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Abstract

This article has been writen by a student at the University of Luxembourg and

supervised by Dr. Andrew Bruce. This documents shows some computation of the

Lorentz system and introduces the reader to the understanding of the behavior of

the Lorentz system and which di�erences it can show for small changes.

At this point, I would like to thank Dr. Andrew Bruce for the great supervising

and supporting, always when I had some problems with the programm. And I am

really thankful that this topic has been proposed becauce I could, during this project,

develop my interesting for the Lorentz system and the Chaos Theory.
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1 Introduction

The Lorenz system is a system of ordinary equations �rst studied by Lorenz Edward

Norton (1963) .
This system has chaotic solutions for certain parameter values and initial conditions.

The set of chaotic solutions is called the Lorenz attractor. The real-world implications

of the Lorenz attractor are known as the butter�y e�ect. The butter�y e�ect is the

sensitive dependence on initial conditions in which a small change can result in large

di�erences, which are well explained by the Lorenz system.

Two applications of the butter�y e�ect are the standard weather prediction and a

number of cases in quantum physics.

For weather prediction, climate scientists explain that chaos is important in the

development of weather prediction methods, because the weather prediction models

are sensitive to initial conditions.

Actually every behaviour observed in the nature, which shows large di�erences caused

by small changes on the initial conditions, can be visualized and explained by the

Lorenz attractor, what made the Lorenz system interesting to study and it could

help us for a better understanding of this phenomenon.

Let us give now the Lorentz system:
dx
dt=σ(y − x)
dx
dt=x(ρ− z)− y
dz
dt=xy − βz

Here x,y and z are function with the variable t, in particular we have:

x : R→ R,
y : R→ R,
z : R→ R.

And σ, ρ and β are parameters for the Lorenz system, who are in R.
Actually we will �xe σ and β for a better observation in the case when ρ changes.

In the following, we �x σ = 10 and β = 8
3 .
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2 First step

As above mentioned, we �x σ and β. We will now compute the Lorentz system for

di�erent values of ρ to see if we can conclude something special in observing the

behaviour of the system (the code for the following representation is given in the

Appendix by A1).

Here we have the computation of ρ for di�erent values, from left to right, 10, 15 and

18. We can observe that for this values of ρ we have that the system converges to

a certain value. In this cases we observe that it converges to the same value, but

we should not forget that by observing the representation, the system oscillates at

the beginning, more important is that for the di�erent values of ρ the system gets

stable after a di�erent range. From the representation we have that the �rst system

converges after t1, the second one after t2 and the third after t3, actually we have

that t1 < t2 < t3, which is well shown by the representations, because for ρ = 10 the

system oscillates a bit, for ρ = 15 the system oscillates a bit longer and for ρ = 18
the system oscillates longer before getting stable and starting to converge.

For the beginning, we can conclude that the Lorenz system converges for some small

values of ρ, as for ρ ≤ 18. We will now give the 3D computation for the values of ρ
used in the above representation (the code for the following images are given in the

Appendix by A2).

Here one can see how the system oscillates and later converges and get stable.
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After observing the Lorenz system for a small ρ, it is intuitive and interesting to

ask us what will happen if take a bigger ρ, will it show the same behaviour or not ?

Let us try for ρ equal to 28, 40 and 80.

By observing the representation, we can say that we have totally di�erent results as

for the values 10, 15 and 18. The x and y axes shows a chaotic oscillation, but the z
axes shows although the chaotic behaviour of x and y, that they are bounded in an

area of z, which means that x and y do not converge to a value, but oscillate around
an area. In particular, they oscillate around a sphere, which will be more clear by

computating the Lorenz system in 3D for the same values.

As we can see, it seems that x and y oscillate around two spheres with di�erent cen-

ters and radius, for the values 28, 40 and 80 of ρ. This is actually the representation

of the chaotic solutions of the Lorenz system, i.e. the Lorenz Attractor.

At this point it would by interesting to know how big ρ can become without that the

solutions of the Lorenz systems shows chaotic behaviour, for this the above repre-

sentation of the Lorenz Attractor helps, because by observing it we �nd two spheres

with two centers. We can conclude that there are maybe two, instead of only one

point, to which the solution of the Lorenz system converges. This points we call

equilibrium points.
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3 Second step

In this section, we will have a look at the solution of the Lorenz system and see if it

approaches to one of the following equilibrium points (±
√
β(ρ− 1),±

√
β(ρ− 1), ρ−

1).
Let us observe it for ρ = 22. We expect that at the beginning the solution will

oscillate and show after a ceratin range t ∈ R it will start to converge at one of the

two equilibrium points. Let us observe the representation of this Lorenz system. To

help us for a better visualization we will add two lines, which represent the equilibrium

points (the code for the following representation is given in the Appendix by A3).

As expected the representation shows us that at the beginning the solutions oscillate

and show chaotic behaviour, but after a certain time they start to get more stable

and �nally converge to the equilibrium point (
√
β(ρ− 1),

√
β(ρ− 1), ρ− 1).

Here we can see that the solution converges to a point, more precise to the equilibrium

point. By doing some more computation, we can assume that for ρ < 24 the solutions
of the system will converge and for ρ ≥ 24 the solutions shows chaotic behaviour.
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3.1 ρ = 24.5

In this subsection, we will observe the behaviour of the solution of the Lorentz system

for ρ = 24.5. From this point we will try to reduce ρ to obtain the last value for

which the solution of the Lorentz system do not have chaotic behaviour, in other

words the last value for which the solution of the Lorentz system converges.

We will visualize the solution for ρ = 24, 5 in two di�erent ways to avoid errors and

misunderstanding.

From this visualization of the solution set {x, y, z}, we can observe that the values

x,y and z oscillate around the equilibrium points. It is a classical example for the

Lorenz Attractor.

This 3D representation of the solution shows us that the values oscillate around two

spheres with di�erent centers and di�erent radius, hence this graphical representation

supports the above visualization and the fact that the solution of the Lorentz system

for ρ = 24.5 is a Lorentz Attractor. Furthermore, for this values the Lorentz system

shows bistability which we can be seen too from the representation, because the

solution oscillates at most around the two equilibrium points, which made the solution

stable around them.

8



Now we will try to bracket the values of ρ for which we did not have done a simulation
of the solution to observe the behaviour. Until now, we know that for ρ = 22 the

solution converges to one of the two equilibrium points and for ρ = 24.5 we have seen
a chaotic behaviour. Let δ be the value of ρ which we did not have observed until

now, i.e. 22 < δ < 24, 5. Our goal is to reduce δ until it is equal to zero.

After a lot of computation in our programm we can say that for ρ = 23, 7 the solution
of the Lorenz syszem converges to one of our equilibrium point, hence we have now

23, 7 < δ < 24, 5. The following representation shows how many computation we

needed to �nd out that for ρ = 23, 7 the solution converges after a certain range.

If we continue this process, we found out that for ρ 6 24, 06 we have that the solution
converges, that means the last value for which the solution show this behaviour is

24, 06. Note that it is remarkable that if we choose some ρ > 24, 74, then the

equilibrium points become unstable.
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4 Periodic perturbation

In the previous section, we have observed the Lorenz attractor, in the case where we

�x σ = 10 and β = 8
3 , and let varied ρ. We found out that for ρ 6 24, 06 the Lorenz

attractor converges to one of the two equilibrium points. And for ρ > 24, 06 we could
observe that the Lorenz attractor shows chaotic behavior.

Now we will have a closer look at the Lorenz system for ρ = ρ(t) = 24, 4 + A ×
sin(ω× t), we will choose ω = {0, 3; 0, 05} and vary the amplitude A for each of these

two values between 1 6 A 6 10.
In particular for ω = 0, 3 the range 4 6 A 6 5 is probably su�cient to analyze the

main features of the dynamics.

For �xed values of (ω,A), we show two time series, e.g. x(t) and z(t), as well as ρ(t)
over a relatively long time interval of, say, length 2000, we will plot the simulations
for 0 6 t 6 2000.
Before we start plotting and observing the behaviour of the Lorenz Attractor by sim-

ulation, we will study ρ(t) = 24, 4 + A × sin(ω × t) to have an idea what we could

expect.

Observing "A× sin(ω × t)":

Let us have a closer look at sin(x) ∀x ∈ R, we know that the sinus function is a

bounded function, we have

∀x ∈ R : −1 6 sin(x) 6 1

In our case, we have that ω = 0, 3 or ω = 0, 05 and t > 0, hence

−1 6 sin(ω × t) 6 1

Furthermore,

−A 6 A× sin(ω × t) 6 A

As we will observe ρ(t) = 24, 4 +A× sin(ω × t) we have actually that

ρ(t) ∈ [24, 4−A, 24, 4 +A].
This implies that for some t0 we have that ρ(t0) shows the same behavior as we have

seen in the previous sections for some speci�c A.
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We will now compute the Lorenz system for the couple (0, 3; 4) and observe the

behavior of the Lorenz Attractor (the code for the following representation is given

in the Appendix by A4).

In the above visualization, we can notice that x(t), y(t) and z(t) emerge around some

values around, this means that the solutions of this Lorenz equation oscillate. We

know that for ω = 0, 3 it su�ces to study the Lorenz equation for A ∈ [4, 5].
We will in the following see the case where A = 5, so we could compare the two cases

to observe better the behavior of the Lorenz Attractor for ω = 0, 3 and A ∈ [4, 5].
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Here you can see the visualization of the solution of the Lorenz equation for the

couple (0, 3; 5).

From this representation, we can clearly recognize the same behavior as in the last

representation, we have that x(t), y(t) and z(t) osciallte around some values. Let

us compare theses two representation with those of the section 3, by paying more

attention on the values where x(t), y(t) and z(t) oscillate. We can conclude that they

oscillate around the equilibrium points. As well by a closer look, we can observe that

for A = 4 the solution oscillates around (−
√
β(ρ(t)− 1),−

√
β(ρ(t)− 1), ρ(t) − 1),

what would too explain the behavior of z(t). For A = 5 we have that the solution

oscillates around (
√
β(ρ(t)− 1),

√
β(ρ(t)− 1), ρ(t)− 1).

From this observation, we �nd out that for this Lorenz equation the change of the

value A has an impact on the solution in such a way that the solution oscillates

around the other equilibrium point.
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As mentionned at the beginning of this section we will study the following Lorenz

equation: 
dx
dt=σ(y − x)
dx
dt=x(ρ(t)− z)− y
dz
dt=xy − βz

where ρ(t) = 24, 4 + A × sin(ω × t) with ω = {0, 05; 0, 3} and 1 6 A 6 10, as we
have already studied the case for ω = 0, 3. It is intuitive to have a closer look for

ω = 0, 05, but before starting the simulation, let us have a small idea what could

happen if we replace ω = 0, 3 by ω = 0, 05.
As we know that the sinus function is a periodic function and that ω a�ects the speed

how fast the function increases and decreases, then we can conclude that by the fact

that 0, 05 < 0, 3, we have that the function will have slower movement than for 0, 3.
We will now plot the Lorenz equations for (ω;A) = (0, 05; 4) to have a better view

on the change which is caused by ω. As we can see on the above representation, the

solution shows the same behavior as for (0, 3; 4) only that in this case we got a more

smooth representation, which is actually the con�rmation of our previous estimation.
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5 Exponential perturbation

We have studied the case where ρ is equal to a sinus function in the previous section.

We will pass now to the observation of an exponential function, this means we will

take ρ = a+ b exp ct with a, b, c ∈ R, where a, b, c are choosen arbitrary .

We still need to have in mind that the exponential function has the property to

increase really fast. By the above observations, we know that the solution converges

for ρ 6 24, 06 as we will study the behavior of ρ = a+ b exp ct, we can image that in

this case ρ will pass 24, 06 really fast. This would imply that the solution does not

converge.

Let us observe some computation (the code is given in Appendix A5).

We used in this case a = 0, b = 1 and c = 0, 3.
As we can observe here the Lorentz solution diverges, i.e. we have that x(t)→ +∞,

y(t) → −∞ and z(t) → −∞ for t → +∞. This behavior was actually expected

because of the exponential function. We will now compute the Lorentz system for

di�erent values of a, b and c and compare the results.
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Let us take a = 5, b = 3 and c = 0, 3.

We have the same behavior as in the previous computation, which means both Lorentz

solution diverges. But we can see that x(t) and y(t) diverge in the di�erent direction,

as in the �rst example. This di�erence needs more attention, this is why we will

compute the code for a smaller tend.
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Let's take tend = 500 :

From this representation, we can analyze what happens before the system start to

diverge. It seems that the system oscillate between some values which starts to grow

and after a certain t, the function diverges.

One can clearly see that in both cercles the function oscillates between some values

which grow and as this is the representation for ρ(t) = 5+3 exp (0, 3t), we know from

the illustration for tend = 8000 that the Lorentz system diverges.

At this point, we can say that the solution shows some oscillation at the beginning

and after a certain t ∈ R it diverges.

As a next step maybe it will be possible to �nd two functions which bound the values

of oscillation, because at this point we do not know for sure what determines if the

solutions diverge to +∞ or −∞. This will not be treated in this article, we hope

that interested readers will continue where we needed to stop.
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Let us see what happens if take a negativ c. We did the following computation for

the value (3, 1,−3).

By taking a closer look, we see that for this values the lorenz system oscillates in the

beginning but this behavior is really weak. If we had done the computation for a

higher a bigger t, the oscillation would vanish. In particular if t approaches ∞ then

it will be negligible. After this oscillation the system converges really fast to some

value. It will be interesting to analize if the system for a smaller c.
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Let us brie�y have a look at the system for a c smaller than the previous one. We

will take the value (3, 1,−0.05) for the following computation.

By comparing this �gure with the previous one, we see that the Lorenz system for

c = −0.05 oscillate at the beginning as for c = −3. The only di�erence is that in this

case the Lorenz system starts converging really slow which can be observed by the

area bounded by the circle.

We actually do not know why this happens, we can only say that maybe the expo-

nential function is the reason for the behavior, because we know that exp(x)→ 0 if

x→ −∞, i.e. it converges for the negative values, but it diverges for postive values,

as exp(x)→ +∞ if x→ +∞.
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6 Conclusion

At the end, we can say that the Lorenz system is a interesting topic, which we could

observe in a more simple illustrated way, but it is important to keep in mind that this

topic contains a complex theorie behind in Chaos Theory. We hope that we could

inspire some readers to start their interest for the Chaos Theory.
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7 Appendix

Here we will give the code for the numerically visualization and the code for the rep-

resentation of the solution of the Lorentz system. Every reader is welcome to try the

codes in Wolfram Mathematica and to compute the solution of the Lorentz system

with parameters and initial conditions, which seem interesting for themselves.

A1

Here above is the code for the numerical illustration for the solution and it will follow

the code, which gives us the representation of the solution for the same parameters

and initial conditions.
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A2
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Here is the code with the added lines, which was done in Wolfram Mathematica.

A3
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We will give you here the code where ρ is replaced by ρ(t)

A4

23



A5
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