Experimental Mathematics: Stock trading with hidden Markov models

Project supervisor: George Kerchev

Table of contents

Introduction	3
Part I: Hidden Markov Model	4
Hidden Markov Model	4
Hidden Markov Model for Stock trading	6
Three basic problems of HMMs	6
Forward-Backward algorithm	7
Baum-Welch algorithm	8
Viterbi algorithm	9
Part II: Programming	10
Stock price prediction using Python	10
Conclusion	14

Stock trading with hidden Markov models

Introduction

The aggregation of buyers and sellers of stocks also called shares is called a stock market. A stock or a share represents ownership claims on businesses. Stock trading consists of buying shares low and selling them high by profiting in doing so. The goal of our project was to be able to predict economic regimes and stock prices using the *Hidden Markov Model* (HMM), a probabilistic model. After gathering economic data from the company *Electronic Arts*, we tried to model it with a HMM. In order to predict the stock prices, we needed to train the model while optimizing the model parameters.

Part I: Hidden Markov Model

Hidden Markov Model

Named after the russian mathematician Andrey Andreyevich, the Hidden Markov Models is a doubly stochastic process where one of the underlying stochastic process is hidden. The hidden process is a Markov chain going from one state to another but cannot be observed directly. The other process is observable and depends on the hidden states. The goal of HMM is to capture the hidden information from the observables. HMM is widely used in speech recognition and in forecasting of the stock market.

X - hidden states

Y - observables

a - transition probabilities: probability of moving from one state to another state

b - emission probabilities: probability of an observation being generated from a state

 X_0 - **initial probability distribution**: probability that the Markov chain will start at a certain state

Example:

An application of the HMM is often the determination of the weather which is hidden. The hidden states in our example are sunny and rainy. The activities of a certain person which depend on the weather can be observed. The observables are the following activities: walk, shop or clean. The transition probabilities here represent the change of weather from one day to another. The emission probabilities represent the likelihood of an activity being performed on each day depending on the state of the weather.

Let's suppose that for two consecutive days this person went for a walk. We will furthermore assume that it rained the first day and the second day it was sunny.

$$\begin{split} \mathsf{P}((\mathsf{walk},\mathsf{walk}),(\mathsf{rainy},\mathsf{sunny})) &= \mathsf{P}((\mathsf{walk},\mathsf{walk})|(\mathsf{rainy},\mathsf{sunny})) \ \mathsf{P}(\mathsf{rainy},\mathsf{sunny}) \\ &= \mathsf{P}(\mathsf{walk}|\mathsf{rainy}) \ \mathsf{P}(\mathsf{walk}|\mathsf{sunny}) \ \mathsf{P}(\mathsf{sunny}|\mathsf{rainy}) \ \mathsf{P}(\mathsf{rainy}) \\ &= 0.1 * 0.6 * 0.3 * 0.6 = 0.0108 \end{split}$$

Hidden Markov Model for Stock trading

HMM are capable of predicting and analyzing time-based phenomena, hence, they are very useful for financial market prediction. The price of the stock, in this case our observable, is impacted by hidden volatility regimes. The hidden states are namely low volatility regimes, high volatility regimes and neutral volatility regimes. The goal here is to estimate the most likely regime, including the associated time varying means and volatilities, in order to create a reliable predictive model. So by analyzing the stock behavioral pattern in the past, we can forecast its future outcomes.

Three basic problems of HMMs

- Evaluation: computation of the probability of the observation sequence \rightarrow Forward-Backward algorithm
- Learning: determination of the parameters of the model \rightarrow Baum-Welch algorithm
- Decoding: determination of the most probable state sequence \rightarrow Viterbi algorithm

Forward-Backward algorithm

The Forward-Backward algorithm computes the posterior marginals of all hidden state variables. This means that it gives the probability distribution with relevant evidence and each background being taken into account. To achieve this it makes use of the principle of dynamic programming, which means simplifying a complicated problem by breaking it down into simpler sub-problems, as we can see on this image.

The algorithm uses two passes, the first pass goes forward in time and the second pass goes backward. The first pass computes a set of forward probabilities which provide the probability of ending up in any particular state. In the second pass, the algorithm computes a set of backward probabilities which provide the probability of observing the remaining observations given any starting point. So we have two sets of probabilities that can then be combined to obtain the distribution over states at any specific point in time given.

Conclusion:

The Forward-Backward algorithm is used to find the most likely state for any point in time.

Baum-Welch algorithm

The Baum-Welch algorithm is used to find the unknown parameters of a hidden Markov model. It's a special case of the EM algorithm (expectation–maximization algorithm) which is a method to find maximum a posteriori estimates of parameters in a statistical model.

To achieve this, the algorithm makes use of the Forward-Backward algorithm.

So we have two steps, the E-step, 'E' stands for expectation, re-estimating the responsibility profile π given the current HMM parameters. (emitted string, ?, Parameters) $\rightarrow \pi$

The other step is the M-step, 'M' stands for maximization, re-estimating the HMM parameters given the current responsibility profile π . (emitted string, π , ?) \rightarrow Parameters

The Baum-Welch algorithm is needed because the state paths are hidden, and the equations cannot be solved analytically.

Conclusion:

The Baum-Welch algorithm attempts to find the model that assigns the training data the highest likelihood.

Viterbi algorithm

The Viterbi algorithm is most useful when one wants to calculate the most likely path through the state transitions of these models over time. Let's say we have N states and T moments in time, calculating the probabilities of all transitions over time would be N^T probability calculations. This algorithm is used to speed all these calculations up.

The observation made by the Viterbi algorithm is that for any state at time T, there is only one most likely path to that state. Therefore, if several paths converge at a particular state at time T, instead of redoing them all when calculating the transitions from this state to states at time T+1, one can discard the less likely paths, and only use the most likely one.

Conclusion:

Using the Viterbi algorithm we can identify the most likely sequence of hidden states given the sequence of observations.

Part II: Programming

Stock price prediction using Python

In this section, we'll talk about the program of which the main goal was to predict stock prices using a Hidden Markov Model to fit the data, and we'll give some detailed explanations on the functioning of the code.

```
import datetime
import numpy as np
 from pandas datareader import data
 from hmmlearn.hmm import GaussianHMM
 import matplotlib.pyplot as plt
 import matplotlib.cm as cm
 from matplotlib.dates import YearLocator, MonthLocator
 import warnings
warnings.filterwarnings('ignore')
 ticker = 'EA'
start_date = datetime.date(2019, 1, 1)
end date = datetime.date.today()
Stocks = data.DataReader(ticker, 'yahoo', start_date, end_date)
Stocks.reset_index(inplace=True,drop=False)
Stocks.drop(['Open','High','Low','Adj Close','Volume'],axis=1,inplace=True)
Stocks['Date'] = Stocks['Date'].apply(datetime.datetime.toordinal)
Stocks = list(Stocks.itertuples(index=False, name=None))
dates = np.array([q[0] for q in Stocks], dtype=int)
close_val = np.array([q[1] for q in Stocks])
close = [close_val[j]/close_val[j-1] for j in range(1, len(close_val))]
fig, ax = plt.subplots(figsize=(12,8))
plt.title('Stock Price over Time (EA)', fontsize = 14)
ax.plot_date(dates, close_val, '-', label='Close')
plt.gca().xaxis.set_major_locator(MonthLocator())
plt.xlabel('Date', fontsize = 14)
plt.ylabel('Close (price)', fontsize = 14)
plt.legend()
ax.autoscale view()
ax.grid(True)
fig.autofmt xdate()
plt.show()
```

First of all we have to import several packages in order to be able to run the code properly. The most important ones are the "pandas_datareader' package, which is used to get our stock data from the 'Yahoo Finance' website, as well as the 'hmmlearn.hmm' package, which is used to fit the data with the Hidden Markov Model.

As mentioned above, the stock data that we use comes from the company *Electronic Arts.* We collect the data from the 1st January 2019 until the current date and convert it into a table using the 'data.datareader()' function.

This will look like that:

PESTART: C:/USETS/DETMIT/DESKCOp/IIIAI.py								
	High	Low	Open	Close	Volume	Adj Close		
Date								
2019-01-02	80.639999	77.199997	77.220001	80.370003	3176600	80.370003		
2019-01-03	80.349998	77.620003	79.449997	78.709999	3747100	78.709999		
2019-01-04	85.250000	80.040001	80.820000	84.419998	7254400	84.419998		
2019-01-07	88.099998	83.440002	84.889999	87.589996	6611300	87.589996		
2019-01-08	89.739998	87.690002	88.459999	89.019997	6468300	89.019997		
2020-05-18	117.919998	114.730003	116.709999	117.120003	4336300	117.120003		
2020-05-19	119.370003	116.720001	116.769997	118.540001	2517900	118.540001		
2020-05-20	121.760002	119.059998	119.099998	119.550003	3530400	119.550003		
2020-05-21	119.879997	117.199997	119.879997	117.360001	2257100	117.360001		
2020-05-22	119.190002	116.614998	117.220001	119.070000	731565	119.070000		
[351 rows x	6 columns]							
Deturne								

Now we rearrange the table. We only want to have the data that we'll need later on. That means we remove every column except the one with the closing prices of each day, which is the 'Close' column and the 'Date' column containing the dates.

Then we transform the dates into Gregorian ordinals which are representing the number of days passed since 1/1/0001. So for example the first day of our data, the 2nd of January 2019 (on the 1st of January the stock market is closed) would be represented by the number 737061.

After that we transform the table into a list containing the Gregorian ordinals and the closing prices for each day. We also define our lists 'dates' which are the Georgian ordinals, 'close_val' which are the closing prices and 'close'. For the 'close' list we take the closing price of a given day and divide it by the closing price of the previous day in order to have an indicator of the current stock situation.

At last, we plot the closing prices and get the following plot:

We will now proceed to the actual 'prediction' part of the program.

```
N = 5
train x = list(map(lambda el:[el], close[:N]))
model = GaussianHMM(n components=2, covariance type='diag', n iter=1000)
predicted prices = []
predicted dates = []
for idx in range(100):
    model.fit(train x)
    state = model.predict(train x)[-1]
    means = model.means [state]
    current price = Stocks[N+idx][1]
    current date = datetime.date.fromordinal(dates[N+idx])
    predicted_date = current_date + datetime.timedelta(days=1)
    predicted dates.append(predicted date)
    train x.append([means[0]])
    predicted prices.append(current price * means[0])
    train x.pop(0)
print('Actual:',close val[N+1:-246], '\n','Prediction:', predicted prices )
plt.figure(figsize=(12, 8))
plt.title('Close (price)', fontsize = 14)
plt.plot(predicted_dates,close_val[N+1:-246])
plt.plot(predicted_dates,predicted_prices)
plt.legend(['Actual','Predicted'])
plt.grid(True)
plt.show()
```

We start by defining the set of our data which will be used to train our model. For reasons of simplification we only use the first 5 days of our data as the training set. Then we convert every element of our training set 'train_x' into a list, so that we get a list of lists. This step is necessary in order to be able to train our model on our data.

The model we use is the 'GaussianHMM' model which uses the algorithms explained earlier in this report (Forward-Backward, Baum-Welch and Viterbi). As already mentioned, we train the model on the set 'train_x'.

Now we define the 2 lists 'predicted_prices' and 'predicted_dates' that are evidently empty in the beginning. In order to fill these lists, we're using a for loop with range 100.

We start the loop by fitting our model and then looking at the hidden states. As we only want to predict the price for 1 day in the future, we just look at what the hidden state corresponds to for the last day of the training set. As an example, let's say that for the last day the hidden state corresponds to 1. Then we look at the mean parameter of the hidden state corresponding to the one we found (our expected return), so in that case we would be getting the mean parameter for the hidden state 1.

As we want to compare the actual prices with our predicted prices, we first set our current date to be the last day of our training set and look at the closing price for that day. Our predicted date will then be the following day.

Now we want to update our training set after every run of the loop. We add to the list the element '[means[0]]' and we remove the first element.

Then we just need to calculate our predicted price by multiplying the current price with our expected returns.

This process gets repeated 100 times in order to predict the prices for 100 days.

Finally we print and plot our actual and our predicted prices.

Actual: [91.01000214 90						
89.30999756 92.51999664						
91.73999786 90.47000122						
91.22000122 88.43000033						
97.59999847 97.2399978	6 102.33000183	102.25	105.25			
106.83999634 102.95999908	3 98.62999725	96.86000061	95.91999817			
95.86000061 98.5	97.83999634	95.77999878	97.41000366			
97.29000092 95.72000122	2 94.76999664	99.36000061	98.36000061			
99.04000092 98.58999634	4 100.12999725	98.83000183	98.98000336			
99.66000366 97.51000214	4 97.02999878	104.87999725	102.33999634			
101.73000336 102.31999969	9 100.66999817	102.19999695	101.62999725			
102.66999817 100.83999634	4 100.15000153	97.94000244	99.43000031			
97.94999695 98.25	99.62999725	100.58000183	101.83000183			
97.84999847 93.83000183	3 91.94999695	93.13999939	92.51999664			
94.62999725 94.15000153	3 92.98000336	94.47000122	94.73000336			
94.65000153 94.8600006	1 94.40000153	92.5	93.76000214			
92.73000336 93.8799972	5 93.31999969	93.87999725	90.41999817			
94.56999969 96.76999664						
95.65000153 93.83999634		92.26999664				
92.55000305 92.1299972			94.129997251			
			92.21195405469606, 89.775193			
			80423072053, 93.914581442640			
			730246, 93.13961823624541, 9			
			, 93.64092462422666, 92.6025			
			2570218731032, 85.3746427621			
			4547524349, 103.799353206210			
			5737819523, 100.124396704860			
			1150261, 99.99241316814954,			
99.32241524856767, 97.231203605172, 98.88590219515439, 98.76408125800317, 97.170 29546252141, 96.20589735060854, 100.86544575341208, 99.85029396417056, 100.54059						
			00.32741665802078, 100.47969			
			.50014104587777, 106.4690781			
2631052, 103.8905925956868, 103.27135736451572, 103.87029298500124, 102.19529158						
844878, 103.74847202042221, 103.1698360226679, 104.22559442998349, 102.367865472						
09422, 101.66741625821292, 99.42393254956316, 100.93650599705872, 99.43407848777						
43, 99.73862701161404, 101.13953318289772, 102.1039316789112, 103.37287095391751						
, 99.33256489464635, 95.25165959415533, 93.34316996782451, 94.55120263599176, 93						
.9218059674204, 96.06377608314261, 95.57650773875082, 94.38878243619017, 95.9013						
5588334324, 96.1652974211316, 96.08408344873567, 96.29726431752935, 95.830295593						
74445, 93.901506346812, 95.18059930456585, 94.13499458119973, 95.30241251816754,						
94.73393020138394, 95.30241251816763, 91.78998953448574, 96.00286947634082, 98.						
23619950226873, 100.49999057658778, 98.73362927444515, 94.09438759500229, 97.099						
23486870139, 95.2618055319701, 93.50559791262451, 93.66801811242384, 94.91665776						
677735, 93.95226701580637, 93.52589753322792, 94.4902960291896, 92.6934736786558						
]						
>>>						

Conclusion

The purpose of our project was to use the Hidden Markov Model as a tool in financial forecasting. We successfully predicted the closing prices of a stock using HMM. Looking at the last chart about the predicted and actual prices, we see that the model is not that bad. It was able to catch the massive rise of the stock.