Counting Points on Curves over Finite Fields

The project lets you experiment with numbers of solutions of an equation in two variables over a finite field.

Let \mathbb{F}_{q} denote a finite field with q elements with $q=p^{m}$ with p prime. We look at solutions of equations in two variables (or three) and do heuristics by computer and try to find formulas for the number of these.

Example 1. Consider the equation $y^{2}+y=x^{3}+1$ over \mathbb{F}_{2}. Let $N_{n}=\#\{(x, y): x, y \in$ $\left.\mathbb{F}_{2^{n}}: y^{2}+y=x^{3}+1\right\}+1$. Calculate N_{1}, N_{2}, N_{3} and so on. Can you find experimentally a formula for N_{n} ? Try first odd n.

Example 2. Consider the equation $x^{3}+y^{3}+z^{3}=0$ in projective space \mathbb{P}^{2} over the field \mathbb{F}_{p}. (That is, we only look at $(x, y, z) \neq(0,0,0)$, and (x, y, z) and $(c x, c y, c z)$ with $0 \neq c \in \mathbb{F}_{p}$ are considered the same.) Find experimentally a formula for the number of solutions for $p \equiv 2(\bmod 3)$. That is, find for fixed prime $p \equiv 2(\bmod 3)$

$$
\#\left\{(0,0,0) \neq(x, y, z): x, y, z \in \mathbb{F}_{p}: x^{3}+y^{3}+z^{3}=0\right\} /(p-1)
$$

(Can you prove the formula that you guessed?) Then look at the case $p \equiv 1(\bmod 3)$. How does the answer for $p \equiv 1(\bmod 3)$ differ from the answer for $p \equiv 2(\bmod 3)$? Try to do heuristics.

Example 3. As in Example 2 consider now the equation $x^{3} y+y^{3} z+z^{3} x=0$ in projective space \mathbb{P}^{2}, but now over \mathbb{F}_{2}. Let

$$
N_{n}=\frac{1}{2^{n}-1} \#\left\{(0,0,0) \neq(x, y, z): x, y, z \in \mathbb{F}_{2^{n}}: x^{3} y+y^{3} z+z^{3} x=0\right\}
$$

Find N_{1}, N_{2}, N_{3} and so on. Find a formula for N_{k} for the case that $k \not \equiv 0(\bmod 3)$. For $k \equiv 0(\bmod 3)$ write $N_{3 k}=\left(2^{3 k}+1\right)-a_{k}$. Can you express a_{k+2} as a linear combination of a_{k} and a_{k+1} ? Find a general formula (recursive relation).

Example 4. Consider the equation $y^{2}+y=x^{5}+1$ over \mathbb{F}_{2}. Let $N_{n}=\#\left\{(x, y) \in \mathbb{F}_{2^{n}}\right.$: $\left.y^{2}+y=x^{5}+1\right\}+1$. Find N_{1}, N_{2}, N_{3} and so on. Can you find a recursive relation for the numbers $a_{k}=N_{k}-\left(2^{k}+1\right)$? Or a closed formula for the N_{k} ?

Example 5. Consider the equation $y^{2}+y=x^{3}+x+1$ over \mathbb{F}_{2}. Let $N_{n}=\#\{(x, y): x, y \in$ $\left.\mathbb{F}_{2^{n}}: y^{2}+y=x^{3}+x+1\right\}+1$. Calculate N_{n} for $n=1,2, \ldots$. Find an algebraic number α such that $N_{n}=2^{n}+1-\alpha^{n}-\bar{\alpha}^{n}$. What is the absolute value of α ?

Example 6. Go back to Example 2. Can you find an algebraic number α of absolute value p such that $N_{n}=p^{n}+1-\alpha^{n}-\bar{\alpha}^{n}$ for $p=7$? And for $p=13$? And in general? Which upper and lower bound does it give for N_{n} ?

Example 7. Consider now $y^{2}+y=x^{5}+1$ over \mathbb{F}_{2}. Let $N_{n}=\#\left\{(x, y): x, y \in \mathbb{F}_{2^{n}}\right.$: $\left.y^{2}+y=x^{5}+1\right\}+1$. Calculate N_{n} for $n=1$ and $n=2$. Find algebraic numbers α_{1}, α_{2} of absolute value 2 such that $N_{n}=2^{n}+1-\alpha_{1}^{n}-\bar{\alpha}_{1}^{n}-\alpha_{2}^{n}-\bar{\alpha}_{2}^{n}$ for $n=1,2$. Does this formula hold for $n>2$?

Example 8. Try to do as in Example 7, but now for $y^{2}+y=x^{7}$ over \mathbb{F}_{2}. Calculate N_{1}, N_{2}, N_{3}, etc. Can you find α_{1}, α_{2} ? If not, with how many α does it work?

Now you can experiment!

