of a non-empty subset E of Rn is a finite or countable
collection of sets {Ui}i≥1 that satisfies:

1. E ⊂
⋃

i≥1 Ui

2. ∀i ∈ N, 0 < |Ui| < δ

Definition 8.6 (δ−neighborhood). Let E be a non-empty subset of Rn. We call the
δ−neighborhood of E the set Eδ := {x ∈ Rn

∣∣|x− y| ≤ δ for y ∈ E}

We now define the Hausdorff measure, for any positive real parameter s, that will
determine the scaling property of the measure. For any subsets A of Rn and any λ ∈ R,
the Hausdorff measure with parameter s, denoted Hs, must satisfy Hs(λA) = λsHs(A),
where λA = {λx | x ∈ A}. s denotes the dimension of A when the Hausdorff measure is
positive and finite.

Example 8.2. Let us consider the unit square C = [0, 1]2 ⊂ R2, a Borel set. It has a
dimension s = 2. Since 2 ∈ N, we consider the Hausdorff measure of parameter 2 as the
2-dimensional Lebesgue measure. We then have H2(C) = L2(C) = vol2(C) = 1. Scaling
by λ ∈ R, we indeed have that H2(λC) = H2([0, λ]2) = λ2 = λ2 · H2(C).

Definition 8.7. Let E ⊂ Rn, s ≥ 0. Then, for any positive δ, we define:

Hs
δ(E) = inf

{
∞∑
i=1

|Ui|s
∣∣{Ui}i≥1 is a δ-cover of E

}
(12)

The s-dimensional Hausdorff measure of E is an outer measure [25]a, and is given by:

Hs(E) = lim
δ→0

Hs
δ

aThe restriction of Hs
δ on the Borel σ- algebra is a measure. (See footnote 8)

Remark 8.2. Taking δ′ < δ, we have that Hs
δ′(E) ≤ Hs

δ(E). Hence, as δ → 0, both
of the number of δ-covers and

∑∞
i=1 |Ui|, where {Ui}i≥1 is a δ-cover of E decrease (or

remain constant), guaranteeing the existence of a limit of Hs
δ, as it must be positive by

construction.

The Hausdorff measure satisfies the scaling property mentioned above.
Proposition 8.1. Let E ⊂ Rn, λ > 0. The Hausdorff measure Hs satisfies the scaling
property, meaning that

Hs(λE) = λsHs(E)
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Proof.

- For any δ-cover and λ > 0, if {Ui}i≥1 is a δ-cover of E, then {λUi}i≥1 is a λδ-cover
of λE and

∑∞
i=1 |Ui|s ≤

∑∞
i=1 |λUi|s = λs

∑∞
i=1 |Ui|s, as λ > 0. This means that

Hs
λδ(λE) ≤ λsHs

δ(E). But λδ
δ→0→ 0, hence Hs(λE) ≤ λsHs(E).

- Let Hs(λE). By the previous inequality and multiplying by λs

λs , we get:

λsHs(E) ≤ λs

λs
Hs(λE) = Hs(λE)

as 1
λs > 0.

In conclusion, we have shown that λsHs(E) ≤ Hs(λE) ∧ Hs(λE) ≤ λsHs(E) ⇐⇒
Hs(λE) = λsHs(E). ■

We need to study the parameter s. It is a critical parameter satisfying that if t < s,
Ht(E) = ∞ and if t > s, Hs(E) = 0. Intuitively, it respectively corresponds to compute
the Hausdorff measure of a cube using line segments (1 = t ≤ s = 3) or 4-hypercubes
(4 = t ≥ s = 3). This drop from ∞ to 0 can be shown using the definition of Hs

δ (8.7). If
t > s, we have that:

∞∑
i=1

|Ui|t =
∞∑
i=1

|Ui|t−s|Ui|s ≤ δt−s
∞∑
i=1

|Ui|s

=⇒ 0 ≤ Ht
δ(E) ≤ δt−sHs

δ(E)

Supposing that Hs
δ(E) < ∞ and letting δ → 0, we have that Ht(E) = 0. The same logic

applies to show that Ht(E) = ∞ for t < s. We define the Hausdorff measure as this
critical parameter s.
Definition 8.8 (Hausdorff dimension). The Hausdorff dimension of E ⊂ Rn is defined
as follows:

dimH(E) = sup{s ≥ 0 | Hs(E) = ∞} = inf{s ≥ 0 | Hs(E) = 0} (13)

s = dimH(E)
0

∞

Hs(E)

t

H
t (
E
)

Figure 10: Representation of the Hausdorff measure, with the drop from ∞ to 0 around
the critical parameter s
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8.3 Prerequisites for the Fibonacci Snowflake [6]

These prerequisites are based on the document [6].
Let’s start with some definitions.
We first define what a path is:
Definition 8.9. A path in Z × iZ is a polygonal path made of the elementary unit
translations :

i = (0, 1), i2 = (−1, 0), i3 = (0,−1), i4 = (1, 0)

Let’s now state some definitions related to some particular types of paths.
Definition 8.10.
Let |w|α denote the number of occurrences of the letter α in the word w, where α ∈
{i,−i, 1,−1}.
A path is said to be closed if it satisfies |w|i = |w|−i and |w|1 = |w|−1, ie if the two
extremities of the polygonal line coincide.
A simple path is a word such that none of its proper factors is a closed path.
A boundary word is a non-empty closed path.
A polynomino is the inner region bounded by a boundary path.

Remark 8.3. A path is fully determined by the starting step α ∈ {i,−i, 1,−1} := E
and the sequence of direction indications, which are left (L), right(R), forward (F) and
backwards (B).
We will only consider the two directions L and R, as by the construction of the Fibonacci
Word Fractal.

In the following we define some functions which will later be used.
Definition 8.11. jj

• · exchanges the letters R and L.
• ·̃ reverses the letters of the word, ie, for a word w = w1w2 . . . wn, then w̃ =
wnwn−1 . . . w1

• Let w = w1w2 . . . wn−1wn. We define w− as w− := w1w2 . . . wn−1

Definition 8.12. The words satisfying w = w̃ are called palindromes.
The words satisfying ŵ := w̃ = w are called antipalindromes.

Definition 8.13. Let T ∗ be the set of all finite words one can build from the alphabet
T = {L,R}.
The winding number ∆ : T ∗ → Z is defined by ∆(w) = |w|L − |w|R

Here are some properties of the winding number
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Proposition 8.2.
Let u and v be words, ϵ be the empty word.

• ∆(ϵ) = 0
• ∆(uv) = ∆(u) + ∆(v)
• ∆(w) = ∆(w̃)
• ∆(w) = −∆(w) = ∆(ŵ)
• ∆(wL) = ∆(w) + 1
• ∆(wR) = ∆(w)− 1

Remark 8.4. The winding number of an antipalindrome w is ∆(w) = 0.

Definition 8.14. The right action E × T ∗ → E is defined as follows. For each α ∈ E , we
set :

1. αL = i · α

2. αR = − i · α,

3. αε = α,

Remark 8.5. By associativity, we have α(uv) = (αu)v.

Theorem 8.2. We have αw = i∆(w) α .

Proof. Let’s prove this by induction :
The base case is fulfilled as αε = α and ∆(ϵ) = 0.
Let’s now assume that this claim is true for w.
Then : αwL = (αw)L = i∆(w)αL = i∆(w)+1α = i∆(wL)α.
Similarly, we have : αwR = (αw)R = i∆(w)αR = i∆(w)−1α = i∆(wR)α. ■

The next proposition is describes the action of w on α

Proposition 8.3. Let w ∈ T ∗ and α ∈ E. Then

αw =

{
αw, if ∆(w) ≡ 0 (mod 2)

−αw otherwise.

Proof. • If ∆(w) ≡ 0 (mod 2)

⇒ ∆(w) = 2m for m ∈ Z
⇒ αw = i−∆(w)α = i−2mα

⇒ αw = (−1)−mα

⇒ αw = (−1)mα

⇒ αw = i2mα

⇒ αw = i∆(w)α

⇒ αw = αw
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• If ∆(w) ≡ 1 (mod 2)

⇒ ∆(w) = 2m+ 1 for m ∈ Z
⇒ αw = i−∆(w)α = i−2m−1α

⇒ αw = ((−1)−mi−1)α

⇒ αw = ((−1)m · −i)α

⇒ αw = i2m · (−i)α

⇒ αw = −i2m+1α

⇒ αw = −i∆(w)α

⇒ αw = −αw

■

To each pair (α,w) ∈ E ×T ∗ we associate a polygonal path γ defined as follows. The first
side of γ is the vector α. The subsequent sides are obtained by reading successively the
instructions L and R given by the word w.

Let z0 = 0, z1 = α, . . . , z|w|+1 be the sequence of vertices of γ. For 0 ≤ ℓ ≤ |w|, the
vertices are given by

zℓ+1 = α
ℓ∑

k=1

i∆(w[1,k]),

where w[1, k] = w1w2 · · ·wk denotes the prefix of w of length k, with the convention
w[1, 0] = ε.

For simplicity, we denote by −→αw := −−−−→z0z|w|+1 the vector joining the initial and final vertices
of the path γ.

Remark 8.6. By abuse of terminology, we often identify a word w with the path γ it
defines.

Remark 8.7. If w ∈ T is a path, then ŵ is also a path, which is precisely the reverse path,
ie the path obtained by moving along the original path backwards.

Proposition 8.4. If a path w ∈ T ∗is closed, then ∆(w) ≡ 0 mod 3

This won’t be proved and will be accepted in this document.
Theorem 8.3. Let w ∈ T ∗ and α ∈ E.
We have the following properties :

1. If αw = ±i α, then the word w3w− defines a closed path.

2. If αw = −α, then the word ww− defines a closed path.

3. If αw = α, then either w− defines a closed path, in which case the sequence (wn)n≥1
is bounded as n → ∞, or w− is open and∣∣−−→αwn

∣∣ = c n for some constant c > 0.
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Proof. 1. We assume that αw = ±iα.
We want to show that

−−−−−−→
α(w3w−) = 0.

Let’s first rewrite it :
−−−−−−→
α(w3w−) =

−−−−−−−−→
α(wwww−).

By additivity, we get :
−−−−−−−−→
α(wwww−) = −→αw +

−−−−→
(αw)w +

−−−−−→
(αw2)w +

−−−−−−→
(αw3)w−.

Moreover, αw = ±iα ⇒ αwk = (±i)kα.
Therefore,

−−−−−−→
α(w3w−) = ±iα + (±i)−→αw + (±i)2−→αw + (±i)3

−−→
αw−

= ±iα+ (±i)(±iα) + (∓iα) + (±i)3(±iα)

= ±iα− α∓ iα + α

= 0

2. We assume that αw = −α.
We want to show that

−−−−−→
α(ww−) = 0.

By additivity, we get :

−−−−→
αww− = −→αw +

−−−−−→
(αw)w−

= −→αw +
−−−−−→
(−α)w−

= −→αw −−→αw
= 0

3. We assume that αw = α.
Hence, αwk = α ∀k ∈ N.
Let v := −→αw.
By additivity, we get :

−−→
αwn = −→αw +

−−−−→
(αw)w + . . .+

−−−−−−→
(αwn−1)w

⇒ −−→
αwn = n · −→αw = n · v

• if w− is closed:

⇒
−−→
αw− = 0

⇒ v = −→αw = 0

⇒
−−→
αwn = n · 0 = 0 ∀n

⇒ wn is bounded as n → +∞

• if w− is open:

v = −→αw ̸= 0

⇒
−−→
αwn = n · v

Taking the norm :|
−−→
αwn| = n|v|

Let c := |v|

⇒ |
−−→
αwn| = cn , for c > 0

■
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8.4 Observing the overlapping property of the α = 100° and α =
120° variants of F23 using Manim

1 import manim , math
2 import numpy as np
3

4 def fibonacci_word(n) #This function outputs the n-th Fibonacci Word
and can be found in previously given codes.

5 def generate_points(word , step =0.1, alpha =90) #This functions copies
draw_fibonacci_word_fractal for a generalized alpha variant of the
Fibonacci Word Fractal but instead outputs the set of points "

points" that belongs to the curve.
6

7 def build_fractal(n, angle , step):
8 word = fibonacci_word(n)
9 pts = generate_points(word , step , angle)

10 fractal = VMobject ().set_points_as_corners(pts).set_stroke(color=
BLUE_A , width =1.5)

11

12 #Note: One can here implement the centering of the fractal.
13

14 class FibonacciWordComparison(Scene):
15 def construct(self):
16 n = 23
17 step = 0.02
18 fractal = build_fractal(n, 90, step) #Constructing the 90deg

23-FWF
19 fractal.set_height (5)
20 self.play(Create(fractal , run_time=6, rate_func=linear))
21 self.wait (1)
22

23 def transition(old_fractal , new_angle):
24

25 new_fractal = build_fractal(n, new_angle , step)
26 new_fractal.set_height (5)
27

28 self.play(
29 ReplacementTransform(old_fractal , new_fractal),
30 run_time =3
31 )
32

33 return new_title , new_fractal
34

35 fractal = transition(fractal , 100)
36 fractal = transition(fractal , 120)
37 self.wait (2)
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9 Conclusion
In this study, we have characterized the Fibonacci Word Fractal as an object at the inter-
section of combinatorics on words, geometry and measure theory. Starting from the re-
cursive structure of the Fibonacci word and the foundational work of Monnerot-Dumaine,
we demonstrated that the resulting fractal can be as well studied algebraically. Our geo-
metric analysis confirmed the self-similarity of the curve and allowed precise calculations
of its contracting ratio, (1 +

√
2)−1. A significant portion of this work was dedicated to

the rigorous determination of the fractal dimension. Using thermodynamic formalism, we
established the Hausdorff dimension of the curve as s = 3 ln(ϕ)(ln(1 +

√
2))−1. Further-

more, by verifying the Open Set Condition (OSC), we formally confirmed the equivalence
of the Hausdorff and Box-counting dimensions and concluded the section computing the
Box-Counting dimension of the fractal boundary. The study of the Fibonacci Snowflake
complementarily illustrated how these curves can be closed to form polyominoes with
areas and perimeters defined by Pell and Fibonacci numbers, respectively. Beyond these
deterministic models, this project explored a possible extension into higher-dimensional
spaces (n ≥ 2) through the introduction of a switching probability p. This Generalized Fi-
bonacci Word Fractal (GFWF) introduces stochastic elements into the fractal’s trajectory.
Preliminary experimental data suggest that even a minimal jump parameter may be suffi-
cient to break planar confinement. Our observations also point toward a "plateau" effect,
where the estimated box-counting dimension appears to remain relatively stable across a
broad range of p values. However, these behaviors—including the seemingly right-skewed
normal distribution of the dimensions—remain empirical observations at this stage, as
their formal theoretical derivation constitutes a significant open problem.

9.1 Avenues for further research

The scope of this project was vast, and time constraints meant that many intriguing
avenues were left unexplored. For future students undertaking this lab, we propose the
following paths for further investigation:

• Generalization of the Fibonacci Word to a finite alphabet with more let-
ters: Extending the Fibonacci word construction to an alphabet with more than
two letters opens the door to a rich variety of combinatorial sequences. One could
investigate the preservation of recurrence relations and self-similarity within the
resulting fractals. This could lead to new fractal curves in the plane with differ-
ent symmetries, offering a broader understanding of how the Fibonacci structure
generalizes beyond binary sequences.

• Generalization to the α°-variant of n-th Fibonacci Word Fractal: Many of
the propositions necessary to compute the box-counting dimension of the curve of
the Fibonacci Word Fractal for a rotational angle α ∈ [0, π

2
] were stated as remarks

following the proves for the 90° n-th Fibonacci Word Fractal. Providing rigorous
proves for these propositions would formalize the understanding of the α°-variant of
n-th Fibonacci Word Fractal.

• Compare the Fibonacci Word Fractal with other sequences : This can
reveal how combinatorial rules influence geometric properties and dimension. Such
a comparison may uncover universal patterns or highlight the unique structure of
the Fibonacci-based fractals.
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• The Fibonacci Snowflake : In this document, we have stated and shown many
properties, to finally define the Fibonacci snowflake, as well as computed its perime-
ter and area. Future work could focus on exploring other properties such that its
box-counting dimension or the measure of its complexity.

• The Generalized Fibonacci Word Fractal : Much remains to be understood
regarding the properties of this mathematical object. Specifically, establishing a
formal proof—or disproof—of the observed right-skewed normality would be a sig-
nificant step forward. Such a breakthrough, alongside the determination of the
exact box-counting dimensions of the GFWF, would be instrumental in deriving a
general closed-form function that maps the ambient dimension, the rotation angle,
and the switching probability to the resulting fractal dimension. Furthermore, while
our current analysis has primarily focused on sweeps of the probability parameter
p, a natural and promising extension of this work would involve implementing a
systematic sweep across the ambient dimension n. Investigating how the fractal
dimension behaves as n → ∞ for a fixed p could reveal a "saturation point" where
the trajectory’s complexity is limited by the Fibonacci sequence itself rather than
the available spatial degrees of freedom. Such a sweep would be essential to fully
characterize the space-filling efficiency of the GFWF in higher dimensions.

• Relation to the complex plane : Some possible objectives for future research
include proving the symmetries of the three patterns of the Fibonacci Word Fractal
and rigorously confirming its non-overlapping property, by representing the FWF
in the complex plane and using the algebraical properties of the complex numbers.

• Explore real-life applications of the Fibonacci Word / Fibonacci Word
Fractal The Fibonnaci Word and the Fibonacci Word Fractal are linked to the
Golden ratio, a number one can find in various natural structures. It has for instance
been established that φ plays an important role in phyllotaxis, the arrangement of
leaves on a plant stem. Moreover, current studies link the Fibonacci Word properties
to quasicrystals, ordered but non-periodic structures.

9.2 Methodological Recommendations for Future Research

Based on the computational and statistical challenges encountered during the exploration
of the Generalized Fibonacci Word Fractal (GFWF), we formulate the following recom-
mendations for future studies on this topic. These guidelines aim to optimize computa-
tional efficiency and ensure statistical rigor.

9.2.1 Computational Optimization and Resource Management

The exponential growth of the Fibonacci sequence length (|wk| ≈ ϕk) imposes severe
memory and processing constraints.10

• Compilation and Typing: The use of interpreted Python code is insufficient
for orders k ≥ 25. It is much better to use Just-In-Time (JIT) compilation (e.g.,
Numba) or static languages (C++/Rust) to handle the coordinate generation and
basis updates. Boolean arrays should be strictly preferred over string manipulation
for the Fibonacci word generation to minimize memory footprint.

10Be prepared to let your computer run for an entire night without being able to access it.
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• Parallelization: The stochastic nature of the GFWF requires large sample sizes
(m) to obtain reliable dimension estimates. As demonstrated in our implementa-
tion, parallel processing (e.g., ProcessPoolExecutor) is essential. Future implemen-
tations should ensure that random seeds are distinct across concurrent processes to
avoid pseudo-replication.

• Memory-Efficient Box-Counting: The standard Box-Counting algorithm is memory-
intensive. For high orders (k ≥ 30), storing all points in memory becomes unfeasible.
We recommend implementing sparse matrix representations or hashing coordinate
bins (as done via np.unique on discrete bins) rather than instantiating full dense
3D grids.

9.2.2 Statistical Analysis of the Fractal Dimension

Our results indicate that the distribution of estimated dimensions is not always perfectly
Gaussian.

• Normality Testing: Visual inspection via Q-Q plots is necessary but insufficient.
We recommend systematically pairing them with quantitative tests such as the
Shapiro-Wilk test (for m < 5000) or D’Agostino’s K2 test. However, researchers
should note that with large sample sizes, these tests may reject the null hypothesis
even for negligible deviations from normality. (We recommend to look for better
tests)

• Skewness Interpretation: The observed right-skew in the dimension distribution
is tied to the fact that the fractal is bounded by the topological dimension (1) and the
ambient dimension (n). Future statistical models should consider using skew-normal
distributions or other similar distributions rather than assuming a pure Gaussian
model, especially when the mean dimension is close to the ambient dimension or
the topological dimension.

9.2.3 Parameter Space Exploration

The functional relationship between the switching probability p and the fractal dimension
D exhibits non-linear sensitivity.

Sampling near p = 0: The "Jump" phenomenon observed likely implies that the fractal
dimension changes drastically with infinitesimal randomness. Linear sampling of p is
inadequate in the range [0, 0.05]. We strongly recommend using a logarithmic scale or a
finer mesh near p = 0 to accurately capture the phase transition from planar to spatial
behavior.
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