
University of Luxembourg

Faculty of Science, Technology and Medicine

Bachelor in Mathematics

Summer semester 2020/21

Lët’z box-counting!
Bachelor Thesis

Bachelor thesis submitted for the partial fulfilment of the degree in mathematics.

Written by
Kim Da Cruz

Supervised by
Guendalina Palmirotta

Lara Daw

3rd June 2021

Abstract

In this thesis, our goal is to find the box-dimension of the borders of Lux-
embourg. In order to do this, we start by introducing the Coastline paradox,
that explains the reason why we work with fractal dimensions. Then, we will
introduce one particular fractal dimension, namely the Hausdorff dimension.
After that, we will define the box-counting dimension and prove some of its
important properties. Finally, we will look at the box counting method, which
will allow us to complete our goal.

1

Acknowledgements

First of all, I would like to thank my two supervisors, Guendalina Palmirotta
and Lara Daw for suggesting this interesting topic. Thank you for answering
all my questions that I had while working on my thesis and for helping me
explore this world of fractals that is new to me.
I would also like to thank my family and friends, especially my parents and
my brothers who supported me and helped me get a clean head when I needed
a break.

2

Contents
1 Introduction 4

2 Preliminaries 5

3 Introduction to fractal dimension 7
3.1 The Coastline Paradox . 7
3.2 Hausdorff measure and dimension . 8

3.2.1 Hausdorff measure . 9
3.2.2 Hausdorff dimension . 9

4 Box-counting dimension 14
4.1 Definitions and Properties . 14
4.2 Comparing the Hausdorff and the box-counting dimension 29

5 Box-counting method 31
5.1 Box-counting algorithm that uses the data of the image 34

5.1.1 Outputs . 38
5.1.2 Problems . 41

5.2 Box-counting algorithm that uses a plotting of the image 43
5.2.1 Outputs . 47
5.2.2 Problems . 50

5.3 Comparing the two algorithms . 51

6 Conclusion 52

References 53

3

1 Introduction
Almost everyone has already travelled in their life, if it is within their country, their
town, or around the whole world. Clearly, every country has its own borders and a
well known length, which goes from south to north, and width, from west to east,
as well as an approximation of the area. However, what is not so well known is
the length of the borders. The goal of this thesis will be to answer the following
questions: How can this length be determined and what is the length of the borders
of Luxembourg?
In order to answer these questions, we need to work with fractal dimension. One
may ask why we cannot measure it using usual methods, for example by taking a
ruler or anything similar and woking in the dimensions like meters or kilometres.
The Coastline paradox, that will be introduced in the third section, explains why
we cannot use the ordinary dimensions (like metres or miles, etc.) and why we need
to work with fractals.

In the first paragraph, we stated the goal of this thesis, which is to find the length
of the borders of Luxembourg. However, the Coastline paradox explains that this
is impossible. Therefore, we set our goal to finding the fractal dimension of the
borders of Luxembourg, more specifically, the box-counting dimension. In fact, one
can notice that the name of this thesis was chosen from this goal. The part "Lët’z"
comes from "Lëtzebuerg", but also from "Let’s", so that the title can mean "Let’s
do box-counting" and "Luxembourg box-counting".

In Section 3, we will start by introducing the Coastline paradox and then move to
the Hausdorff dimension. We will also mention the definition and some of its useful
properties.

After being familiarised with fractal dimension, we come to Section 4, where we will
define the box-counting dimension. In order to get comfortable with this dimension,
we will explore some properties and prove them. We will also look at some examples
and calculate the box dimension of some well-known curves, such as the Sierpiński
triangle or the Koch curve. In the same section, we will also compare the two
fractal dimensions that we mentioned before and notice that they have a lot of
similar properties.

Lastly, in Section 5, we will look at a method, the box-counting method, that allows
us to easily calculate the box dimension of given curves. We will implement two
algorithms, one in Section 5.1 and the other one in Section 5.2, based on this method
and afterwards, we will check if they are accurate, by applying them to some curves
of which we know the dimension, for example a circle. Finally, we will use these
algorithms to find the box dimension of the borders of Luxembourg.

4

2 Preliminaries
The aim of this section is to collect several definitions, explanations and results to
rise the comprehension for the next sections. The following definitions can be found
similarly in the book Fractal Geometry: Mathematical Foundations and Applications
[1].

First, note that throughout this section, δ > 0 is real and n ∈ N. Next, we start with
the definition of the diameter of a set, and follow with the definitions of a δ-cover
and a δ-neighbourhood. These definitions will be useful to define and understand
the box-counting dimension.

Definition 2.1. Let U be a non-empty subset of the n-dimensional Euclidean space
Rn. The diameter of U is defined as |U | := sup{|x − y| : x, y ∈ U}, where |x − y|
denotes the Euclidean norm.

From this definition, we can now define a δ-cover and δ-neighbourhood of a given
set.

Definition 2.2. Let F be a non-empty bounded subset of Rn and {Ui}i≥1 be a
countable or finite collection of sets. We say that {Ui}i≥1 is a δ-cover of F if

(i) all the sets Ui, for i ≥ 1, are of diameter at most δ, that is 0 < |Ui| ≤ δ, and

(ii) they cover F , i.e. if F ⊂
⋃∞
i=1 Ui.

Definition 2.3. Let F be a non-empty bounded subset of Rn , the δ-neighbourhood
Fδ of F is defined by

Fδ = {x ∈ Rn : |x− y| ≤ δ for some y ∈ F},

that is, the set of points within distance δ of F .

In order to understand some of the properties of the box dimension, which we will
look at later, let us also recall the Lebesgue measure on Rn, as well as Hölder,
Lipschitz and bi-Lipschitz transformations.

Definition 2.4. Let F be a subset of Rn, then the n-dimensional Lebesgue measure
Ln of F may be thought of as the extension of n-dimensional volume to a large class
of sets. It is defined by

Ln(F) = inf

{
∞∑
i1

voln(Fi) : F ⊂
∞⋃
i=1

Fi

}
,

where voln denotes the n-dimensional volume, {Fi}i≥1 is a covering of F and the
infimum is taken over all coverings of F .

5

For any set F , for which the volume can be determined by usual rules of mensuration,
we get that Ln(F) = voln(F).

Let us now recall what Hölder, Lipschitz and bi-Lipschitz transformations are. In
order to do this, we follow closely the text in [6].

Definition 2.5. Let A ⊂ Rn and B ⊂ Rm, for m ∈ N. Let | · | denote the Euclidean
distance in Rn respectively in Rm. Consider the function f : A→ B.

(i) The function f is called Hölder continuous if there exists a real positive con-
stant c and α > 0 such that, for all x, y ∈ A

|f(x)− f(y)| ≤ c|x− y|α.

(ii) In particular, if α = 1, f is called Lipschitz continuous.

(iii) We say that f is bi-Lipschitz continuous, if there exists c ≥ 1 such that

1

c
|x− y| ≤ |f(x)− f(y)| ≤ c|x− y|.

Proposition 2.6. Let A ⊂ Rn, B ⊂ Rm and f : A→ B be a bi-Lipschitz transfor-
mation as in Definition 2.5. Then f is injective.

Proof. Let x, y ∈ A such that f(x) = f(y), then f(x)− f(y) = 0. This implies that
|f(x)− f(y)| = 0. Since f is bi-Lipschitz, there exists c ≥ 1 such that

1

c
|x− y| ≤ 0 ≤ c|x− y|.

Hence |x− y| = 0, from which we conclude that x = y.

Lastly, let us recall some definitions that we will use in some properties later on.

Definition 2.7. ([7], [8], [9]). Let F be a non-empty subset of Rn and f : Rn → Rn

be a function.

(a) We say that f is a similarity if it is a bijection that multiplies all distances
by the same positive real number r, called the scaling factor, so that for any
a, b ∈ Rn, |f(a)− f(b)| = r|a− b|.

(b) We say that f is a congruence if it is distance preserving, i.e. if for any
a, b ∈ Rn, |f(a)− f(b)| = |a− b|.

(c) We say that f is an affine transformation if it preserves lines and parallelism
but not necessarily distances and angles.

6

3 Introduction to fractal dimension
As explained in the introduction, we cannot measure the coastline or the borders of
a country with our usual tools, such as rulers. The Coastline paradox, here below,
explains why we need to consider fractal dimensions.

3.1 The Coastline Paradox

The inspiration for this section was found in [2], [3] and [4]. The Coastline paradox
is the observation that the length of a coastline is not well-defined, it is impossible
to determine an exact length. In fact, if we try to measure the coastline of a country,
we get a different result for every method we use. For instance, if we use a ruler on
a globe, we get a different length than if we measure it with a smaller ruler on the
same globe.

It is easy to observe that the smaller the ruler, the longer the length of the coastline.
But not only the ruler has an influence on the length we finally get, it also depends
on the distance to the coastline. The closer we are, the more curves we see on the
borders, and hence, the longer the coastline is.

Figure 1: Measuring the coastline of
Britain with a bigger ruler, [2].

Figure 2: Measuring the coastline of
Britain with a smaller ruler, [2].

In the figures above, we first measure the coastline of Great Britain using a 100km
long ruler (Figure 1) and get a length of 2800km, then we measure it using a smaller
ruler (Figure 2), of length 50km and obtain a coast length of 3400km (see [2]).

The reason why there is no obvious size of a coastline is that a landmass has dif-
ferent features at all scales. From far away, some coastlines seem to be lines but
when approaching them, we see that there are more and more details. A landmass
has features from thousands of kilometres in size, but also ones from fractions of

7

millimetres or less; it all depends on the point of view.

One could think that the length we measure converges to a certain number if we get
closer, but that is not the case. It is not like, for a metal bar for example, where we
can get an upper and a lower bound for the length of it. In fact, the closer we get or
the smaller ruler we use, the longer the length will be, so that there is no maximum
length of a coastline.

This phenomenon was first observed by Lewis Fry Richardson, when trying to check
that the likelihood of a war depends on the length of the borders between two coun-
tries. He also observed that when measuring more curvy coastlines, the rate at
which the length grew was faster than the rate at which the length of smoother
coastlines grew. This means that, for example the rate at which the length of the
coastline of Great Britain grows is much faster than the rate at which the length of
South Africa grows. This rate later became known as the fractal dimension.
Lewis Fry Richardson, not only, discovered that geographic borders are a fractal
curve. After having collected data from several examples, he found out that the
length, denoted by L(S), of a geometric border can be approximated by a function
of the form

L(S) ' CS1−D, (1)

where S is the measurement scale, C is a positive constant and D ≥ 1 is a constant,
called the dimension. From the observations above, smoother coastlines have a
smaller fractal dimension, so that for these types of countries, the fractal dimension
is close to 1. In Richardson’s research, he found, by applying the above formula, that
South Africa, which is a country with a smooth coastline, has a fractal dimension
of 1.02, whereas Britain, who has curvier borders, has a dimension of 1.25.

Now, before calculating the fractal dimension of Luxembourg, we need to look at
some definitions. For starters, there are a lot of types of fractal dimensions, such as
the Hausdorff dimension and the box-counting dimension. Let us first introduce the
Hausdorff dimension and afterwards we will analyse the box-counting dimension, in
order to finally calculate the fractal dimension using the box-counting method.

3.2 Hausdorff measure and dimension

In this section we will look at one of the fractal dimensions, the Hausdorff dimension.
The proofs of the following properties will be left out, however, if the reader is inter-
ested, they can be found in the book Fractal Geometry - Mathematical Foundations
and Applications (Third edition), [1] in Part I, Section 3.

8

3.2.1 Hausdorff measure

In order to define the Hausdorff dimension, let us first define the Hausdorff measure.

Definition 3.1. Let F be a non empty subset of Rn and s ≥ 0, then for any δ > 0,
we define

Hs
δ(F) := inf

{
∞∑
i=1

|Ui|s : {Ui}i≥1 is a δ-cover of F

}
. (2)

In this definition, the infimum is taken over the sum of the sth power of the sum of
the diameters. We see that, if 0 < ε < δ, then the δ-covers of F consist of every
cover of F of size at most δ, thus also those of size ε or smaller. And for ε-covers, we
only consider the covers of size smaller than ε. Hence, as δ decreases, the number of
δ-covers of F also decreases and so does the sum of the sth power of the diameters.
This implies that if δ → 0, then the infimum decreases, or at least it doesn’t increase.
Thus, the infimum approaches a limit as δ goes to 0. This observation leads us to
the definition of the s-dimensional Hausdorff measure of F , given by

Hs(F) = lim
δ→0
Hs
δ.

This limit exists for any subset F of Rn.

Proposition 3.2 (Scaling property). Let F ⊂ Rn and f : Rn → Rn be a similarity
transformation of scale factor λ > 0, then for s ≥ 0

Hs(f(F)) = λsHs(F).

The complete proof of this proposition can be found in ([1], Scaling property 3.2,
p.46).

3.2.2 Hausdorff dimension

From the definition of the Hausdorff measure, we know that for any non-empty
subset F of Rn and for any 0 < δ < 1, Hs

δ is non-increasing which implies that the
Hausdorff measure Hs is also non-increasing. In fact we can even see that, for any
δ-cover {Ui}i≥1 of F , s ≥ 0 and any t > s,

∞∑
i=0

|Ui|t =
∞∑
i=0

|U t−s
i U s

i | ≤
∞∑
i=0

|Ui|t−s|Ui|s ≤ δt−s
∞∑
i=0

|Ui|s.

The second inequality follows from the fact that the diameter of the δ-covers of F
is at most δ. Applying the infimum and taking the limit as δ goes to 0, we obtain

lim
δ→0
Ht
δ(F) ≤ Hs(F) lim

δ→0
δt−s.

9

This again implies that if the s-dimensional Hausdorff measure of F , Hs(F) is finite,
then Ht = 0.

Hence, we notice that there is a critical value of s, for which Hs falls from ‘∞’ to
‘0’, see Figure 3. This critical value is called the Hausdorff dimension and denoted
dimH F .

Figure 3: Graph of Hs against s, ([1] p. 48).

Definition 3.3. Let F be a subset of Rn, s ≥ 0 andHs(F) be the Hausdorff measure
of F . Then the Hausdorff dimension of F is defined by

dimH F = inf {s ≥ 0 : Hs(F) = 0} = sup {s ≥ 0 : Hs(F) =∞} .

We also see that
Hs(F) =

{
∞ if 0 ≤ s < dimH F,
0 if s > dimH F.

Furthermore, if s = dimH F , then Hs(F) can be ‘0’, ‘∞’ or 0 < Hs(F) <∞.

Now, let us mention some important properties of the Hausdorff dimension. The
complete proofs of the following propositions can found in ([1], starting on page 48.)

Proposition 3.4. Let n ∈ N and E and F be two non-empty subsets of Rn, then
the Hausdorff dimension has the following properties.

(a) Monotonicity : If E ⊂ F , then dimH E ≤ dimH F .

(b) Range of values : 0 ≤ dimH F ≤ n.

10

(c) Countable stability : Let {Fn}n≥1 be a countable sequence of non-empty subsets
of Rn, then

dimH

∞⋃
i=1

Fi = sup
1≤i<∞

{dimH Fi}.

(d) Countable sets : If F is countable, then dimH F = 0.

(e) Open sets : If F ⊂ Rn is open, then dimH F = n.

Proposition 3.5. Let m ∈ N.

(i) If F ⊂ Rn is non-empty and f : F → Rm is Hölder continuous, with Hölder
exponent α > 0, then

dimH f(F) ≤ 1

α
dimH F.

In particular, if f is a Lipschitz transformation, i.e. if α = 1, then dimH f(F) ≤
dimH F .

(ii) If F ⊂ Rn and f : F → Rm is a bi-Lipschitz transformation, then

dimH f(F) = dimH F.

From this proposition follow the next properties.

Proposition 3.6. Let F be a non-empty subset of Rn and m ∈ N. In order to
understand one of the properties, we recall that a smooth manifold is an infinitely
differentiable curve or surface.

(a) Geometric invariance: If f : F → Rm is a congruence, similarity or affine
transformation, then dimH f(F) = dimH F .

(b) Smooth curves : If F is a smooth m-dimensional manifold (e.g. curve, sur-
face,...), then dimH F = m.

(c) Projections : If F ⊂ R2, then dimH proj(F) ≤ min{1, dimH F}, where proj
denotes the orthogonal projection from R2 onto some given line through the
origin.

Example 3.7. Let F be the middle third Cantor set, then dimH F = log(2)
log(3)

, with
1
2
≤ Hs(F) ≤ 1 if s = log(2)

log(3)
.

Before proving the result, let us recall the construction of the middle third Cantor
set. In fact, it is constructed by deleting the middle third part of intervals, starting
with the unit interval. More precisely, let E0 = [0, 1] be the unit interval, then E1 is

11

obtained by deleting the middle third part of this interval, so that E1 = [0, 1
3
]∪[2

3
, 1].

To obtain E2, we delete the middle third part of the two intervals of E1, thus E2

consists of the four intervals [0, 1
9
], [2

9
, 1

3
], [2

3
, 7

9
] and [8

9
, 1]. By iteration, for any

integer k, Ek consists of 2k intervals of length 3−k.

The middle third Cantor set F consists of all the numbers that are in every interval
of every Ek, precisely, F =

⋂∞
k=0Ek. In fact, F can be seen as the limit of the Ek’s as

k tends to infinity. However, it is impossible to draw F because of its infinitesimal
detail. This explains why we illustrate F , by drawing pictures of one of the Ek,
where k is any integer, see Figure 4 below.

Figure 4: Construction of the middle third Cantor set F , ([1] p. xx).

• Let us now show that dimH F = log(2)
log(3)

.
In order to do this, we split F into a left part FL := F ∩ [0, 1

3
] and a right part

FR := F ∩ [2
3
, 1]. Clearly, F = FL∪̇FR, where ∪̇ denotes the disjoint union.

This implies that

Hs(F) = Hs(FL) +Hs(FR), for any s ≥ 0.

In addition, by construction of F , FL and FR are similar to F but scaled at
ratio λ = 1

3
. From the scaling property, Proposition 3.2, it follows that

Hs(FL) +Hs(FR) =

(
1

3

)s
Hs(F) +

(
1

3

)s
Hs(F).

Hence, we conclude that

Hs(F) = 2

(
1

3

)s
Hs(F).

For s = dimH F we want to find a value of s such that 0 < Hs(F) <∞, so we
can divide by Hs(F) and obtain

1 = 2

(
1

3

)s
⇐⇒ 1

2
=

(
1

3

)s
⇐⇒ log

(
1

2

)
= s log

(
1

3

)
⇐⇒ s =

log(2)

log(3)
.

12

Hence, dimH F = log(2)
log(3)

.

• Next, we will show that Hs(F) ≤ 1.
Note that at each level of construction k ∈ N, the set Ek consists of 2k intervals
of length 3−k, denoted by I1, I2, ..., I2k . Let δ > 0, then if we chose k such that
δ = 3−k, then the intervals I1, ...I2k of Ek are δ-covers of F . This gives

Hs
δ(F) = inf

δ-covers of F

{
∞∑
i=1

|Ui|s : {Ui}i≥1 is a δ-cover of F

}
≤

2k∑
i=1

|Ii|s = 2k3−ks.

For s = log(2)
log(3)

, we have 2k3−k
log(2)
log(3) = 2ke−k

log(2)
log(3)

log(3) = ek log(2)e−k log(2) = 1.
Hence, Hs

δ(F) ≤ 1 and we conclude that

Hs(F) = lim
δ→0
Hs
δ(F) ≤ 1.

• Finally, let us show that Hs(F) ≥ 1
2
.

To this end, we will show that for any cover {Ui}i≥1 of F , we have
∞∑
i=1

|Ui|s ≥
1

2
.

In fact, this implies thatHs
δ(F) ≥ 1

2
, for any δ > 0, and hence, limδ→0Hs

δ(F) ≥
1
2
.

First, note that 1
2

= 3−s if s = log(2)
log(3)

, therefore, showing that
∑∞

i=1 |Ui|s ≥
1
2
is

equivalent to prove that
∑∞

i=1 |Ui|s ≥ 3−s.

Since F consists of intervals, we can assume that {Ui}i≥1 is a collection of
intervals. Let k be an integer satisfying 3−k−1 ≤ |Ui| < 3−k for any i ≥ 1 and
consider the intervals of Ek. We see that each Ui can intersect at most one of
the intervals of Ek since the distance between these intervals is at least 3−k.

Let j ≥ k and consider the intervals of Ej. By construction, each Ui intersects
at most 2j

2k
intervals of Ej. That is, at most 2j−k = 2j3−sk = 2j3s+s(−k−1) ≤

2j3s|Ui|s intervals. We also notice that all the Ui’s together intersect all the 2j

intervals of Ej. So that summing the number of intervals that they intersect
together is 2j. Hence, we obtain

2j ≤
∞∑
i=1

2j3s|Ui|s = 2j3s
∞∑
i=1

|Ui|s.

We conclude by dividing by 2j3s > 0 that 3−s ≤
∑∞

i=1 |Ui|s.

13

4 Box-counting dimension
The following notes are again inspired and based from [1], Sections 2.1 and 2.2.
Throughout this part of the document, we set n ∈ N and δ ∈ R∗+.

4.1 Definitions and Properties

In this section, we will define the box-counting dimension and look at its properties
and later, use it to calculate the dimension of the borders of Luxembourg.

Given a non-empty subset F of Rn and, for each δ > 0, let Nδ(F) denote the δ-covers
of F . If

Nδ(F) ' cδ−s, (3)

where c is a constant and s ≥ 0, we observe that (3) is very similar to Lewis Fry
Richardson’s observation (1) on the approximation for fractal dimension. Moreover,
s represents the so-called box-dimension of F .

Definition 4.1. Let F be a non-empty bounded subset of Rn, and let Nδ(F) be
the smallest number of sets of diameter at most δ which can cover F , i.e. the least
number of sets in any δ-cover of F . We define

(a) the lower box-counting dimension of F as

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
, (4)

(b) the upper box-counting dimension of F as

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
. (5)

Clearly, since ‘lim inf’ of any function is always smaller than ‘lim sup’ of the same
function, dimB F ≤ dimB F . If dimB F = dimB F , we define the box-counting di-
mension or box dimension of F by

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
. (6)

Remark 4.2. By the following, let us assume that δ is sufficiently small to en-
sure that − log(δ) > 0. In addition, we only consider box-dimension of non-empty
bounded sets, otherwise log(Nδ(F)) could be equal to ‘log(0)’ or ‘log(∞)’.

14

Definition 4.3. The family of cubes of the form

[m1δ, (m1 + 1)δ]× ...× [mnδ, (mn + 1)δ],

where m1, m2, ..., mn are integers. is called the δ-mesh or δ-grid of Rn.
In other words, a δ-mesh in Rn is a family of cubes of side δ, that don’t intersect
each other. Since these cubes can form a grid, they are also called a δ-grid of Rn.
Let us illustrate this definition by an example in R2.

Figure 5: δ-mesh cubes in R2 with δ = 2.

Proposition 4.4. In Definition 4.1, Nδ(F) can be any of the following:

(i) the smallest number of sets of diameter at most δ that cover F ;

(ii) the smallest number of closed balls of radius δ that cover F ;

(iii) the smallest number of cubes of side δ that cover F ;

(iv) the number of δ-mesh cubes that intersect F ;

(v) the largest number of disjoint balls of radius δ with centres in F .

Proof. Since the proofs of the equivalences are all similar, we will only focus on the
following.
(i) ⇐⇒ (iv): Let Nδ(F) be the smallest number of sets of diameter at most δ that
cover F and N ′δ(F) the number of δ-mesh cubes that intersect F .

15

We see that each δ-mesh cube that intersects F can be seen as a set of diameter δ
√
n

that covers F . In particular, in R2, a square of side δ can be seen as a set with the
same diameter as the square. By the Pythagoras theorem, this diameter is equal to
δ
√

2. Thus, we can construct at least N ′δ(F) sets of diameter δ
√
n that cover F , so

that
Nδ
√
n(F) ≤ N ′δ(F).

In addition, consider a set U of diameter δ that covers F . Any point in this set is
contained in a δ-mesh cube C since these cubes intersect F . Hence, U is contained
in the δ-mesh consisting of the cube C and its neighbouring cubes. Since the set U
and the cube C were chosen randomly, this implies that any set of diameter at most
δ that covers F is contained in 3n δ-mesh cubes.

Thus, the number of δ-mesh cubes that intersect F is at most equal to the 3n times
the smallest number of sets of diameter δ that cover F , so that

N ′δ(F) ≤ 3nNδ(F).

Combining these inequalities and applying the logarithm on every side as well as
dividing by − log(δ), we obtain

log
(
Nδ
√
n(F)

)
− log(δ)

≤ log (N ′δ(F))

− log(δ)
≤ log (3nNδ(F))

− log(δ)
.

We know that

− log(δ) = − log

(
δ
√
n√
n

)
= − log(δ

√
n) + log(

√
n),

thus
log
(
Nδ
√
n(F)

)
− log(δ

√
n) + log(

√
n)
≤ log (N ′δ(F))

− log(δ)
≤ log (3n) log (Nδ(F))

− log(δ)
.

If δ → 0, one gets

• − log(δ
√
n) + log(

√
n)→ − log(δ

√
n),

• δ
√
n→ δ and

• log(3n)
− log(δ)

→ 0 since − log(δ)→∞.

Hence, if we take the lower limits as δ → 0, we have

lim
δ→0

log (Nδ(F))

− log(δ)
≤ lim

δ→0

log (N ′δ(F))

− log(δ)
≤ lim

δ→0

log (Nδ(F))

− log(δ)
.

16

We conclude that the definition of the lower box limit is verified for Nδ(F) and

N ′δ(F), because limδ→0

log(N ′δ(F))
− log(δ)

= limδ→0
log(Nδ(F))
− log(δ)

. Similarly, if we take the upper
limit instead of the lower limit in the last step, we conclude that in Definition 4.1
(b), we can substitute Nδ(F) by N ′δ(F).

(i) ⇐⇒ (v): Under the same notations as above, Nδ(F) is the smallest number
of δ-covers, and let N ′′δ (F) be the largest number of disjoint balls of radius δ with
centres in F . Moreover, let {B1, B2, ..., BN ′′δ (F)} be a collection of disjoint balls of
radius δ with centres in F .

Let x ∈ F , then the distance between x and any of the Bi’s, for i ∈ {1, 2, ..., N ′′δ (F)}
is at most δ. Otherwise, we could construct a ball of radius δ with centre x that
is disjoint to the other balls. This again would imply, that there is a collection of
more than N ′′δ (F) balls with centres in F .

Hence, the N ′′δ (F) non-disjoint balls of diameter 4δ that are concentric with the Bi’s,
cover F . Thus, the number of sets of diameter 4δ that cover F , is at most equal to
the number of disjoint balls of radius δ with centres in F , so that

N4δ ≤ N ′′δ (F).

In addition, let {U1, U2, ..., Uk} be a collection of sets of diameter at most δ that
cover F , then by definition of Nδ(F), k ≥ Nδ(F).
Since the sets cover F and the balls have centres in F , for i ∈ {1, 2, ..., N ′′δ (F)} and
j ∈ {1, 2, ..., k}, each ball Bi contains at least one set Uj. Moreover, the Bi’s are
all disjoint, which implies that there are at least as many sets as balls, so that

N ′′δ (F) ≤ Nδ(F).

Just as in the proof of the previous equivalence, we combine the inequalities, apply
the logarithm and divide by − log(δ) to obtain

log (N4δ(F))

− log(δ)
≤ log (N ′′δ (F))

− log(δ)
≤ log (Nδ(F))

− log(δ)
.

Doing similar calculations as before and taking the lower limits as δ → 0, we get

lim
δ→0

log (Nδ(F))

− log(δ)
≤ lim

δ→0

log (N ′′δ (F))

− log(δ)
≤ lim

δ→0

log (Nδ(F))

− log(δ)
.

We conclude as before that in Definition 4.1 (a) and (b) it we can either choose
Nδ(F) or N ′′δ (F).

Now, let us illustrate Definition 4.1 by some examples.

17

Example 4.5. Let F be the middle third Cantor set and let us calculate dimB F
and dimB F .
For a recall on the construction of this set, see Example 3.7. Now, in order to do
calculate the box dimensions of this set, let us choose δ such that 3−k < δ ≤ 3−k+1,
∀k ∈ N. We see that at each level of construction of F , there are 2k intervals of
length 3−k. We also notice that all those intervals cover F . Thus, these intervals
provide a δ-cover of F . Let Nδ(F) be the smallest number of sets of diameter at
most δ that cover F , then it is easy to see that Nδ(F) ≤ 2k.

In addition, if we take the (upper or lower) limit, as δ → 0, then k → ∞ since
3−k < δ ≤ 3−k+1. In conclusion, we obtain, by Definition 4.1 (b), that

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ lim

k→∞

log(2k)

− log(3−k+1)
= lim

k→∞

k log(2)

(k − 1) log(3)
=

log(2)

log(3)
.

On the other hand, if we choose δ, so that 3−k−1 ≤ δ < 3−k, then every interval of
length δ (< 3−k) intersects at most one of the intervals at the level of construction
Ek. This is because the gap between the intervals is at leat 3−k.

Since there are 2k intervals that cover F at each level, we need at least 2k intervals
of length δ to cover F . This implies that Nδ(F) ≥ 2k, so that by Definition 4.1 (a)

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≥ lim

k→∞

log(2k)

− log(3−k−1)
= lim

k→∞

k log(2)

(k + 1) log(3)
=

log(2)

log(3)
.

Thus,

dimB F ≤
log(2)

log(3)
≤ dimB F.

However, by definition dimB F ≥ dimB F , so we conclude that

dimB F = dimB F =
log(2)

log(3)
.

Example 4.6. Let F be the Sierpiński triangle with side length 1. Before calculating
its box dimension, we will recall what the Sierpiński triangle is.

It is constructed similarly as the middle third Cantor set. The difference is that
here we start with an equilateral triangle with unit length and remove the inverted
equilateral triangle in the middle, see Figure 6 below. More precisely, let E0 be the
equilateral triangle of side length 1, then E1 is obtained by removing the inverted
equilateral triangle. This implies that E1 consists of three equilateral triangles with
side length 1

2
. To obtain E2, we remove the inverted equilateral triangle in the three

triangles of E1, so that E2 consists of nine equilateral triangles of side length 1
4
.

18

By iteration, for any integer k, Ek consists of 3k triangles of side length 1
2k
. The

Sierpiński triangle is the intersection of all the triangles that are in every Ek.

Figure 6: Construction of the Sierpiński triangle, ([1] p. xxii).

Now, let us calculate dimB F and dimB F . First, we notice that since, for every Ek,
there are 3k triangles of side length 2−k that cover F , 3k sets of diameter at most δ
provide a δ-cover of F , where δ is chosen such that 2−k < δ ≤ 2−k+1. Hence, it is
easy to see that Nδ(F) ≤ 3k.

As before, it is easy to check that, if δ → 0, then k → ∞, thus by Definition 4.1
(b), we obtain

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ lim

k→∞

log(3k)

− log(2−k+1)
= lim

k→∞

k log(3)

(k − 1) log 2
=

log(3)

log(2)
.

On the other hand, since only three triangles at a time have a distance that is smaller
than 2−k, if we chose δ satisfying 2−k−1 ≤ δ < 2−k, we see that a set of diameter δ
intersects at most three triangles. Since, at each stage of construction there are 3k

triangles that cover F , we need at least 3k

3
sets of diameter at most δ to cover F .

This implies, that Nδ(F) ≥ 3k−1, so that by Definition 4.1 (a),

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≥ lim

k→∞

log(3k−1)

− log(2−k−1)
= lim

k→∞

(k − 1) log(3)

(k + 1) log 2
=

log(3)

log(2)
.

Thus,

dimB F ≤
log(3)

log(2)
≤ dimB F.

However, by definition dimB F ≥ dimB F , so we conclude that

dimB F = dimB F =
log(3)

log(2)
.

19

Example 4.7. Let us calculate dimB F and dimB F , where F is the Koch curve.

The Koch curve is constructed by replacing at each step of construction the middle
third part of every interval by the other two sides of an equilateral triangle. More
precisely, let Ek be the curve at the kth stage of construction, with k ∈ N, we start
with the unit interval E0 = [0, 1] and obtain E1 by replacing the middle third part
of this interval by two sides of an equilateral triangle. After that, E2 is obtained
by replacing in each interval of E1 the middle third part. We continue that way, so
that at each level of construction k ∈ N, Ek consists of 4k intervals of length 3−k.
However, because of its infinitesimal detail, it is impossible to draw F . That is why,
we illustrate it by representing it by one of the Ek, where k is a positive integer, see
Figure 7 below.

Figure 7: Construction of the Koch curve F , ([1] p. xxi).

Since, at each stage k of construction, Ek consists of 4k intervals of length 3−k

that cover F , these intervals provide a δ-cover of F , if δ was chosen such that
3−k < δ ≤ 3−k+1. Covering F with sets of diameter at most δ, makes it clear that

20

Nδ ≤ 4k. By Definition 4.1 (b), we get

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ lim

k→∞

log(4k)

− log(3−k+1)
= lim

k→∞

k log(4)

(k − 1) log(3)
=

log(4)

log(3)
.

On the other hand, let us chose δ satisfying 3−k−1 ≤ δ < 3−k. Since the length of
δ-mesh cubes is strictly less than 3−k, each cube intersects at most one interval of
length 3−k. This implies that we need at least 4k δ-mesh cubes to cover Ek. Since
Ek covers F , this implies that Nδ(F) ≥ 4k. By Definition 4.1 (a), this gives

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≥ lim

k→∞

log(4k)

− log(3−k−1)
= lim

k→∞

k log(4)

(k + 1) log(3)
=

log(4)

log(3)
.

We conclude similarly as in the previous examples and get

dimB F = dimB F = dimB F =
log(4)

log(3)
.

Remark 4.8. We see that in the first example, F is obtained by repeatedly copying
2 lines at scale 1

3
and we found that dimB F = log(2)

log(3)
. In the second example, F is

obtained by repeatedly copying 3 triangles at scale 1
2
and we found that dimB F =

log(3)
log(2)

. In the last example, we also repeatedly copied 4 lines at scale 1
3
to construct

F and obtained that dimB F = log(4)
log(3)

. Thus we can assume that the box-counting
dimension of a set F , that is obtained by repeatedly copyingm ∈ N>1 similar disjoint
figures at scale r ∈]0, 1[, is given by dimB F = log(m)

log(1/r)
= log(m)
− log(r)

.

After having applied the definition of the box-counting dimension to some examples,
let us look at some of its properties and prove them.

Proposition 4.9. If F is a subset of Rn, then

dimB F = n− lim
δ→0

log(Ln(Fδ))

log(δ)

dimB F = n− lim
δ→0

log(Ln(Fδ))

log(δ)
,

where Fδ is the δ-neighbourhood of F .

Proof. Consider a covering of F with balls of radius δ. Note that each point of the
δ-neighbourhood Fδ of F is at distance at most δ from any point of F . Thus, the
balls of radius 2δ, that are concentric with the Nδ(F) balls that cover F form a
covering of Fδ. This implies that, if cn is the volume of the unit ball in Rn, the

21

volume of Fδ is at most cn(2δ)nNδ(F).1

Hence, by Definition 2.4
Ln(Fδ) ≤ cn(2δ)nNδ(F).

Taking logarithms on each side and dividing by − log(δ), we get

log(Ln(F))

− log δ
≤ log(Nδ(F)cn(2δ)n)

− log(δ)
=

log(2ncn) + n log(δ) + log(Nδ(F))

− log(δ)

=
log(2ncn)

− log(δ)
− n+

log(Nδ(F))

− log(δ)
.

As δ → 0, we have that log(2ncn)
− log(δ)

→ 0. Thus if we apply the lower and upper limit
as δ → 0, we obtain

lim
δ→0

log(Ln(Fδ))

− log(δ)
≤ −n+ dimB F and lim

δ→0

log(Ln(Fδ))

− log(δ)
≤ −n+ dimB F. (7)

For the opposite inequality, let Nδ(F) be the largest number of balls of radius δ with
centres in F , then they also have centres in Fδ, so that the volume of Fδ is at least
the volume of these balls, so that

Nδ(F)cnδ
n ≤ Ln(Fδ).

Again, we take the logarithms and divide by − log(δ) to obtain

log(Nδ(F))

− log(δ)
+

log(cn)

− log(δ)
− n ≤ log(Ln(Fδ))

log(δ)
.

Applying the lower and upper limits as δ → 0, we find

dimB F − n ≤ lim
δ→0

log(Ln(Fδ))

− log(δ)
, and dimB F − n ≤ lim

δ→0

log(Ln(Fδ))

− log(δ)
. (8)

We conclude by combining the inequalities in (7) and (8) to get the desired result.

Remark 4.10. From this proposition follows that the box-counting dimension is
often called the Minkowski-Bouligand dimension. In fact, if F and Fδ are as in the
proposition and limδ→0

Ln(Fδ)
δn−s

= c, then after some calculations, we check that s is
the box-dimension of F . The name of the dimension then comes from the name of
the constant c, that is called the s-dimensional Minkowski content of F .

1Since cn is the volume of the unit ball in Rn, cn · (2δ)n is the volume of a ball of radius 2δ in
Rn. At least Nδ(F) such balls cover Fδ, that is why we multiply the obtained volume by Nδ(F)
to get the volume of Fδ.

22

Proposition 4.11. Let E and F be two non-empty subsets of Rn, then the (lower
or upper) box counting dimension has the following properties.

(a) Monotonicity : If E ⊂ F , then dimBE ≤ dimB F and dimBE ≤ dimB F .

(b) Range of values : If F is a non-empty bounded subset of Rn, then

0 ≤ dimB F ≤ dimB F ≤ n.

(c) Finite stability : dimB is finitely stable, this means that

dimB(E ∪ F) = max{dimBE, dimB F}.

(d) Open sets : If F ⊂ Rn is open, then dimB F = n.

(e) Finite sets : If F is non-empty and finite, then dimB F = 0.

(f) Smooth sets : If F is a smooth (i.e. continuously differentiable) bounded m-
dimensional surface of Rn, then dimB F = m.
In particular, smooth curves have dimension 1 and smooth surfaces have di-
mension 2.

Proof. (a) If E ⊂ F , then clearly Nδ(E) ≤ Nδ(F), which implies that

log(Nδ(E)) ≤ log(Nδ(F)).

We conclude, by dividing by − log(δ) and taking the lower or upper limit, that
dimBE ≤ dimB F and dimBE ≤ dimB F .

(b) By definition, dimB F ≤ dimB F and 0 ≤ dimB F , since Nδ(F) ≥ 1 and
limδ→0− log(δ) ≥ 0. This proves the first two inequalities.
In order to prove that dimB F ≤ n, let us consider a large cube C that contains
F . By covering F and C with δ-mesh cubes that intersect them, we see that
Nδ(F) ≤ Nδ(C), because F ⊂ C.
Moreover, the volume of the δ-mesh that intersects C is finite, because F is bounded.
Hence, this implies that the sides of C have a finite length. Thus, there exists
some real constant c > 0 such that Nδ(C)δn ≤ c.2 Consequently, we have that
Nδ(C) ≤ cδ−n. Thus,

Nδ(F) ≤ cδ−n

⇐⇒ log(Nδ(F)) ≤ log(c)− n log(δ)

⇐⇒ − log(Nδ(F))

log(δ)
≤ − log(c)

log(δ)
+ n

2Nδ(C)δ
n is the volume of the δ-mesh that covers C.

23

Finally, taking the upper limit as δ → 0, we obtain that dimB F ≤ n.

(c) First, we show that max{dimBE, dimB F} ≤ dimB(E∪F). Since E ⊂ E∪F and
F ⊂ E∪F , we know by monotonicity of the box dimension, that dimBE ≤ dimB(E∪
F) and dimB F ≤ dimB(E ∪ F). Thus max{dimBE, dimB F} ≤ dimB(E ∪ F).

Let us now show that dimB(E ∪ F) ≤ max{dimBE, dimB F}. It is easy to see that
Nδ(E ∪ F) ≤ Nδ(E) +Nδ(F). As almost in every proof, we return to the definition
by applying the logarithm and dividing by − log(δ).
Finally, taking the upper limit gives dimB(E∪F) ≤ max{dimBE, dimB F}, because
the supremum of log(Nδ(E)+Nδ(F))

− log(δ)
is max{dimBE, dimB F}.

(d) From (b), we know that dimB F ≤ n. In order to prove that n ≤ dimB F we
consider a cube C that is contained in F . Covering F and C with δ-mesh cubes,
we see that Nδ(F) ≥ Nδ(C). Then, since Nδ(C) cubes of side δ intersect C, the
volume of this δ- mesh is larger than the volume of C, so that Nδ(C)δn ≥ c, where
c ≤ voln(C). This means that Nδ(C) ≥ cδ−n. Thus, we have the following inequality

Nδ(F) ≥ Nδ(C) ≥ cδ−n.

Finally, we take the logarithm and divide by − log(δ). After taking the limit as
δ → 0, we obtain dimB F ≥ n. Combining the two inequalities, we get, as desired,
dimB F = n.

(e) Let m <∞ be the number of points in F . As δ tends to 0, the smallest number
of sets of size δ, that cover F is exactly the number of elements of F . This implies
that limδ→0Nδ(F) = m. Thus

dimB F = lim
δ→0

Nδ(F)

− log(δ)
= 0.

Remark 4.12. The identity in (c) is only true for a finite union of sets, furthermore,
this identity does not hold for the lower limit, which means that dimB(E ∪ F) 6=
max{dimBE, dimB F}.
In fact, for dimB to be finitely stable, it must be satisfied that for two non-empty
subsets E and F of Rn, dimB(E ∪ F) = max{dimBE, dimB F}, which is not the
case. With the same reasoning as in the proof of (c), we get by monotonicity, that
max{dimBE, dimB F} ≤ dimB(E ∪ F). However, the opposite inequality does not
always hold. In order to show this, we consider the following example.

Example 4.13. ([1], Exercise 2.9 p. 42.) Let tm := 10m for every integer m ∈ N
and consider k ∈ N. We construct E and F similarly to the Cantor set, that is, we
start with the unit interval and at every kth stage of construction, we either delete
the middle 1

3
or the middle 3

5
of the intervals. In the construction of E we delete

24

the middle third if t2m < k ≤ t2m+1 and the middle 3
5
if t2m−1 < k ≤ t2m. F is

constructed by doing the opposite.
In conclusion, if 1 < k ≤ 10, then at the kth stage of construction of E we delete
the middle 1

3
of the intervals and at that same stage of construction of F we delete

the middle 3
5
of the intervals. The construction continues infinitely often, so that for

both sets, at each stage of construction there are 2k intervals of length 3−k or 5−k.

It is easy to see that the union of E and F is simply the middle third Cantor set.
This is because the union of the 2k intervals of length 5−k, that are left after deleting
the middle 3

5
part of the previous intervals, and the 2k intervals of length 3−k, that

are left, after deleting the middle third part of the previous intervals, are the larger
intervals, which are the 2k intervals of length 3−k. Thus, Example 4.5 gives us that

dimB(E ∪ F) =
log(2)

log(3)
. (9)

What is left to do now is to find the lower box dimension of F and E or an upper
bound of this dimension. As already noted before, both sets consist of 2k intervals
of length 5−k or 3−k which cover them. If we chose δ such that 5−k < δ ≤ 5−k+1,
then, automatically, 3−k < δ. Hence, every interval of length δ covers the intervals
of length 3−k and the intervals of length 5−k, so that 2k intervals of length δ provide
a covering of F and of E. This implies that the smallest number of coverings is at
most 2k, so that Nδ(F) ≤ 2k and Nδ(E) ≤ 2k.
By Definition 4.1, we obtain

dimBE = dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ lim

k→∞

log(2k)

− log(5−k+1)
=

log(2)

log(5)
. (10)

Finally, combining (9) and (10) we get that

max{dimBE, dimB F} ≤
log(2)

log(5)
<

log(2)

log(3)
= dimB(E ∪ F).

Hence, we conclude that dimB is not finitely stable.

Proposition 4.14. Let m ∈ N. Consider the non-empty subset F ⊂ Rn and the
function f : F → Rm.

(i) If, in addition, F is compact, α > 0, and f is a α-Hölder map, then dimB f(F) ≤
1
α

dimB F and dimB f(F) ≤ 1
α

dimB F

(ii) If f is a Lipschitz transformation, then dimB f(F) ≤ dimB F and dimB f(F) ≤
dimB F .

25

(iii) If f is a bi-Lipschitz transformation, then dimB f(F) = dimB F and dimB f(F) =
dimB F .

Proof. (i) Let {Ui}i≥1 be a δ-cover of F , then since F ⊂
⋃∞
i=1 Ui ∩ F and |Ui ∩

F | ≤ |Ui| ≤ δ, Ui ∩ F is also a δ-cover of F . Taking the image over f , we have
f(F) ⊂

⋃∞
i=1 f(Ui ∩ F) and, by α-Hölder-continuity of f , there exists a constant

c > 0 such that
|f(Ui ∩ F)| ≤ c|Ui ∩ F |α ≤ c|Ui|α ≤ cδα.

Hence {f(Ui∩F)} is a cδα-cover of f(F). This implies that every δ-cover of F forms
a cδα-cover of f(F).
Now, let Nδ(F) be the smallest number of δ-covers of F , then there are at least
Nδ(F) cδα-covers of f(F). This implies that Ncδα(f(F)) ≤ Nδ(F). Applying the
logarithm and dividing by −α log(δ), we obtain

log(Ncδα(f(F)))

−α log(δ)
≤ log(Nδ(F))

−α log(δ)
.

Calculations on the left hand side then, give us

log(Ncδα(f(F)))

− log(cδα) + log(c)
≤ 1

α

log(Nδ(F))

− log(δ)
.

Finally, taking the lower or upper limit as δ → 0, we find as desired dimB f(F) ≤
1
α

dimB F and dimB f(F) ≤ 1
α

dimB F .

(ii) This follows directly from (i) for α = 1.

(iii) Since f is a bi-Lipschitz transformation, it is also a Lipschitz transformation.
Thus by (i), we obtain that dimB f(F) ≤ dimB F and dimB f(F) ≤ dimB F .

Let us now show the opposite inequalities. We know that if f is bi-Lipschitz, then
f : F → f(F) ⊂ Rm is bijective with inverse f−1 : f(F)→ F . Let u, v ∈ f(F), such
that x := f−1(u) and y := f−1(v). Then, by bi-Lipschitz continuity, and choosing
c1 ∈ R+, we obtain

c1|f−1(u)− f−1(v)| = c1|x− y| ≤ |f(x)− f(y)| = |f(f−1(u))− f(f−1(v))| = |u− v|.

Hence, f−1 is a Lipschitz transformation. Applying (i) to f−1, we obtain that
dimB F = dimB f

−1(f(F)) ≤ dimB f(F) and dimB F = dimB f
−1(f(F)) ≤ dimB f(F).

Finally, by combining the inequalities, we can conclude that dimB f(F) = dimB F
and dimB f(F) = dimB F .

From Proposition 4.14 some properties follow.

26

Proposition 4.15. (a) Geometric invariance: For m ∈ N, if f : F → Rm is a
congruence, similarity or affine transformation, then dimB f(F) = dimB F and
dimB f(F) = dimB F .

(b) Smooth curves : If g : [0, 1] → R is a Lipschitz transformation and Γ(g) =
{(x, g(x)) : x ∈ [0, 1]} is the graph of the function g, then dimB Γ(g) = 1.

(c) Projections : If F is a subset of R2, then dimB proj(F) ≤ min{1, dimB F} and
dimB proj(F) ≤ min{1, dimB F}, where proj denotes the orthogonal projec-
tion from R2 onto some given line through the origin.

Proof. (a) Since congruences, similarities and affine transformations are all bi-Lipschitz,
then by Proposition 4.14 the result follows immediately.

(b) Consider f : [0, 1] → Γ(g) given by f(x) = (x, g(x)). Notice that f is bi-
Lipschitz and f([0, 1]) = Γ(g). In fact, for all x, y ∈ [0, 1]

|f(x)− f(y)| = |(x, g(x))− (y, g(y))| =
√
|x− y|2 + |g(x)− g(y)|2.

Since |g(x) − g(y)|2 ≥ 0, it is clear that |x − y| ≤ |f(x) − f(y)|. Moreover, g is a
Lipschitz transformation, which implies that√

|x− y|2 + |g(x)− g(y)|2 ≤
√
|x− y|2 + c2|x− y|2 =

√
1 + c2|x− y|, ∀x, y,

for some positive constant c. This implies that |f(x)−f(y)| ≤
√

1 + c2|x−y|. Hence
f is bi-Lipschitz continuous. From Proposition 4.14, it follows that dimB Γ(g) =
dimB f(F) = dimB[0, 1]. Since intervals are smooth 1-dimensional surfaces, we
conclude that dimB Γ(g) = dimB[0, 1] = 1.

(c) It is easy to check that orthogonal projections do not increase distances, thus

|proj(x)− proj(y)| ≤ |x− y| for x, y ∈ R.

Hence, we conclude that proj is a Lipschitz transformation. By Proposition 4.14
dimB proj(F) ≤ min{1, dimB F} and dimB proj(F) ≤ min{1, dimB F}.

Proposition 4.16. Let F denote the closure of F , i.e. the smallest closed subset
of Rn containing F . Then

dimB F = dimB F and dimB F = dimB F.

Proof. For k ∈ N, let {B1, B2, ...Bk} be a finite collection of balls of radius δ in Rn.
The union of all these balls is a closed set. Thus, since F is the smallest closed set
containing F , these balls form a δ-cover of F if and only if they also form a δ-cover of
F . Hence, we conclude that Nδ(F) = Nδ(F), which implies that dimB F = dimB F
and dimB F = dimB F .

27

Example 4.17. Let us show that, if F = {0, 1, 1
2
, 1

3
, ...} is a compact subset of R,

then dimB F = 1
2
. To do this, we will show that dimB F ≥ 1

2
and dimB F ≤ 1

2
, then

1

2
≤ dimB F ≤ dimB F ≤

1

2
,

hence dimB F = dimB F = dimB F = 1
2
.

Let us start by proving that dimB F ≥ 1
2
. Let 0 < δ < 1

2
and k ∈ N∗, so that

1
(k−1)k > δ ≥ 1

k(k+1)
.

The distance between each couple of points in {1, 1
2
, ... 1

k
} is at least 1

k−1 −
1
k

=
1

(k−1)k > δ. This implies that any set U of diameter at most δ, covers at most one
of the points {1, 1

2
, ... 1

k
}. Hence, to cover F , we need at least k sets of diameter at

most δ, which implies that Nδ(F) ≥ k.
Moreover, if δ → 0, then k →∞, because 1

(k−1)k > δ ≥ 1
k(k+1)

.

By Definition 4.1 (a), we obtain

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≥ lim

k→∞

log(k)

log(k(k + 1))

= lim
k→∞

log(k)

log(k2(1 + 1
k
))

= lim
k→∞

log(k)

2 log(k) + log(1 + 1
k
)

=
1

2
.

Let us now show that dimB F ≤ 1
2
. We choose δ as above and this time, we choose

k ∈ N∗ so that 1
(k−1)k ≥ δ > 1

k(k+1)
. We see that k + 1 intervals of length δ cover

the interval [0, 1
k
]. However, this leaves out k − 1 points of F (the ones in] 1

k
, 1]),

that we cover with another k − 1 intervals. Hence, we found k + 1 + k − 1 = 2k
intervals that cover F . This implies that Nδ(F) ≤ 2k, thus by Definition 4.1 (b)
and by similar calculations as above, we get

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ 1

2
.

We conclude, as desired, that 1
2
≤ dimB F ≤ dimB F ≤ 1

2
, thus dimB F = 1

2
.

Example 4.18. Let us calculate the box-counting dimension of F =
{

0, 1, 1
4
, 1
9
, ...
}
.

We start by giving an upper bound for the lower box-dimension. Let δ > 0 and

28

k ∈ N such that 1
(k−1)2k2 > δ ≥ 1

k2(k+1)2
.

The distance between each couple of points in
{

1, 1
4
, 1
9
, ..., 1

k2

}
is at least 1

(k−1)2−
1
k2

=
2k−1

(k−1)2k2 ≥
1

(k−1)2k2 > δ. This implies that every set U of diameter at most δ, covers
at most one of the points in

{
1, 1

4
, 1
9
, ..., 1

k2

}
.

Hence, to cover F , we need at least k sets of diameter at most δ, which implies that
Nδ(F) ≥ k.

By Definition 4.1 (a), we obtain

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≥ lim

k→∞

log(k)

log(k2(k + 1)2)

= lim
k→∞

log(k)

log(k4(1 + 1
k
)2)

= lim
k→∞

log(k)

4 log(k) + 2 log(1 + 1
k
)

=
1

4
.

Let us now show that the upper bound of the lower box-dimension is the same as
the lower bound of the upper box-dimension. We choose δ as above and k ∈ N∗ so
that 1

(k−1)2k2 ≥ δ > 1
k2(k+1)2

. With similar reasoning as in the previous example, we
find k + 1 + k − 1 = 2k intervals that cover F . This implies that Nδ(F) ≤ 2k, so
that by Definition 4.1 (b), and by similar calculations as above,

dimB F = lim
δ→0

log(Nδ(F))

− log(δ)
≤ 1

4
.

Thus, dimB F ≤ 1
4
≤ dimB F . By definition, dimB F ≥ dimB F , hence we obtain

dimB F = dimB F = dimB F =
1

4
.

4.2 Comparing the Hausdorff and the box-counting dimen-
sion

After having examined the box-counting dimension and also looked at the Hausdorff
dimension, we notice that they have similar properties, that is why in this subsection,
we will compare the two dimensions.

Proposition 4.19. For every non-empty bounded F ⊂ Rn

dimH F ≤ dimB F ≤ dimB F.

29

Proof. The second inequality follows from the Definition 4.1, therefore it suffices to
prove the first inequality.
Let s ≥ 0, such that 1 ≤ Hs(F) = limδ→0Hs

δ(F). By Definition 3.1, of the
s-dimensional Hausdorff measure, we have that 1 ≤ limδ→0Hs

δ(F) ≤ δsNδ(F),
where Nδ(F) represents the smallest number of δ-covers of F . Hence, applying
the logarithm gives us 0 ≤ log(δsNδ(F)) = s log(δ) + log(Nδ(F)). This implies that
− log(δ)s ≤ log(Nδ(F)). If we take the lower limit as δ goes to 0 and divide by
− log(δ), we get

s ≤ lim
δ→0

log(Nδ(F))

− log(δ)
.

Since this is true for every s ≥ 0 such that Hs(F) > 1, it is also true for dimH F =
sup{s ≥ 0 : Hs(F) =∞}. Thus we conclude that dimH F ≤ dimB F.

In general, the inequality between the Hausdorff and the box-counting dimension
is strict, however there are some cases for which the dimensions are equal. One
example is the middle third Cantor set. In Example 3.7, we found dimH F = log(2)

log(3)

and in Example 4.5, we found dimB F = dimB F = dimB F = log(2)
log(3)

.

Let us now look at the properties they have or have not in common.
One common property is that they are both invariant under bi-Lipschitz transfor-
mations, see Propositions 3.5 and 4.14.
Also, if we compare Propositions 3.4 and 3.6 to Propositions 4.11 and 4.15, we see
that both dimensions have a lot of common properties, listed below.

• Monotonicity, geometrical invariance and they have the same range of values.

• If E is an open non-empty subset of Rn, then both dimensions of E are exactly
n.

• If we consider smooth m-dimensional sets or curves, then the Hausdorff and
the box-dimension are both equal to m ∈ N.

• The box and the Hausdorff dimension of a projection of a non-empty subset
of Rn is smaller than the dimension of the subset itself.

However, they also have different properties, for instance, the upper box-dimension
is finitely stable, whereas the Hausdorff dimension is countably stable. Also, the
box dimension of finite sets is 0, whereas for the Hausdorff dimension, the countable
sets that have 0 dimension.

One of the advantages of the box-counting dimension compared to a lot of other
fractal dimension is that it is easier to calculate. Mainly the box-counting version of
the definition is very often used for experimentations, as we will see in the following
section.

30

5 Box-counting method
The box-counting method is an approach used to calculate the fractal dimension of
different surfaces F , for example a coastline or the Sierpiński triangle. The first step
of the box-counting method is to draw a grid over the figure you want to measure
and count the number of boxes that contain parts of the given figure. Next, we
repeat this procedure for different sizes of the boxes in the grid. The last step in the
box-counting method gives an approximation of the the box-dimension. In order to
do this, we consider (3) and apply the logarithms to obtain

log(Nδ(F)) ' log(c)− s log(δ),

where Nδ(F) denotes the number of boxes of side-length δ that intersect F , c is
a positive constant, δ > 0 is a real number and s ≥ 0 denotes the box-counting
dimension. We see that this is an equation of the form y = mx+ c, i.e. of a straight
line, where y = log(Nδ(F)), x = log(δ) and m = −s. Thus, in order to find the
box dimension, we need to find a linear regression of log(Nδ(F)) on log(δ) and the
opposite of the slope will be the box-counting dimension.
In order to understand how this method works, let us illustrate it by the following
example.

Example 5.1. Let us calculate the box-count dimension of a circle using the box
counting method. We start by drawing grids of different scales over the circle.

(a) (b)

31

(c) (d)

(e)

Figure 8: (a) A circle with a grid consisting of 1 square. (b) We split the squares
from the previous grid in half. (c) We split the previous squares again in half, so
that the squares have a length of 1

4
. (d) We draw a grid consisting of squares of

length 1
10
. (e) We consider a grid with squares of side length 1

20
.

Counting the number of squares that intersect the line of the circle in each grid gives
the following table

Scale 1 1
2

1
4

1
10

1
20

Number of boxes 1 4 12 20 44

Table 1: The number of boxes that intersect the circle in each figure above.

Now, applying the logarithms gives the following

32

log(δ) 0 −0, 6931 −1, 3862 −2, 3026 −2, 9957

log(Nδ) 0 1, 3862 2, 4849 2, 9957 3, 7841

Table 2: Applying the logarithms in the previous table.

Finally, we use Sage, to obtain that the polynomial regression is given by

log(Nδ(F)) = −1, 1997 · log(δ) + 3, 9660,

so that s = 1, 1997. However, since a circle is a smooth one-dimensional curve, the
box-dimension should be 1. Clearly, in order to have a more accurate result, we
should have chosen more grids, where the squares have a smaller size. However this
is already a good approximation, considering the large scales we used.

The Sage Code used to visualise the grids is the following
1 import numpy as np
2 c = circle ((0,0) ,5.2 , edgecolor = ’black’, thickness = 3 , axes =

False) #plot circle
3 grid = Graphics ()
4 k=1 #choose k, the side -length of the squares
5 for i in range(-10,10,k): #start constructing the grid
6 for j in range(-10,10,k):
7 grid += polygon2d ([(i,j) ,(i,j+k),(i+k,j+k) ,(i+k,j)], fill=

False)
8 c + grid

Listing 1: Code used to plot the circle and the grid.

We start by plotting a circle with centre (0, 0) and radius 5,2. Then, we construct
the grid by starting with an empty graphic that we extend with squares of side
length k, where k is a randomly chosen integer.

After having counted the number of squares intersecting the circle by hand, we use
another algorithm that allows us to find the linear regression. First, we create a
list with the scales and a list with the number of squares, then compute the linear
regression of the logarithm of the number of squares on the logarithm of the scales
using the following code

1 import numpy as np
2 scales =[1 , 1/2 , 1/4 , 1/10 , 1/20] #scales , length of the

squares of the grids
3 N=[1 , 4 , 12 , 20 , 44] #number of squares that were

counted by hand
4 poly=np.polyfit(np.log(scales),np.log(N) ,1) #given by log(N) =

Polyfit [0]* log(scales)**1 + Polyfit [1]
5 print(’The fitting polynomial of N is:’, poly[0],’x + ’, poly [1]’)

Listing 2: Code used to compute the linear regression.

33

5.1 Box-counting algorithm that uses the data of the image

Calculating the box dimension of a given figure, using the box-counting method can
be pretty exhausting. This is because, in order to get a good approximation we
have to consider a lot of different grids, so that we have to count a lot of squares,
which is tiring if we do it by hand. For this reason, we try to write an algorithm
that calculates the box dimension. The following Sage Code, that is given from [10],
allows us to do so.

1 import cv2 as cv
2 import numpy as np
3 import pylab as pl
4

5

6 ###################### First step: including picture and turn it
grey

7 def rgb2grey(rgb):
8 r, g, b = rgb[:,:,0], rgb[:,:,1], rgb[:,:,2]
9 grey = 0.2989 * r + 0.5870 * g + 0.1140 * b #mix colours

to create grey
10 return grey
11

12 image=rgb2grey(pl.imread("name.png")) #chose the picture with the
figure we want to calculate the box dimension

13

14 ###################### Second step: Detect and count the pixels
that are not zero

15 pixels =[]
16 for i in range(image.shape [0]): #go over the height of the

image
17 for j in range(image.shape [1]): #go over the length of the

image
18 if image[i,j] > 0: #check if image is white
19 pixels.append ((i,j))
20

21 Lx = image.shape [1]
22 Ly = image.shape [0]
23 pixel=pl.array(pixels)
24

25 ###################### Third step: Give the scales and count the
number of boxes that cover the image

26 scales=np.logspace(-2, 5.5,num=20, endpoint= False , base=np.exp(1))
27 N=[]
28 for scale in scales: #go over

each pixel
29 H, edges = np.histogramdd(pixel , bins=(np.arange(0,Lx ,scale),np

.arange(0,Ly,scale))) #analyse data of the image
30 N.append(np.sum(H>0))
31

34

32 table ([(scales[i],N[i]) for i in [0.. len(N) -1]], frame = True ,
header_row =[’Scale ’,’N’]) #create table

33

34 ###################### Fourth step: Give a linear fit for the
number of boxes

35 Polyfit = np.polyfit(np.log(scales),np.log(N) ,1)
36 print(’\n The fitting Polynomial of N is:’, Polyfit [0],’x + ’,

Polyfit [1],’\n’)
37

38 ###################### Fifth step: Plot the linear fit and the
number of boxes

39 pl.plot(np.log(scales),np.log(N), ’o’, mfc=’none’)
40 pl.plot(np.log(scales), np.polyval(Polyfit ,np.log(scales)))
41 pl.xlabel(’log $\\ delta$ ’)
42 pl.ylabel(’log N’)
43 pl.savefig(’Graph.pdf’)
44

45 ###################### Last step: determine dimension
46 print(’\n The Box dimension is given by’, -Polyfit [0])

Listing 3: Algorithm that gives the box dimension of a figure by analysing its data
in a histogram.

The above algorithm consists of six steps:

Step 1: (Lines 6-13). The goal of the first step is to include the picture, that
contains the figure of which we want to know the dimension, and turn it
grey. In order to do this, we start by defining a function named rgb2grey,
which takes as a variable the array rgb, describing the colours of the given
image. This function starts by assigning r to rgb[:,:,0], the red pixels of
the image, and similarly, it assigns g to the green pixels and b to the blue
pixels of the image. Then, it assigns to grey, the colour that is obtained
by mixing a certain amount of red, green and blue together. This function
then returns the colour grey, this means that the array describing colours
introduced in the function is now an array describing grey-scales.

Then, in line 12, we are going to apply the above defined function to the im-
age of the figure of which we want to calculate the dimension. We start by
"reading" the picture, which is done with the function pl.imread(’name
of the image.png’), to obtain an array containing every information of
the image. The result of the application of the function to the inserted
picture is called image.

Step 2: (Lines 14-24). After turning the colours into grey-scales, we come to the
second step, where we create a list containing the position of every non-
white pixel. In order to do this, we start with an empty list, named pixels

35

to which we add items during a for-loop. In this loop, we have a variable
i, that goes from 0 to the end of the height of the picture, which is given
by image.shape[0]. In order to go over every pixel in the whole image,
we also need to go over the length of the image, that is why we create
another for-loop with the variable j, that starts at 0 and ends at the end
of the length of the picture, which is given by image.shape[1]. Then, in
this double-loop, we check if the pixels are white or not, by considering
the case if image[i,j]>0. Here, image[i,j] is the pixel at height i and
length j and if it is positive, then it is not white. Hence, if the above case
is true, we add the point (i,j) to the list of pixels that are not white, by
writing pixels.append((i,j)).

In line 21 and 22, we name Lx the length of the image and Ly the height of
the image. Lastly, for this step, in line 23, we transform the list of couples
containing the positions of the non-white pixels into an array, so that we
can do operations with these pixels and the image, which is also given by
an array.

Step 3: (Lines 25-33).This is the most important step, because here, we con-
sider, illustratively speaking, boxes of different sizes and count how many
of them contain grey pixels. We start by giving a list with the scales, that
represent the "side-length" of the different "boxes"; in Section 4 denoted
by δ.

We notice that for a better result, we need as many scales as possible, that
is why we consider a logarithmic scale, which allows us to display a large
number of numerical data. In Python, np.logspace(start, stop, num,
endpoint, base) returns numbers that are evenly spaced in a logarithmic
scale. Here, we use this function, with a start at -2, end at 5.5, contain-
ing 20 values and the base is np.exp(1), which is the exponential e. The
list scales, given in line 26, contains the returned values of this function,
which are given by ek, for all the 20 k’s between −2 and 5.5.

In line 27, we create an empty list N, which will later be completed with,
"the number of boxes intersecting the image".

The main part of this step, is the for-loop that goes from line 28 to line
30. The variable of this loop is scale, which goes over all the values in
the list scales, created in line 26. Next, we will need to "draw boxes of
length scale" and count how many of them "contain non-white pixels".

In order to do this, let us recall that a multidimensional histogram allows us
to look at the frequencies of given data by grouping it into bins ("classes"

36

or "buckets") of equal width. This grouping creates a grid of bins over
the data and these bins represent the "boxes" of length δ of the grid that
we "draw" on the image. In Python, such a multidimensional histogram
is obtained from np.histogramdd(sample, bins), where samples corre-
sponds to the data that needs to be analysed and bins is the sequence
containing the arrays that describe the bin edges for each dimension of
the data. Here, we want to analyse the pixels of the image, therefore the
sample will be the array pixel. Since the image is two-dimensional (it
has a length and a height), bins will be a sequence containing two ar-
rays, one that describes the edges along the length of the image and one
that will describe the edges along the height of the image. In Python,
np.arange(start, stop, step) returns an array with values that are
evenly spaced with a distance of step. The array that we want is one with
the values that go from 0 to the end of the length Lx (resp. height Ly) of
the image with a distance of scale between them, therefore we use the
array np.arrange(0, Lx, scale) (resp. np.arrange(0, Ly, scale)).
The variable bins will be the sequence containing these two arrays.

As we have chosen the variables of the histogram, we can evaluate the data
of the image by executing in line 29 H, edges = np.histogramdd(pixel,
bins=(np.arange(0, Lx, scale), np.arange(0, Ly, scale))).

For H, this will return the data contained in bins, i.e. the positions of the
non-white pixels that are in the bins. If there is no data in a given bin,
then H will be 0, therefore, in order to get the number of bins that contain
data, we sum every non-empty H, and we add it to the previously created
list N, by writing N.append(np.sum(H>0)).

When the for-loop is finished, N will be a list containing the results of the
sums of all the non-zero histograms. That is, the elements of N will be the
number of bins of different sizes that contain data.

In order to have a better visualisation, we create a table in line 32, illus-
trating the items of scales and the items of N, so that we see how many
bins contain data for the different scales.

Step 4: (Lines 34-37). The goal of this step is to find the linear fit for the
logarithms of the items in N compared to the logarithms of the corre-
sponding scales. In order to do this, we approximate the points that have
as y-coordinate the logarithm of an item of N and as x-coordinate the
logarithm of the corresponding scale, by a polynomial of degree 1. In
Python, Polyfit=np.polyfit(np.log(scales), np.log(N),1) returns
a list with the coefficients of such a polynomial. In line 37, we simply

37

print a sentence explaining what the equation of this polynomial looks
like.

Step 5: (Lines 38-44). This step simply consists of plotting all the points that
have as coordinates the logarithms of the items of N and the logarithms
of the scales, as well as the line that approximates these points. In line
41, we plot the points, in line 42 the line and in line 43 and 44 we add
descriptions to the axes.

Step 6: (Lines 45-46). Finally, in the last step, we just print a sentence saying
what the box-dimension is.

This concludes the explanation of the algorithm, so let us now look at its outputs.

5.1.1 Outputs

The goal of this thesis is to find the box-dimension of the borders of Luxembourg
and we hope that the algorithm of this section allows us to determine it. In order to
check that the obtained result will be correct, we will test the algorithm for figures
of which we know the fractal dimension.

Example 5.2 (Testing the Algorithm for a circle and explaining the output). In
Proposition 4.11 (f), we learned that the box-dimension of a one-dimensional curve
is 1, so that the dimension of a circle is 1. Let us check if the algorithm gives the
same result.
We choose the following picture, that was created with Geogebra.

Figure 9: Image of a circle.

Running the algorithm with this picture, we obtain the following output.

38

Figure 10: Output of the algorithm for a circle.

The output of the algorithm is a table containing the scales and the numberN of bins
containing some data, followed by two sentences, one giving the fitting polynomial
and the other one giving the box dimension. In the table, we observe that the first
six values of N are the same, and they decrease from the seventh value to the end.
The most important part of the output is the obtained box dimension, which is in
this example more or less 1.27.

Let us now look at the result obtained for another curve of which we know the
dimension.

Example 5.3. As said in the introduction, Lewis Fry Richardson found out that
coastline of Great Britain has a fractal dimension of 1.25, so let us check what value
the algorithm gives us. We choose the following picture of the coastline of Britain.

Figure 11: The coastline of Great Britain, [11].

For the coastline of Great Britain, the algorithm returns a box-dimension of approx-
imately 1.61.

Remark 5.4. We notice that in both examples, the obtained approximation of the
box dimension is not very precise. In the first example, we get an error of 0.27 and

39

for Britain, the error is 0.36. There are several reasons for this "bad" approximation,
that we will discuss in the following subsection.

Even if the algorithm is not very precise, we will still use it to get an approximation
of the box dimension of the borders of Luxembourg.

Example 5.5. Let us choose the following picture of Luxembourg.

Figure 12: The borders of Luxembourg, [12].

The obtained approximation for the box-counting dimension of this figure is 1.57.

Remark 5.6. This result is less than the result obtained for the coastline of Great
Britain, which implies that the borders of Luxembourg are "smoother", i.e. they
have less edges than the coastline of Britain. This is in fact noticeable when looking
at the pictures of both countries. However, this clearly isn’t the "real" approximation
of the dimension of Luxembourg, because this dimension is larger than the real
dimension of Britain, which would contradict the observation that Luxembourg is
"smoother".

All the images we used until now, only contained the outline of the countries, but we
don’t always have good pictures of a country that contains only the outline. Let us
check what happens if we choose a picture containing more information, for example
where all the cantons are included and the country itself is coloured.

40

Example 5.7. Let us choose for example the following picture of Luxembourg.

Figure 13: Luxembourg with a subdivision into cantons, [13].

For this picture of Luxembourg, we obtain a dimension of 1.60.

Remark 5.8. This dimension is larger than the dimension of Luxembourg in Figure
12. The reason for this difference is either because of the picture, that it has different
borders or a different quality, or because the program added the borders of the
cantons and maybe even the blue coloured parts to the parts of the image of which
we want to calculate the dimension.

We see that this algorithm works but it still has some issues that we will discuss in
the following subsection.

5.1.2 Problems

The algorithm we looked at in this section has several problems. One of these issues,
which is also the most important one is that the obtained dimension is not precise.
One of the reasons for this, may be that the quality of the pixels is not good enough.
Another reason could be that the outlines in the image don’t actually correspond
to the real outlines of the figure in real life, for example, if the edges of a country
are not represented correctly.

Another problem, that could also be one of the reasons why the resulting dimension
is not precise, is that the first few values of the number of bins don’t change. In
order to visualise this observation, let us look at the graphic representation of the
linear regression that the program gives us.

41

(a) (b) (c)

Figure 14: Linear regression of the circle (a), of Britain (b) and of Luxembourg (c).
In the three images, the blue circles represent the points that have as coordinates
the logarithms of the scales and the logarithm of the number of bins, and the orange
line represents the linear approximation of these points.

Just as in the table obtained from the algorithm, we notice that, for small scales, the
logarithm of the number of boxes seems to be constant. The reason for this could
be that, the scales have become smaller than the size of a pixel, but the algorithm
cannot consider particles that are smaller than one pixel. This would imply that
it continues to consider the smallest scale possible and hence it counts the same
number of bins containing the same data.

Another issue is that the included picture has to already contain nothing but the
outline of the figure. This means that, for example in order to find the box dimension
of the borders of Luxembourg, the image cannot have, for example, a subdivision
into cantons or anything similar, one example that shows this issue is Example 5.7.

The next suggestion, which is not an issue, is that, in order to have a better visu-
alisation of what is happening in the algorithm, it would be nice if the algorithm
returned pictures where the subdivisions and the counted squares are shown.

In the next section, we will improve this algorithm, and find better approximations
of the box dimension.

42

5.2 Box-counting algorithm that uses a plotting of the image

In this section, we will implement an algorithm that, hopefully gives a better ap-
proximation of the box dimension, than the previous one. In order to program it,
we start by trying to plot the box-counting method, that is by drawing a grid over a
given image and then colouring all the squares that are non-empty. The reason why
we start by illustrating the box-counting method is that, if there is an issue, we find
the error in the algorithm more easily, because we see what is wrong in the plot-
ting. After that, we continue by counting the coloured squares and finding a linear
regression of the logarithm of the number of squares compared to the logarithm of
the size of the squares.
The algorithm we construct based on this idea is the following.

1 import cv2 as cv
2 import numpy as np
3 from numpy import *
4 import pylab as pl
5 from PIL import Image
6 from PIL import ImageFilter
7 from PIL import ImageDraw
8 from PIL import ImageOps
9 import matplotlib.ticker as plticker

10 from matplotlib import pyplot as plt
11 import matplotlib.patches as mpatches
12

13

14 ############################### Step 1: Include and edit the
picture

15 Picture=’name.png’
16

17 img = Image.open(Picture).convert(’1’) #convert image to grayscale
18 img.save(’img.png’)
19

20 image=pl.imread(’img.png’) #read image , make array
21 im=plt.imshow(img) #plot image
22 ax = plt.gca() #add axes
23 plt.show()
24

25 ############################### Step 2: Creating a list with the
scales

26 scales =[]
27 scales =[int(min(image.shape [1],image.shape [0])/l) for l in range

(3,100 ,2)]
28 scales=list(dict.fromkeys(scales))
29 for i in range(len(scales)):
30 if scales[i]==1 : scales.remove(scales[i])
31

43

32 ############################### Step 3: Draw the grid , colour and
count the non -empty squares

33 N=[]
34 for k in scales: #Grid
35 xticks = np.arange(0, image.shape [1] , k)
36 yticks = np.arange(0, image.shape [0] , k)
37 xt=ax.set_xticks(xticks)
38 yt=ax.set_yticks(yticks)
39 ax.grid(True , color=’black ’, linestyle=’-’, linewidth =1)
40 ax.patches =[]
41

42 n=0 #colour and count squares
43 for i in range(len(xticks) -1):
44 for j in range(len(yticks) -1):
45 l=xticks[i]
46 m=yticks[j]
47 for (x,y) in [(x,y) for x in range(xticks[i],xticks[i

+1] ,1) for y in range(yticks[j],yticks[j+1] ,1)]:
48 if image[y,x]==0:
49 s=ax.add_patch(mpatches.Rectangle ((l,m), k, k,

facecolor=’red’,edgecolor="none", linewidth =1))
50 n+=1
51 break
52 else: continue
53 plt.show()
54 print(’The number of squares trough which the image passes is:’

,n,’.\n’)
55 N.append(n)
56

57 table ([(scales[i],N[i]) for i in [0.. len(N) -1]], frame = True ,
header_row =[’Scale ’,’N’])

58

59 ############################### Step 4: Find box -dimension
60 Polyfit = np.polyfit(np.log(scales),np.log(N) ,1) #given by log(N) =

Polyfit [0]* log(scales)**1 + Polyfit [1]
61 print(’The fitting polynomial of N is:’, Polyfit [0],’x + ’, Polyfit

[1],’\n’)
62 print(’Hence , the box dimension is equal to’ ,-Polyfit [0],’.\n’)
63

64 ############################### Step 5: Plot linear regression
65 plt.clf()
66 pl.plot(np.log(scales),np.log(N), ’o’, mfc=’none’)
67 pl.plot(np.log(scales), np.polyval(Polyfit ,np.log(scales)))
68 pl.xlabel(’log $\\ delta$ ’)
69 pl.ylabel(’log N’)
70 plt.show()

Listing 4: Algorithm that plots the box-counting method.

44

This algorithm consists of five steps:

Step 1: (Lines 14-24). The aim of this step is to include and edit the input
picture, so that later we can add grids and squares over it. In line 15,
we simply include the picture of the figure of which we want to calcu-
late the dimension and name it Picture. Next, we use the function
Image.convert(mode), that returns an image that is converted to the
desired mode. We choose the mode ’1’, which image is a black and white
picture, that is saved to our files in line 18. Then, in line 20, the algorithm
"reads" the image and creates an array named image, that contains all the
information, such as the length, the height, and the colours (the values
of the pixels), of the image. In the lines 21 to 23, we create a plot that
contains the image and axes.

Step 2: (Lines 25-31). In the second step, we create a list containing all the
scales, i.e. all the side-lengths of the squares that we will draw over the
image. In order to create this list, we start by constructing an empty list
named scales. The items we add to this list are given by the minimum
of the length and the height of the image divided by some integer l, which
takes all the values from 3 up to 100 with a step of 2. For simplification, we
want our scales to be natural numbers, but the results of the divisions that
define the scales, are not necessarily integers. For this reason, we choose
the integer that approximates this result best, by writing int(). In line
27, we add those integers to the list scales. However, these scales are
approximations of the results of divisions, which implies that it is possible
that some scales are repeated. Those repeated elements must be deleted,
by writing list(dict.fromkeys(scales)). It is important to delete the
repeated elements, because else we will consider some scales twice or even
more often, which will falsify the box dimension obtained at the end. Also,
the value 1 cannot be in the list because it is too small, it is impossible to
create a grid with squares of side-length 1 pixel. That is why, in the lines
29 and 30, we create a for-loop, where the variable i goes over all the
elements in the list scales and if one of the elements is equal to 1, then
this item is removed from the list, by writing scales.remove(scales[i]).

Step 3: (Lines 32-58). This step is the most important of all steps. Here, we
draw the grids with squares of different sizes, that we colour and count if
they contain parts of the figure. We start by creating an empty list, that
will later contain the number of coloured boxes at each scale.

Next, we come to the main part of this step, that is the for-loop with
variable k, that goes over all the items in the list scales. In this loop, we

45

draw from line 35 to line 39, a grid consisting of squares of side-length k.
In the lines 35 and 36 we create two arrays that contain the information
for the positions of the lines of the grid. Then, in the lines 37 to 39, we set
these values as the ticks, i.e. the positions of the shown values on the axes
and draw the grid, whose lines pass trough all of these values, coloured
black. In line 40, we set the ax.patches to be empty, in fact these patches
are the squares that will be coloured, but we reset them to be empty, so
that for every new value of k there are no patches from previous values.

In line 42, we set n=0, this will be the number of coloured squares. From
line 43 to line 52, we enter a double for-loop with variables i that goes
from 0 to the last tick on the x-axis and j, starting at 0 and ending at the
last tick of the y-axis. In this double-loop, we set l to be the value of the
ith tick on the x-axis and m will be the value of the jth tick on the y-axis.

In order to understand the next part, let us remark that by "the square on
position (l,m) of the grid", is meant the square that goes from the ith to
the (i+1)th tick on the x-axis and from the jth to the (j+1)th tick on the
y-axis. Using this, it is easy to check that the for-loop starting in line 47,
has as variable the couple (x,y) that goes over all the coordinates of the
pixels in the square on position (l,m).

In this loop, we consider the case if image[y,x]==0, that is, if the pixel
with coordinates (x,y) is black. If this is the case, then, in line 49, we add
a red coloured patch ("sticker") that is shaped like a rectangle of length
and width k on position (l,m). The rectangle that describes this patch
is simply the square on position (l,m) of the grid. In addition, in this
case, we increase n of 1, this means that for each square that is coloured,
n increases by 1. In line 51, we break the loop, so that we only consider
the first non-white pixel in the square because else, we would not count
the number of coloured squares, but the number of coloured pixels, which
is clearly larger.

If this case is not true, that is if the pixel at position (x,y) is white, then
we continue with the loop.

In the lines 53 to 55, we simply show the plot that is obtained after adding
the patches, we print a sentence giving the number of squares that have
been coloured and we add n to the list N. The last part of this step consists
of creating a table containing the scales and the number of coloured boxes.

Steps 4-5: (Lines 59-70). The last steps of this algorithm are exactly the same
as the last steps of the algorithm given in Listing 3.

46

5.2.1 Outputs

For the same reasons as in Section 5.1, we start by testing the algorithm for a circle.

Example 5.9. Choosing the same picture as in Example 5.2, we will obtain an
output with more than ten pictures. Including every picture here below would take
a lot of space, therefore we only add some of the most interesting pictures.

(a) (b)

(c) (d)

(e) (f)
(g)

Figure 15: Output of the algorithm for a circle. In (g), the blue dots are the points
where the x-coordinates are the logarithms of the scales and the y-coordinates are
the logarithms of the corresponding number of coloured squares, and the orange line
represents the linear approximation of these points.

The output of the algorithm consists of several images with different grids. The
squares of these grids that contain parts of the circle are coloured red and we see
that on the last output image, the red squares almost look like the circle itself. After

47

every image, comes a sentence describing how many squares are red. The algorithm
also gives a table with the number of coloured squares N and the corresponding
scales. Below the table follow two sentences, one giving the equation of the fitting
polynomial and one giving the box dimension of the circle. Finally, there is a graphic
representation illustrated in Figure 15g.

Remark 5.10. We observe that this algorithm gives a box dimension of approxi-
mately 1.03, which is very good. The error of the obtained dimension compared to
the real dimension is only 0.03, which is almost optimal, compared to the error that
we obtained in the previous algorithm.

It seems like this algorithm gives us the right approximation of the box dimension,
so let us test it for a two more figures, before applying it to Luxembourg.

Example 5.11. The two figures for which we will test the algorithm are the coastline
of Great Britain and the Sierpiński triangle. For the British coastline, we use the
same image as in the example for the previous algorithm, namely Figure 11 and for
the Sierpiński triangle, we use the following picture.

Figure 16: Image of the Sierpiński triangle, [14].

The algorithm returns a box dimension of 1.26 for the coastline of Britain and 1.58
for the Sierpiński triangle.

Remark 5.12. We know that in reality, Britain has a box dimension of 1.25 and
from Example 4.6, we know that the dimension of the Sierpiński triangle is equal to
log(3)
log(2)

≈ 1.58. Hence, even for more complex, more edgy and less smooth figures, the
algorithm returns dimensions that are very close to the real values.

Example 5.13 (Applying the algorithm to Luxembourg). Since this algorithm
seems to be working really good, we can apply it to the borders of Luxembourg. If
we run the algorithm with the same picture as in Example 5.5, that is Figure 12,
we obtain the following output.

48

(a) (b)

(c) (d)

Figure 17: Some of the output images of the algorithm for the borders of Luxem-
bourg.

The first observation we make is that the figure created by the red squares approaches
the shape of Luxembourg very accurately. This implies that the box-counting di-
mension obtained for the borders of Luxembourg, which is 1.05, is a good approxi-
mation. We also notice that this value is close to 1, which means that the borders
of Luxembourg don’t have a lot of deep edges.

Example 5.14. As in Example 5.7, let us check if the algorithm still returns a good
approximation if the image contains more information, such as names or subdivi-
sions. We chose the same image, that is Figure 13, and get the following two images
in the output.

Figure 18: Two of the output images of the algorithm for Luxembourg with subdi-
vision into Cantons.

49

We see that when converting the input image to a black and white image, the fields
that are coloured in a darker blue become black. This implies that, when colouring
the squares through which the figure passes, the algorithm also considers these black
fields. Since the algorithm calculates the linear regression with a larger number of
squares compared to the number of squares obtained by only colouring the borders,
the obtained box dimension is also larger, it is 1.72.

After having described the algorithm and having looked at the outputs of it, we can
look at the problems that it still has.

5.2.2 Problems

The algorithm gives pretty good approximations of the box dimension, which implies
that there are not a lot of problems. However, the program is not perfect. The first
problem that we notice is that in an image that has small borders, not every square
that contains the figure is coloured. One example where this happens is for Figure
11 of Britain.

Figure 19: Two of the images of the output for Figure 11.

In the two pictures above, we see that the last row and the last column of squares
have not been coloured, which means that they have not been considered. Since
this falsifies the final result, this problem needs to be solved. We notice that this
mainly happens for larger squares, since for smaller squares, there is enough space
in the border for the squares to be white. Thus, to solve this issue, we start with
a smaller scale, which doesn’t fake the end result, since for the linear regression we
do not need every scale.

Another problem that occurs is that the input picture can only contain the figure
and no other annotation, dark colouring or subdivision. This problem has already
occurred in the algorithm in Section 5.1. Let us see what other problems they have
in common, by comparing them in the next section.

50

5.3 Comparing the two algorithms

First, we compare the codes of the algorithms, where the main difference is that one
algorithm works with an array that describes the image and evaluates the informa-
tion with a histogram and the other one plots the image and modifies the plotting
to find the squares containing parts of the figure. To compare the outputs of the
two algorithms, let us consider the following table.

Circle
Great Britain

coastline
Luxembourg

borders
Luxembourg
with cantons

Algorithm 1 1.27 1.61 1.57 1.60

Algorithm 2 1.03 1.26 1.05 1.72

Exact value 1 1.25 ? ?

Table 3: The obtained box dimensions in the two algorithms.

We see immediately that the algorithm of Section 5.2 gives better approximations
of the box dimension than the algorithm of Section 5.1. Another amelioration of
the output, that is not visible in this table, is that the second algorithm looks nicer
because it returns pictures where it is visible how the figure is approached.

51

6 Conclusion
The goal of this thesis was to understand the notion of box-counting dimension and
then find the box dimension of the borders of Luxembourg. To do this, we started by
introducing the Coastline paradox that explains why we use fractal dimension, and
we also introduced the Hausdorff dimension, which is one of the fractal dimensions.
After having introduced these notions, we defined the box-counting dimension, we
proved some properties and we looked at some examples by calculating the box di-
mension of some figures, such as the Sierpiński triangle or the middle third Cantor
set.
The notion of box dimension allowed us to understand the box-counting method,
which is a technique that can be used to get the box dimension of given figures. We
used this method to program two algorithms that allowed us to calculate the box
dimension of the borders of Luxembourg. The first algorithm didn’t give precise
enough solutions, that is why we know that the dimension for the borders of Lux-
embourg obtained from this algorithm is not correct. However the second algorithm
gave good approximations, and we obtained a box-counting dimension of approxi-
mately 1.05 for the borders of Luxembourg.

Even if the second algorithm seems to have completed the task, this project is not
entirely over yet. One could still improve this algorithm by trying to make it work
for images containing more information than just the figure. This can be done by
editing the input image more, so that all these details disappear after the conversion.

Another idea to continue this project is to apply Proposition 4.4, which states that
instead of boxes, we can take whatever object we want. One could try to create
an algorithm that approaches the image with circles, triangles, hearts or even stars.
Every shape can be used for this experimentation.

Also, the box-counting dimension is not only defined for objects who’s dimension is
between one and two, i.e for figures that can be represented in a picture. An idea
would be to try to find an algorithm that allows us to calculate the box dimension
of three- or more-dimensional objects.

We can see that there is still a lot to explore and a lot of experimentations that one
can do with this box-counting dimension.

52

References
[1] Kenneth Falconer. Fractal Geometry - Mathematical Foundations and Appli-

cations (Third edition). University of St Andrews, UK 2014.

[2] Coastline paradox. Wikipedia, April 2021. Page Version ID: 1020705980.

[3] Jono Hey. Sketchplanations.
https://sketchplanations.com/the-coastline-paradox.

[4] How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional
Dimension. Wikipedia, November 2020. Page Version ID: 988885247.

[5] Sinead Sukerta. Youtube. https://youtu.be/zfcVVweWFQI.

[6] Lipschitz continuity. Wikipedia, February 2021. Page Version ID: 1009048104.

[7] Similarity (geometry). Wikipedia, April 2021. Page Version ID: 1017264704.

[8] Isometry. Wikipedia, April 2021. Page Version ID: 1020387069.

[9] Affine transformation. Wikipedia, March 2021. Page Version ID: 1011191615.

[10] Francesco Turci. francescoturci.net, March 2016.
https://francescoturci.net/2016/03/31/box-counting-in-numpy/.

[11] John Hoggard. How long is the Coast of Great Britain?, May 2021.
http://www.aiecon.org/staff/shc/course/annga/RR/main/How%20Long%
20is%20the%20Coast%20of%20Great%20Britain.htm.

[12] Dominik. Shutterstock.com, Image number: 1163284309.
https://www.shutterstock.com/fr/search/luxembourg+outline.

[13] Webvertormaps.com, 2021.
https://webvectormaps.com/blank-map-of-luxembourg-by-cantons/.

[14] Sierpiński triangle. Wikipedia, May 2021. Page Version ID: 1021110752.

53

https://sketchplanations.com/the-coastline-paradox
https://youtu.be/zfcVVweWFQI
https://francescoturci.net/2016/03/31/box-counting-in-numpy/
http://www.aiecon.org/staff/shc/course/annga/RR/main/How%20Long%20is%20the%20Coast%20of%20Great%20Britain.htm
http://www.aiecon.org/staff/shc/course/annga/RR/main/How%20Long%20is%20the%20Coast%20of%20Great%20Britain.htm
https://www.shutterstock.com/fr/search/luxembourg+outline
https://webvectormaps.com/blank-map-of-luxembourg-by-cantons/

	Introduction
	Preliminaries
	Introduction to fractal dimension
	The Coastline Paradox
	Hausdorff measure and dimension
	Hausdorff measure
	Hausdorff dimension

	Box-counting dimension
	Definitions and Properties
	Comparing the Hausdorff and the box-counting dimension

	Box-counting method
	Box-counting algorithm that uses the data of the image
	Outputs
	Problems

	Box-counting algorithm that uses a plotting of the image
	Outputs
	Problems

	Comparing the two algorithms

	Conclusion
	References

