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Abstract

The Mellin transform, just as any other analytic function of one complex variable,
can be conveniently visualized by color-encoding its phase and mapping it onto a
plane, creating a so-called phase plot, with all the important functional information
perceivable at a glance. Since this kind of integral transform plays a crucial role in the
theory of the Riemann Zeta function, it becomes possible to create a bridge between
the functional equation of the latter and the properties of Mellin integrals - a bridge
constructed upon illustrations. Towards the end, this functional equation morphs
into the key for unraveling the mystery behind the value of ζ(0), while concomitantly
performing an empirical residue calculation, again based on visual representations of
ζ.

I am very grateful for the continuous support I received from Dr. Thierry Meyrath
during my journey through the realm of the complex.

The ζ function,
plotted in the square |Re(z)|< 15
and |Im(z)|< 15.
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”Real mathematics must be justified as art, if it can be justified at all” - G. H. Hardy

1 Introduction

1.1 What’s this all about?

When associating a word (for example, one from the english language) to whatever specific
idea that word might stand for, it is common for us to have some kind of thought-image in
mind, a picture that helps us visualize and ”make sense” of the (mostly rather abstract)
concepts that are represented by the curvy little symbols we are all familiarized seeing on
a daily basis. Imagine reading a book and not having any kind of cinema inside your head,
wouldn’t that be a fairly dull endeavor?! Texts in mathematics should make no exception
to this, as long as a reasonable visualization exists (which is certainly more often the case
than one would suspect at first). Luckily, complex functions (including ζ which will be of
primary interest here) can be seen.

Now, in the case of an ordinary function of one real variable g : E ⊂ R→ R, it is not much
of an ambiguity to find an appropriate visualization since the graph Gg = {(x, g(x)) ∈
R × R : x ∈ E} is a 1-dimensional curve that lives in 2-dimensional space. Matters are a
little different for complex functions of a complex variable f : D ⊂ C→ C with z = x+ iy
and (x, y) ∈ R2 , the graph Gf = {(z, f(z)) ∈ C× C : z ∈ D} inhabiting four -dimensional
space. Nonetheless, the situation is not quite as forlorn as it seems at first. A popular
approach to study complex functions (and their global behavior) often involves so called
Riemann surfaces, 2-dimensional surfaces (or 2-dimensional real analytic manifolds if you
prefer) requiring only two real numbers (x and y) to identify each point within them and
therefore needing only 3-dimensional space to be visualized.

Especially in the case of multiple-valued functions (think for example of the complex
square root), its different branches can live in one and the same Riemann surface, avoiding
therefore the ambiguities of multiple-values by giving birth to a single-valued analytic func-
tion that is well-defined on this new domain. If you don’t know what any of this means,
don’t worry about it since I won’t be worrying about it either (meaning, none of this will
show up again here). 1

Another option that might be worth mentioning is the construction of the modular
surface of f(z), where the image point f(z) of z is represented by its distance from the
origin | f(z) |, discarding the information of the angle arg(f(z)) that is made with the real
axis completely.

1If you are interested in knowing more about the fun topic of Riemann surfaces, you can consult Wegert
[2012] for a nice introduction with pictures.
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This structure is principally made by placing the complex plane horizontally in space
and drawing, for every point z, another point at height | f(z) | vertically above the first.

As an example, consider the modular surface
of

f1(z) =
z

1 + z + z4

, f1(z) having 4 poles and a zero at z = 0.

However, there are some ambiguities associated to this kind of representation. It would
certainly be of great use to read as much vital functional information as possible off the
plots, without having to look at it from different angles or reposition the whole construc-
tion just to be able to peak behind the towers of the poles to check if something is hiding
behind. What we need is a way to display all the interesting elements (zeros, for example)
in such a manner that all of them (or at least most of them) become perceivable at a glance.
That’s where phase portraits come into play. The idea behind is quite simple: instead of
focusing on the modulus, one puts emphasis on the phase.

Since the phase of nonzero complex numbers
resides entirely on the unit circle T and each
point on a circle can be associated to a color
(think of the color wheel used by artists), one
obtains a 2-dimensional image of the function
in question by translating its values into col-
ors. At the left, you can see the phase portrait
of the identity function f(z) = z.

Lets remark that contrary to the argument arg f , which is defined up to an additive
multiple of 2π, the phase of f , outlined by f/ | f |, is single valued and therefore eligible for
the 1-dimensional color-coded representation previously discussed. Although this enables
us to immediately see where entire regions of the complex plane are going after application
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of f (giving us an insight about the general behavior of the function, all perceivable at
an instant) this is not the end of the story. Besides the phase Φf : D → T, z → Φ(f(z))
and the associated graph Pf = {(z,Φf (z)) : z ∈ D}, it is still possible to integrate some
information of the modulus into the phase plot by drawing contour lines of constant | f |.
Usually, one adds a new (grey) function g, such that g = dlog | f |e − log | f |, where
dlog | f |e denotes the ceiling function of | f |. For example, dπe = 4 and d7e = 7.
Why using log | f | instead of | f | alone you may ask? Well, first of all | f | could
have a really wide range, so ”contracting” the information gives certainly a more compact
representation. Secondarily, log | f | and arg f are conjugate harmonic functions. 2 To see
the latter, start by assuming that f is nonzero and analytic on some domain D. Therefore,
both f ′(z) and 1/f(z) exist and must also be analytic, implying that f ′(z)/f(z) is analytic,
too. Hence, the integral of f ′(z)/f(z), which just happens to be log | f(z) | +i arg(f(z)),
is analytic as well and that at least in some simply connected subset of D. Since
log | f(z) | +i arg(f(z)) = log(f(z)), the conclusion follows.
Now, one can go even further and add contour lines of constant phase, creating an enhanced
phase portrait. Let’s remark that in the case of the functions depicted below, the contour
lines of constant phase and modulus are perpendicular to each other, a property that can be
traced back to their analyticity (in short, just as ordinary real and differentiable functions
of one variable are approximately straight lines when one zooms very closely onto them,
complex differentiable functions preserve infinitesimal squares ).

Enhanced phase plot of f(z) = z

Complex sine (observe how the ”eye” in the
middle becomes very similar to f(z) = z when
zooming very closely onto it, giving already a
hint at its Taylor series...)

My personal favorite when it comes to complex function visualization is however only
obtained when adding, on top of the phase plot, a colored mesh function (in this case,
”colors” alternating between black and white) to the plot which takes over the role of the

2A function is, roughly speaking, said to be harmonic in an open set if it satisfies the Laplace (differential)
equation. If f = u + iv is analytic, then the two functions u and v are conjugate harmonic.
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grey contour lines we previously encountered. The properties of the contour lines are all
conserved and the coloring scheme is the same, however it does (sometimes) constitute a
clearer representation of functions for our purposes, so I will freely alternate between these
two kinds of representations. Notice moreover how the length of the modulus is translated
by the intensity of the colors, in the sense that lighter colors stand for a larger absolute
value and vice versa. Below are depicted the identity function and complex sine, for com-
parison.

1.2 The experimental approach

Some last words before embarking on our exploration of phase plots. It is certainly clear
that experiments cannot replace a proper mathematical argument, in the sense that they
do not prove anything. Of course, empirically collected data can be quite suggestive and
it would be unfair to declare that it did not lead to some impressive discoveries over the
centuries, but it still remains a tool (as far as mathematics is concerned at least) and not
an instance that we can rely on unconditionally , as it is often done in the natural sciences.
This will be our way of ”poking it” (the function) ”with a stick” (the phase plots) in our
laboratory (the computer).

2 Getting acquainted with phase plots

2.1 Zeros, poles and other singularities

Consider the identity function f(z) = z again and pay special attention to the order of
the colors when going around counterclockwise on a simple closed curve (say, a circle) that
encloses the origin. Now, examine the inverse g(z) = 1/z (depicted below). Clearly, the
order of the colors has changed! This is because f(z) has a zero at z = 0 whereby g(z) has
a pole at the origin.
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Let’s reformulate this as our first experimen-
tal observation (EO):

EO1: If a function has a zero at some
point z0, the order of colors, when going
counterclockwise on a simple closed curve
that encloses z0 is, red, yellow, green, blue.
If z0 is a pole, this order is inverted.

(Note also how the colors become grad-
ually stronger when moving away from the
origin, which is quite natural since g becomes
very small for large z.)

To understand why this is the case, let z0 be an isolated singularity (z0 is therefore fixed
in C) of a function f(z) and (an) a sequence of complex numbers. Furthermore, assume
that f(z) is analytic on the punctured disk 0 <| z − z0 |< r with r ∈ R such to have a
Laurent series expansion around z0:

f(z) =

∞∑
−∞

ak(z − z0)k

First of all, z is a zero of f if and only if f(z) = 0. By definition, a pole of f is a zero of 1/f .
Therefore, for a meromorphic function (meromorphic at least in the neighborhood of z0),
there must be an integer m such that (z − z0)mf(z) is holomorphic, but (z − z0)m−1f(z)
is not. We call z0 a pole of order m, provided that m > 0.

As an example, take f(z) = 1/(z − 3 − πi)3.
Since multiplying f(z) by (z− 3−πi)3 would
result in a holomorphic function (whereby
multiplication by (z − 3 − πi)2 would not),
z = 3+πi is a pole of order 3. This can easily
be read off the phase plot of f(z) alone, only
by considering the order of the colors (when
going along a simple closed curve contain-
ing z = 3 + πi of course) one concludes that
z = 3+πi must be a pole and by counting the
number of times one particular isochromatic
line appears (say for instance blue) when go-
ing around that curve that it must, in fact,
be of order 3.
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To see that matters are a little different for
essential singularities, let’s examine the func-
tion f(z) = sin(1/z4) and it’s Laurent series:

sin(1/z4) = 1/z4−1/3!z12+1/5!z20−1/7!z28+...

Clearly, the series expansion of f(z) contains
an infinite number of negative powers of z.
When taking a look at the phase plot, one
immediately sees that the functions exhibits
a rather wild behavior in the neighborhood of
such points, a behavior that does not

bear much resemblance to the one of the other isolated singularities encountered before.
In fact, what one witnesses is the following:

EO2: Any neighborhood of an essential singularity of an analytic function intersects in-
finitely many isochromatic lines of one and the same color infinitely often.

This arises from the following classic result:

Casorati-Weierstrass theorem: Let f be holomorphic in C \ {z0} and z0 an essen-
tial singularity. If V is any neighborhood of z0, then f(V \ {z0}) is dense in C.

Or, the considerably stronger statement:

Great Picard’s theorem: Any analytic function with an essential singularity at z0 takes
on all possible complex values, with at most a single exception, infinitely often in any
punctured neighborhood of z0.

This is all perfectly fine, however there is
still another issue to settle. Contrary as to
what one would expect, it is not the case
that such singularities are always perceivable
at a glance. Even innocent looking func-
tions like f2(z) = ez (depicted on the left) or
f3(z) = sin (z) posses essential singularities,
despite their phase plots being of seemingly
much different nature than the one from our
previous examples. How can this be?
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To unravel the mystery, let’s jump a dimen-
sion higher and take a look at the familiar
exponential function, plotted on the Riemann
sphere. The key idea behind is that the ex-
tended complex plane C ∪ {∞} is projected
onto a sphere, visualizing not only any or-
dinary point of the complex plane but also
the point at infinity. This, it turns out, is
precisely where this essential singularity kept
hiding itself.

(Note how the unit circle from the plane (represented in black) is mapped onto the equator
of the sphere. ) Now, to verify that this all is indeed just like it seems to be, it suffices to
confirm that limz→∞ e

z does not exist.

If the limit would exist, then the function
would have to converge to one and the same
limit point along any path. However, by fix-
ing x (from z = x + iy) and letting y go off
to infinity, it is clear , with Euler’s fabulous
formula, that

ez = ex(cos(y) + i sin(y))

can’t converge to anything.

Interestingly, the exponential function does not form an exception with its essential singu-
larity at infinity because, it turns out, that this is the case for every entire function that is
not rational.

Alright then, but what happens with the zeros of f(z) = sin(1/z4)? A classic statement
tells us that if a nonzero function is analytic in a domain D and K is a compact subset
of D, then the number of zeros that function has in K must be finite. However, this does
not mean that the function can’t possess infinitely many zeros in D itself. In this case,
the zeros must accumulate at the ”boundary” of D, or, as it is the case for our example
f(z) = sin(1/z4) (the function being analytic on C \ {0} and having infinitely many zeros)
all zeros accumulate at a single point, namely the origin.

Lets remark that removable singularities can not be seen at all in phase plots.
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2.2 Uniqueness principle for phase plots

To be certain that the results we will be deriving throughout phase plots in subsequent
sections do really apply to the function of interest and not to other entities, we are in
need of an uniqueness principle that guarantees us that if two analytic functions share
the same phase plots, they are substantially identical. This is easily seen to be true by
considering two analytic (at least in some open subset) functions f and g verifying this
condition. Naturally, their phases must be of equal nature, meaning that g/f is real and
positive (provided f has no zeros in the subset in question). Or, in other words:

Theorem: Uniqueness principle for phase plots

If f and g are analytic in a domain D and have identical phase plots on
some open subset U of D, U ⊂ D, then

g(z) = cf(z)

for all z ∈ D and c a positive, real constant.

3 Deriving the functional equation for Riemann’s Zeta func-
tion

3.1 The Zeta function as a Mellin transform

What sparked Riemann’s initial interest in studying the (complex valued) Zeta function
that now bears his name, is it’s surprising connection to the prime numbers. A result due
to Euler states that:

ζ(z) =

∞∑
n=1

1

nz
=

∏
p prime

1

1− p−z

However, since | nz |= nRe(z), this expression only converges (absolutely) for Re(z)> 1. In
order to obtain an expression (a functional equation) for ζ(z) that lives on a larger domain
than the half-plane it currently resides, one can make use of analytic continuation. Zeta
being analytic on its current domain of definition, the uniqueness principle guarantees that
it has at most one such extension. Furthermore, since analytic functions are completely
determined by their values on an arbitrarily small open set, finding a function that coincides
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with Zeta for Re(z)> 1 but is defined on a larger domain would fulfill the task (whereby
Weierstrass’s disk chain method would certainly not be so straightforward). To this end,
start 3 with the very definition of the gamma function (for t ∈ R+ and the principal branch
of tz = exp[z log(t)]):

Γ(z) =

∫ + ∞

0
tz−1e−tdt, Re(z) > 0

By examining the more general family of integrals given by

In =

∫ + ∞

0
tz−1e−ntdt

for n a natural number, and changing variables to u = nt (thus obtaining dt = du/n), we
are left with:

In =

∫ + ∞

0

u

n

z−1
e−u

du

n
=
n1−z

n

∫ + ∞

0
uz−1e−udu =

Γ(z)

nz

Since u is just a dummy-variable of integration, we might as well change it back to t.
Alright. Now, to conjure the Zeta function it suffices to sum over the positive integers

∞∑
n=1

1

nz
=
∞∑
n=1

In
Γ(z)

, Re(z) > 1

and by interchanging 4 sums and integrals, one arrives at the following:

ζ(z) =
1

Γ(z)

∫ + ∞

0
tz−1

∞∑
n=1

e−ntdt =
1

Γ(z)

∫ + ∞

0
tz−1

1

et − 1
dt, Re(z) > 1

The last step justifies itself because
∑∞

n=1 e
−nt = 1/(et − 1) is a geometric series (remem-

ber, t ∈ R+ ). This new entity with which we are confronted now is the so called Mellin
transform of 1/(et − 1):

Definition (Mellin transform): Given a function f(t) defined on the positive real axis
0 < t <∞, the Mellin transformM of f(t) maps the function f(t) into the complex-valued
function F (z) defined by the relation

M[f ; z] ≡ F (z) =

∫ + ∞

0
tz−1f(t)dt

In our case, F (z) = ζ(z)Γ(z):

ζ(z)Γ(z) =M
[

1

et − 1
; z

]
3Parts of this derivation can be found in [9]
4That this is a valid step can be seen by applying the dominated convergence theorem
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Now, one has certainly many possibilities about how to proceed. Instead of trying to find
a convenient combination of functions that extend ζ(z) directly, we will keep focusing on
F (z). By rewriting it a little as (still for Re(z)> 1)

ζ(z)Γ(z) =

∫ 1

0

tz−1

et − 1
dt+

∫ ∞
1

tz−1

et − 1
dt+

1

z − 1
− 1

z − 1
+

1

2z
− 1

2z
(1)

and realizing that −1/(z − 1) and 1/z are just

− 1

z − 1
= −

∫ 1

0
tz−2dt, Re(z) > 1

and
1

z
=

∫ 1

0
tz−1dt, Re(z) > 0

we can immediately absorb these two terms into the left most integral of (1) without having
to worry about convergence, provided Re(z)> 1:

ζ(z)Γ(z) =

∫ 1

0
(

1

et − 1
− 1

t
+

1

2
)tz−1dt+

∫ ∞
1

tz−1

et − 1
dt+

1

z − 1
− 1

2z
(2)

Alright. Now, to get around the ambiguity of convergence, it will prove itself crucial to
take a closer look at the function f(z) = 1/(et − 1) on its own before continuing with our
investigation.

3.2 A useful series from hyperbolic geometry

By comparing the phase plots of the two functions f(z) = 1/(ez − 1) (left) and g(z) =
coth(z) (right), where g(z) is the hyperbolic cotangent function, it seems promising to
search for some kind of relationship:
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Remembering that coth(t) is defined as coth(t) = (e2t+ 1)/(e2t−1) we obtain 1/(et−1) =
1
2(coth( t2)− 1). Now, it is known that coth(t) can be expanded in the following series:

coth(t) =
1

t
+
∞∑
n=1

2t

π2n2 + t2

And a little algebra gives us:

1/(et − 1) =
1

2
(coth(

t

2
)− 1) =

1

2
(
2

t
+
∞∑
n=1

t

π2n2 + t2

4

− 1) =
1

t
− 1

2
+
∞∑
n=1

2t

4π2n2 + t2

Inserting this into the leftmost integral of (2) yields:

ζ(z)Γ(z) =

∫ 1

0

( ∞∑
n=1

2t

4π2n2 + t2

)
tz−1dt+

∫ ∞
1

tz−1

et − 1
dt+

1

z − 1
− 1

2z
(3)

At a first glance, it might seem as if we have complicated matters even further. However, it
turns out, we are now in a much more favorable situation. First of all, 1/(z − 1) and 1/2z
are meromorphic functions on C (they are analytic everywhere except at z = 1 and z = 0,
correspondingly). Furthermore, the right most integral (where t ranges from 1 to ∞) is
entire and as far as the other one is concerned, we can interchange sums and integrals to
obtain ∫ 1

0

( ∞∑
n=1

2t

4π2n2 + t2

)
tz−1dt = 2

∞∑
n=1

∫ 1

0

tz

4π2n2 + t2
dt

which convergences 5 for Re(z) > −1. Hence, (3) also lives in the part of the complex plane
for which Re(z) > −1. This is amazing because it allows us to rewrite 1/(z − 1) and 1/2z
as

1

z − 1
= −

∫ +∞

1
tz−2dt, Re(z) < 1

and

− 1

2z
=

1

2

∫ +∞

1
tz−1dt, Re(z) < 0

Therefore, as long as −1 <Re(z) < 0, all these terms can reside in one and the same
equation:

ζ(z)Γ(z) =

∫ 1

0

( ∞∑
n=1

2t

4π2n2 + t2

)
tz−1dt+

∫ ∞
1

(
1

et − 1
− 1

t
+

1

2

)
tz−1dt

5It is easily seen that for Re(z) ≥ 0 the integrals must converge and for Re(z) = −1 diverge, forcing the
ones for Re(z) < −1 to diverge as well (by comparison). For −1 <Re(z) < 0, rewrite the exponent as t−1/n

for n ∈]1; +∞) and notice that
∫ 1

0
t−1/ndt is an upper bound

14



Inserting the series expression from before into the right most integral, taking the two
terms together and interchanging sums and integrals, we arrive at:

ζ(z)Γ(z) =
∞∑
n=1

∫ + ∞

0

(
2t

4π2n2 + t2

)
tz−1dt = 2

∞∑
n=1

∫ + ∞

0

tz

4π2n2 + t2
dt

Or, by using Mellin transform notation:

ζ(z)Γ(z) = 2
∞∑
n=1

M[gn(t); z]

where gn(t) = t/((2nπ)2 + t2).

3.3 Visually exploring Mellin transforms

Now, before continuing, it will prove useful to first investigate the Mellin transform of
h0(t) = 1/(1 + t). Changing variables to t + 1 = 1/(1 − u), we obtain t = u/(1 − u) and
dt = 1/(1− u)2du which yields

M[1/(1 + t); z] =

∫ 1

0
(

u

1− u
)z−1(1− u)

1

(1− u)2
du

or equivalently

M[1/(1 + t); z] =

∫ 1

0
uz−1(1− u)−zdu

But wait a second, this is just the Beta function! Having recognized this, we can immedi-
ately deduce that

M[1/(1 + t); z] =
Γ(z)Γ(1− z)

Γ(1)
= Γ(z)Γ(1− z) =

π

sin(πz)

The last equality follows from Euler’s fabulous reflection formula. So, what is it precisely
that distinguishes our initial function gn(t) = t/((2nπ)2 + t2) from h0(t)? Well, first of all,
the variable t in h0(t) has been squared, than h1(t) = 1/(1 + t2) has been multiplied by t

and, lastly, t in h2(t) = t/(1 + t2) has been scaled by 1/(2nπ) (and h3,n(t) = t/(2nπ)
1+t2/(2nπ)2

multiplied by 1/(2nπ) such that gn(t) = 1
2nπh3,n(t)). Now, instead of integrating any of

the hk(t)’s (k = 1, 2, 3) directly, we will determineM[gn(t); z] by means of an experimental
approach based on phase plots. But in order to deduce any kind of useful information
from the plots without explicitly knowing the Mellin transform of any of the hk(t)’s, the
following few lines of Mathematica code will be of great use:

ComplexPlot[ MellinTransform[1/(1+t), t, z],
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{z, -3 -3 I, 3+3I}, Sequence[
PlotLegends → Automatic, ColorFunction → ”CyclicLogAbsArg”,
Method → {”RasterSize” → 800}, ImageSize → 200]]

Now, while plotting M[h0(t); z] (left) and M[h1(t); z] (right) side by side, one can al-
ready deduce several things just by inspection:

Clearly,M[h0(t); z] has simple poles all along the integers, whereby the poles ofM[h1(t); z]
are scattered more sparsely, residing only at the even integers (and zero). This already sug-
gests that the argument ofM[h1(t); z] must be divided by 2, as compared toM[h0(t); z] =

π
sin(πz) . In other words:

M[h1(t); z] = k1
π

sin(π2 z)

where k1 is a constant that needs to be determined. However, we can already put some
restrictions on k1:

k1 must be real and positive since the placements and orders of the colors around the
poles in the phase plots of M[h0(t); z] and M[h1(t); z] are identical.

This is because multiplication by some k1 that fails to fulfill these criteria would result
in modifying the phase ofM[h1(t); z](and therefore the colors in its phase plot), which we
do not want. To launch into the search, start by defining the following quantity:

q(z, k) =M[h1(t); z]− k1
π

sin(π2 z)
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Clearly, if the right k1 is found than q(z, k) = 0. However, the interval (0,∞) is never-
theless very large and we cant possibly test every number in it, especially since nothing
guarantees us that k1 is not irrational, leaving us with an uncountable infinity of potential
candidates. What we need is therefore a systematic way of extracting k1 out of q(z, k). To
this end, start by picking any number in (0,∞), say 5, and plotting q(z, k = 5):

In contrast toM[h1(t); z], the colors here are
undoubtedly arranged differently. It seems
just as the whole plot ofM[h1(t); z] has been
rotated by an angle of π in the clockwise
sense. As far as q(z, k = 5) is concerned,
we can immediately deduce that the latter is
now a negative multiple of M[h1(t); z] since
this seemingly new coloration reveals that to
the phase of every z has been added some odd
multiple of π. In other words, our choice of
k1 is an overestimate. This allows us already
to discard every number in [5,∞).

Next, in the interval that is left, that is in (0; 5), take the midpoint, which is 5/2 here,
and plot q(z, t = 5/2). Since q(z, t = 5/2) looks exactly the same as q(z, k = 5), I’ll omit
it. However, this means that k = 5/2 still overshoots k1 and the interval we need to comb
shrinks to (0; 5/2). After applying this technique two more times, one ends up with the
interval (0; 5/8) and a q(z, k = 5/16) that wants to be tested:

Even though q is still nonzero for k = 5/16,
this situation is a little different. Here, q is a
positive multiple ofM[h1(t); z], meaning that
k = 5/16 underestimates k1. Hence, we’ll
discard (0; 5/16] and focus on (5/16; 5/8).
After two more iterations, we find that k1
must hide somewhere in (15/32; 35/64). Since
15/32 = 0, 46875 and 35/64 = 0, 546875, a
reasonable guess for k1 would be 1/2. Alright
then, let’s plot q(z, t = 1/2) (not depicted).
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And see there, we obtain a completely black screen, meaning that q is indeed 0 for that
particular value of k1 (remember that z = 0 is the only complex number without a defined
angle). Hence:

M[h1(t); z] =
1

2

π

sin(π2 z)

More generally, the algorithm we have used so far can be reformulated as follows:

1. Let M[H(t); z] = k G(z) and k ∈ (a; b) ⊆ R, a < b. Define q such that q(z, k) =
M[H(t); z]− kG(z) and pick some number n in (a; b).

2. Draw the phase plot of q(z, n) and compare it with the phase plot of M[H(t); z].

3. Three cases can present themselves:

(a) The chosen n is an overestimate. Discard the interval [n; b) and continue with
(a;n). Define a new n2 such that n2 = (a+ n)/2 is the midpoint of (a;n).

(b) The chosen n is an underestimate. In that case, carry on with (n; b) and define
a new n2 such that n2 = (n+ b)/2.

(c) The chosen n is equal to the desired k and q(z;n) = 0. The algorithm ends
here.

4. In case of (a) and (b), repeat steps 2. and 3. Either the algorithm ends at c) or
shrinks the interval in question to arbitrary size, giving an approximate value for k
(in case of irrational k, for example).

Let’s remark that if b = +∞ in case 2.b), a new n must be chosen such that n overestimates
k (similar applies to 2.a) if a = −∞). Alright. Now, in order to make progress in our initial
task, lets represent M[h1(t); z] (left) and M[h2(t); z] (right):
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What one sees is the following:

The frequencies of the poles of M[h1(t); z] and M[h2(t); z] are identical. However, the
whole plot of M[h2(t); z] has been shifted by 1 to the left, as compared to M[h1(t); z].

Or, this can be translated in mathematics by replacing z in M[h1(t); z] by z + 1, lead-
ing to:

M[h2(t); z] = k2
1

2

π

cos(π2 z)

Again, k2 must be real and positive. One can verify that by applying the k-algorithm
above, k2 = 1. Thus:

M[h2(t); z] =
1

2

π

cos(π2 z)

As a last step, we will search for M[h3,n(t); z]. However, by considering that h3,n is given

by h3,n(t) = t/(2nπ)
1+t2/(2nπ)2

(depending therefore on n) and taking a glance at its phase plot

(at the right, plotted for n = 1), one can already see that it considerably differs from
M[h2(t); z]:

In order to get an impression of the behavior of M[h3,n(t); z], below are depicted sev-
eralM[h3,n(t); z]’s for increasing (from left to right) n (n = 500, n = 5000 and n = 100000):

19



Even though the plots appear to be very similar at first, it can nevertheless be said that
whenever n increases, the isochromatic color lines are progressively becoming more hor-
izontal (although they do so very slowly). However, as compared to M[h2(t); z], the
pole-properties (like number and position) are conserved. Now, whenever parallel lines
of isochromatic colors are involved, it might be worth searching for a relation with an
exponential function En(z), such that

M[h3,n(t); z] = En(z)k3
1

2

π

cos(π2 z)

and where En(z) has not necessarily base e. Furthermore, since the number of such lines
increases in the square |Re(z)|< 3 and |Im(z)|< 3 whenever n increases (this is true for an
arbitrary square, not just the one we considered above), the function En(z) will also be
dependent on n. But where does n reside inside of E(z)? After all, it could be that the
exponential function we are searching is similar to (a/n)z, (a)nz or even (an2)z. To see
that a reasonable guess would be

En(z) = ez log(an)

where a is real and positive, one needs to take the thickness of the isochromatic color lines
into account. In our case, the number of such lines is clearly increasing with growing n,
meaning that they become gradually thinner. This already allows us to exclude entities like
(a/n)z, or in general anything that assigns a negative exponent to n, because this would
allow the strips to grow thicker with increasing n, opposing our situation. Furthermore, we
can rule out (a)−nz and alike since those function do not even preserve the characteristic
horizontal strips. Also, since the ”thinning” of the strips is pretty slow (remember, even for
n = 100000, there were only a handful more that appeared in the square), this procedure
would be considerably accelerated in the case of (anc)z with c > 0 and even more with
(a)nz, so those cases are rather unlikely going to get us any further. What we’ll do now
is test our conjecture. In case of preposterous results, one can always go back and modify
the initial assumptions with the aid of newly acquired information.
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If we focus our attention now on

Q(z, a) =M[h3,n(t); z] cos(
π

2
z)− ez log(an)

we’ll just need to find an a such that the plot
of Q(z; a) is also an exponential function, eas-
ily recognized by its characteristic horizontal
isochromatic lines. For the moment, we can
ignore the constants k3 and 2/π. At the left,
you can see the plot of the classic function ez.

Below are depicted several Q(z; a)’s for different values of a (a = 4, a = 7 and a = 10,
while keeping n at n = 1):

A reasoning similar to the k-algorithm can be applied to firstly approximate a and then
find that it must indeed equal 2π. With that in mind, we arrive at

E(z) = ez log(2πn) = (2πn)z

and therefore

M[h3(t); z] = k3(2πn)z
1

2

π

cos(π2 z)

By application of the k-algorithm, k3 = 1. Or, since gn(t) = t/((2nπ)2+ t2) = 1/(2nπ)h3,n,
we can finally come back to ζ:

ζ(z)Γ(z) = 2

∞∑
n=1

∫ + ∞

0

tz

4π2n2 + t2
dt = 2

∞∑
n=1

M[1/(2nπ)h3,n(t); z]
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= 2

∞∑
n=1

1/(2nπ)M[h3,n(t); z] = 2

∞∑
n=1

1/(2nπ)(2πn)z
1

2

π

cos(π2 z)

and with
∑∞

n=1 1/n1−z = ζ(1− z) (still for −1 < Re(z) < 0) we find

ζ(z)Γ(z) =
2z−1πzζ(1− z)

cos(π2 z)
,

which can be transformed into the well known expression by remembering that sin(πz) =
2 cos(πz2 ) sin(πz2 )and Γ(z)Γ(1− z) = π

sin(πz) :

ζ(z) =
2z−1πzζ(1− z)
Γ(z) cos(π2 z)

=
Γ(1− z) sin(πz)2z−1πzζ(1− z)

π cos(π2 z)

And by just a little more effort:

ζ(z) =
2Γ(1− z) sin(πz)2z−1πzζ(1− z) sin(πz2 )

π sin(πz)

we finally find:

ζ(z) = Γ(1− z)2zπz−1 sin(
πz

2
)ζ(1− z)

4 The mystery of ζ(0)

4.1 A tricky integral

Since we are now in the possession of a new
and quite powerful representation for ζ ( cer-
tainly more handy than ζ(z) =

∑n=∞
n=0 1/nz

is) , let’s investigate this just a little more. By
modifying the phase plot command a little in
order to introduce a colored (here, alternating
black and white) mesh function, one obtains
the following representation in the square |
Im(z) |< 5 and |Re(z) |< 5, depicted on the
right. What one sees on the horizontal line
to the left of the origin are the first two of
the so-called trivial zeros, all of order one
and equally spaced. Surprisingly, this image
seems to suggest that ζ(0) 6= 0.

The striking nature of this observation is even more reinforced when inspecting the func-
tional equation

ζ(z) = 2zπz−1 sin (
πz

2
)Γ(1− z)ζ(1− z)
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more closely and the fact that sin(0) = 0. But before exploring this any further, lets stress
upon the following observation:

EO3: ζ(z) has a simple pole at z = 1.

This is also easily seen to be true by examining the functional equation. However, there is
even more that can be read off: since the region around z = 0 is light-blue (corresponding
to complex numbers with a phase of π), it doesn’t seem too unreasonable to assume that:

EO4: Whatever ζ(0) may be, it should satisfy Im(ζ(0)) = 0 and Re(ζ(0)) < 0.

Now, by multiplying the functional equation by (1 − z) and using the property of the
gamma function that zΓ(z) = Γ(z + 1), one obtains:

ζ(z)(1− z) = 2zπz−1 sin (
πz

2
)Γ(1− z)(1− z)ζ(1− z)

ζ(z)(1− z) = 2zπz−1 sin (
πz

2
)Γ(2− z)ζ(1− z)

And letting z tend to 1 yields:

lim
z→1

ζ(z)(1− z) = lim
z→1

2zπz−1 sin (
πz

2
)Γ(2− z)ζ(1− z)

lim
z→1

ζ(z)(1− z) = 2Γ(1)ζ(0)

Or, since Γ(1) = 1:
lim
z→1

ζ(z)(1− z) = 2ζ(0)

But wait a second, limz→1 ζ(z)(z − 1) just happens to be the residue of ζ(z) at z = 1!
One has now several ways to proceed. One possibility would be to use brute force calcula-
tion in order to evaluate the following integral

Res(ζ, 1) =
1

2πi

∮
C
ζ(z)dz

where C traces out a circle around z = 1 in the positive (counterclockwise) direction.
Another option would however be to make use of phase plots.

4.2 An empirical approach for finding residues

With that in mind, the first thing to note is that the contour we are integrating around
can have a radius that is as small as we desire. This on its own means that if we were to
find some function, let’s call it g(z), that would approximate zeta in the neighborhood of
z = 1, one could hope to simplify the calculations and perform the integration around this
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new function. Sounds promising, right? So, let’s zoom onto the pole for it to reveal its
secrets:

Well, doesn’t it seem tempting to immediately state:

EO5: In the neighborhood of z = 1, ζ(z) behaves just like gk(z) := k/(z − 1), where
k is a nonzero constant that needs to be determined.

Looking a little back, EO4 allows us to restrict 6 the set of possible values for k:

EO6: The constant k must be real and strictly greater than zero.

Alright, but how does one find the constant k? Since all of the gk(z)’s have the same
phase for all k (meaning, they all display the same colors in their corresponding phase
plots), it’s only the modulus that is being modified and we are therefore seeking for a con-
venient method allowing us to compare the modulus of ζ(z) in the neighborhood of z = 1
with the one of the gk(z)’s.

Even though working with the modular sur-
face of ζ(z) (depicted on the right) is not the
most convenient way to proceed here (because
comparing it to the one of other functions is
rather problematic), it turns out that at least
some useful information can be extracted.
First of all, remember that we are demand-
ing that one of the gk(z)’s approximates ζ(z)
to arbitrarily high precision around z = 1.

6This follows from the uniqueness principle for phase plots
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Now, get around the ambiguities of the 2-dimensional modular surface, it suffices to jump
a dimension down and only consider the curve obtained when slicing the surface with a
vertical plane containing the point z = 1. Due to the symmetric nature of the pole-tower,
one might as well choose the set of points such that Im(z)= 0.

Therefore, the complexity (pun intended) of
the problem has been decreased and compar-
ing the different gk(x)’s to ζ(x) (all that for
x > 1) will meet the requirement. At the
side are illustrated ζ(x) in red, and a few of
the gk(x)’s as dashed curves (with k = 0.1
in black, k = π in purple and k = 42 in or-
ange). A useful fact to note is that two dif-
ferent gk(x) will never coincide, meaning that
ki 6= kj implies gki(x) 6= gkj (x) for all x > 1.
Obviously, k = π is an overestimate, whereby
k = 0.1 is insufficient. Considering that, a
reasonable guess would be k = 1.

And lo and behold, g1(x) conveys just right 7 (dashed green curve).

Having concluded that the desired gk(z) is
g1(z) = g(z) = 1/(z − 1), it follows that
Res(g(z), 1) = 1 and that

Res(ζ(z), 1) = 1

as well. Coming back to the long awaited
ζ(0):

− lim
z→1

ζ(z)(z − 1) = 2ζ(0)

−1 = 2ζ(0)

we find that:

ζ(0) = −1

2

7admittedly, using this method we can’t conclude that the residue is exactly 1, only that it lies somewhere
in the ε-neighborhood of k = 1
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5 The code

Every image you encountered throughout this text has been generated with the Mathemat-
ica software. It is indisputable that one of the best parts of experimentation with complex
functions is that those kind of investigations can easily be reproduced and only require
a few lines of code, as we will show. For instance, to generate the modular surface of a
complex valued function it suffices to feed Mathematica with the following:

h[x , y ] := With[{z = x+ Iy}, Abs[z/(1 + z + z4)]]
Plot3D[h[x, y], {x,−1.5, 1.5}, {y,−1.5, 1.5}]

This can be trivially modified to plot custom functions of (almost) any kind, try it on
your own! Now, with emphasis on the main theme, phase portraits are generated with the
subsequent command:

f [z ] := Gamma[z]
ComplexPlot[f [z], z,−10− 10I, 10 + 10I,
ColorFunction → None , PlotLegends → Automatic]

In order to obtain the greyscaled contour lines of constant modulus and phase, one only
needs to tell Mathematica that

ColorFunction → ”CyclicLogAbsArg”

instead of ColorFunction → None, like before. In order to visualize essential singulari-
ties, it is necessary to modify the raster size a little:

ComplexPlot[ Exp[1/z4], {z,−3− 3I, 3 + 3I}, Sequence[
PlotLegends → Automatic, ColorFunction → ”CyclicLogAbsArg”,
Method →{”RasterSize” → 800}, ImageSize → 200]]

And to introduce the black and white mesh function one needs to do the following:

ComplexPlot[Zeta[z], {z,−5− 5I,
5 + 5I},Mesh→ {40,Range[−Pi, P i, P i/12]},PlotPoints− > 100,
MeshFunctions→ {Log[Abs[#2]]&, Arg[#2]&},
MeshShading→ {{Automatic,Black}, {White,Automatic}}]

The representation of the Riemann sphere requires a little more code:

f [z ] := Exp[z]
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textureSphere = Texture[Rasterize[ComplexP lot[
f [Cot[Im[w]]Exp[IRe[w]]], {w,−[π], [π] + [π]/2I},
Sequence[
ColorFunction→ ”CyclicLogAbsArg”, F rame→ False,
P lotRangePadding → 0, BoundaryStyle→ None]],
ImageResolution→ 400]];
sphere = SphericalP lot3D[
Cos[φ]], {φ], 0, π]/2}, {θ],−π], π]},
T extureCoordinateFunction→ (#5,#4&),
P lotStyle→ Directive[textureSphere], Sequence[
Mesh→ {{0.5}},MeshFunctions→ {#3&},
MeshStyle→ Directive[Thick,Black], P lotPoints− > 40,
Lighting → ”Neutral”, V iewPoint→ {−2,−2, 1.5},
BoundaryStyle→ None]]

Just as rendering the sphere and the complex plane does:

f [z ] := Exp[z]
textureP lane =
Texture[Rasterize[
ComplexP lot[f [z], {z,−(3/2)− (3I)/2, 3/2 + (3I)/2}, Sequence[
ColorFunction→ ”CyclicLogAbsArg”, Epilog → {Thick,
Circle[]}, F rame→ False, P lotRangePadding → 0,
BoundaryStyle→ None]], ImageResolution→ 400]];
plane = Graphics3D[{textureP lane, Polygon[
Sequence[{{(−3)/2, (−3)/2, 0}, {3/2, (−3)/2, 0}, {
3/2, 3/2, 0}, {(−3)/2, 3/2, 0}},
V ertexTextureCoordinates→ {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]]},
Sequence[V iewPoint→ {−2,−2, 1.5}, Axes→ True]];
Show[sphere, plane,BoxRatios→ Automatic,
P lotRange→ {{−3/2, 3/2}, {−3/2, 3/2}, {0, 1}}]

The remaining graphs were created with Desmos.
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