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The present document can be regarded as an introductory exploration

to the p-adic number system as far as its metric and properties are

concerned. The p-adic integers form a subset of the set of all p-adic

numbers. The latter in turn constitute an extension of the �eld of

rational numbers, analogous to the completion of the rationals by the

real numbers with respect to the standard ordinary metric. In con-

trast, the p-adic extension arises from the use of the counter-intuitive

p-adic metric. It's worthwhile noting that the interest of p-adic num-

bers relies upon the numerous applications they have, ranging from the

resolution of Diophantine equations to pending problems in Quantum

Mechanics.

This brief report will nonetheless limit the scope of its content to the

presentation of the fundamental properties of p-adic numbers � and

in particular those of p-adic integers. Proofs of the proposed choice

of statements as well as devious propositions will therefore be omitted

for the sake of simplicity, conferring more space to the discussion of

the project itself. Departing from the de�nition of the p-adics, we will

turn our focus to a feasible geometric approach to their visualisation.
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1 P-adic norm and expansion

1.1 P-adic metric

De�nition 1.1. Consider an arbitrary non-zero rational number x. We can
express it as

x = pvp(x) · m
n

(1)

with m,n ∈ Z and p the p-adic taking into account such that p,m and n are
relatively prime.
The expression vp(y) is known as the p-valuation of y ∈ Z, i.e. the mapping
vp : Z→ N giving the power of the considered prime number p in the prime
decomposition of y.
Since x = a

b ∈ Q\{0}, we can de�ne the p-valuation of x as

vp(x) = vp(
a

b
) = vp(a)− vp(b).

Now we can de�ne the p-adic absolute value of x as

|x|p =
1

pvp(x)
. (2)

It is clear that |x|p ≥ 0 for all x ∈ Q\{0}.
Using property (1) the p-adic absolute value can easily be determined for
any p in each case after prime decomposition has been applied to the p-adic
number being considered.

In addition we adopt the convention following which the p-adic absolute value
of 0 will simply be 0 itself.

We will now introduce the general classi�cation of p-adic numbers, which is
discussed in more detail in the next heading of the present section.

De�nition 1.2. We de�ne P to be the set of representatives of the positive ir-
reducible elements in Z up to association. The elements of P = {2, 3, 5, 7, ...}
correspond precisely to prime numbers.
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De�nition 1.3. A p-adic number is a number that can be written as a p-adic
expansion for some p ∈ P (see the next section "Expansion representation"
for the de�nition and properties of a p-adic expansion).

De�nition 1.4. A p-adic integer is a p-adic number with the property that
its p-adic expansion satis�es n ≥ 0, with n ∈ Z the starting term in the sum
of the expansion (see (6) for a clear, precise de�nition).

De�nition 1.5. The set of all p-adic integers will be noted as Zp whereas
that of all p-adic numbers will be noted as Qp with p ∈ P.

We will take for granted that Zp is a ring and Qp a �eld.

Corollary 1.6. If x ∈ Zp, then |x|p ≤ 1 for all x and all p ∈ P.

Proof. Straightforward from the de�nition of p-adic absolute value.

Example 1.7. Take x = 162/13. Suppose we want to �nd its 3-adic absolute
value (hence p=3). Expressed in the form (1), we obtain

x = 81 · 2
13

= 34 · 2
13

which means |x|3 = 1
34 .

What about its 13-adic absolute value ? It will simply be |x|13 = 13 because

x = 13−1 · 162

thus

|x|13 =
1

13−1
= 13.

The p-adic absolute value where p divides neither the numerator nor the
denominator is trivially 1 since p0 = 1.

De�nition 1.8. The p-adic norm is derived naturally from the p-adic abso-
lute value as

dp : Q2 → Q≥0

(x, y) 7→ dp(x, y) := |x− y|p.

The completion of Q by the p-adic norm gives rise to the p-adic numbers
discussed all along, i.e. all number belonging to Qp.
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As a matter of fact it is only with respect to the p-adic norm and no other that
Qp completes Q. In clearer terms, every Cauchy sequence in Qp converges
in Qp with respect to the p-adic norm but not every Cauchy sequence in Qp

will converge in Qp with respect to any other norm.

Proposition 1.9. The p-adic norm forms a norm in Q.

Proof. For all x and y in Q, for all prime p, we must prove three statements,
namely

|x|p = 0⇔ x = 0, (3)

|xy|p = |x|p|y|p, (4)

|x+ y|p ≤ |x|p + |y|p. (5)

The �rst statement (3) follows plainly by the de�nition of the p-adic norm.
Some computations are required to prove (4) :

|xy|p =
1

pvp(xy)
=

1

pvp(x)+vp(y)
=

1

pvp(x) · pvp(y)
= |x|p|y|p.

The statement holds trivially for y = 0 or x = 0.

Finally, to prove the triangle inequality in (5), we use another property of
the p-adic norm, i.e. the strong triangle inequality

|x+ y|p ≤ max{ |x|p, |y|p},

as follows

|x+ y|p =
1

pvp(x+y)
= p−vp(x+y)

≤ max{ p−vp(x), p−vp(y)} = max{ |x|p, |y|p}

≤ |x|p + |y|p.

And it is trivially true for x = 0 or y = 0.
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Remark 1.10. Due to the peculiar de�nition of distance of the p-adic norm,
we have a remarkable property. Namely, numbers that �nd themselves "far
apart" in terms of the standard metric become counter-intuitively very close
to each other when seen with the p-adic metric.

Let us take the numbers 2, 3 and the large number 28814 in the 7-adic number
system as an example. It turns out 28814 is "closer" to 2 than 3 is. Indeed,

|2− 28814|7 = | − 28812|7 = | − 74 · 13|7 =
1

74
< 1

whilst
|2− 3|7 = | − 1|7 = 1.

This can be pictorially appreciated in �gure (2.4), which corresponds to a
7-adic representation. The numbers 28814 and 2 occupy almost the same
place whereas 3 does not share that proximity.

Theorem 1.11 (Ostrowski). The standard absolute value and the p-adic
absolute value are the only non-trivial absolute values in Q up to equivalence.
(We understand by trivial absolute value the absolute value given by 0 when
taking 0 as an argument and 1 otherwise.)

For a formal proof of Ostrowski's theorem we refer the reader to the publi-
cation "p-adic Numbers: An Introduction", by Fernando Q. Gouvêa.

Proposition 1.12. Let q ∈ Q\{0}. Then it follows that the product of the
standard metric and the p-adic metric for any p ∈ P will equal 1, i.e.

|q| ·
∞∏
p≥2

p prime

|q|p = 1

where | · | designates the standard norm and | · |p the p-adic norm.

6



Proof. Let |q| = |x|
|y| where x, y ∈ Z\{0}. As the prime decomposition of

positive integers is unique, we can write

|x| =
∞∏
p≥2

p prime

pvp(x) and |y| =
∞∏
p≥2

p prime

pvp(y)

where vp designates the p-valuation. Then

|q| =
∞∏
p≥2

p prime

pvp(x)−vp(y) =
∞∏
p≥2

p prime

pvp(q)

By de�nition of the p-adic norm, we obtain

|q| ·
∞∏
p≥2

p prime

|q|p =
∞∏
p≥2

p prime

pvp(q) ·
∞∏
p≥2

p prime

1

pvp(q)
= 1.
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1.2 Expansion representation

De�nition 1.13. Let x be an arbitrary rational number, p ∈ P and n ∈ Z.
A p-adic expansion of x is a series of terms with integral coe�cients of the
form

x =
∞∑
k=n

akp
k (6)

where ak ∈ {0, 1, 2, ..., p− 1} for all k, as de�ned above, and with the funda-
mental property that any partial sum converges with respect to the p-adic
norm (proved below). It is obtained from x by successively/inductively solv-
ing polynomial equations (determined only by the rational x being consid-
ered) modulo prime powers, though this will be explained in detail later on
in the next section.

The p-adic number's expression through the use of this in�nite series is called
a p-adic expansion. Each ak for k ∈ {n, n+1, n+2, . . .} is known as a p-adic
digit.

Despite the fact that p-adic expansions are by de�nition in�nite, they possess
an important property, making the de�nition of Zp concrete and precise. It
is discussed in the next proposition.

Proposition 1.14. Let bN ∈ Zp and p ∈ P. The sequence of partial sums of

bN :=
∑N

k=n akp
k where ak ∈ {0, 1, 2, ..., p− 1} and N,M, n ∈ N forms a

Cauchy sequence with respect to the p-adic norm.
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Proof. We need to prove that

∀ε > 0,∃L,∀M,N ≥ L : |bM − bN |p < ε. (7)

Without loss of generality, pick M ≥ N . Then it follows that

|bM − bN |p = |
M∑

k=N+1

akp
k |p

≤ max
k∈[N+1,M ]

|akpk|p

= max
k∈[N+1,M ]

|ak|p ·
1

pk

≤ max
k∈[N+1,M ]

1

pk

=
1

pN+1
.

Given ε > 0, choose L such that 1
pL+1

< ε. This proves (7).

9



1.3 Finding p-adic digits

With the de�nition of the p-adic norm we are now in a position to consider
how to retrieve the coe�cients of a p-adic expansion. In essence, a p-adic
expansion is an approximation of the p-adic number being considered (with
p ∈ P) with respect to the p-adic norm.

Proposition 1.15. First de�ne Ap := Zp∩Q where Q is the algebraic closure
of Q. Now consider Zp ∩Q = Z(p) (with Z(p) = {a/b ∈ Q | gcd(a, b) = 1}).

It follows that Z(p) ( Ap.

An example of the above fact is observed when p = 5 and we look at the one
of the zeroes of f(X) = X2 + 1, namely

√
−1.

Lemma 1.16 (Hensel's Lemma). Consider a function f(X) ∈ Z[X] and
p ∈ P. If there exists an integer x0 such that

f(x0) ≡ 0 mod p (8)

and

f ′(x0) 6≡ 0 mod p (9)

are statis�ed, then there exists α =
∑∞

k=n akp
k such that f(α) = 0.

The proof of Hensel's Lemma stems from Number Theory, and requires the
manipulation of some mathematical tools belonging to both Topology and
Algebra. For this reason we will dismiss the proof to the publication "The p-
adic completion of Qp and Hensel's Lemma", by Theodor Christian Herwing.
Yet we will use Hensel's Lemma in the following assertion.
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Proposition 1.17. Consider α ∈ Zp to be the p-adic integer we aim to
expand as a p-adic series.

Consider the map
Irr : Ap → Z[X]

α 7→ Irr(X)

mapping α ∈ Ap to its minimal polynomial with integral coe�cients.

We claim the following : if Irr(α) ≡ 0mod p and Irr′(α) 6≡ 0mod p, then
Hensel's lemma applies and we can obtain the p-adic expansion by solving
the polynomial equation modulo prime powers of p.

Assuming Hensel's lemma holds for Irr(α), we can use induction to illustrate
how the algorithm functions.

By the de�nition given in (6), α can be written as
∑∞

k=0 akp
k, which implies

that

Irr(α) ≡ 0 mod p = Irr(
∞∑
k=0

akp
k) ≡ 0 mod p = Irr(a0) ≡ 0 mod p.

(10)
Solve for a0. Now we turn towards the computation of a1 by looking
at 0mod p2 such that

Irr(α) ≡ 0 mod p2 = Irr(
∞∑
k=0

akp
k) ≡ 0 mod p2 = Irr(a0 + a1 · p) ≡ 0 mod p2.

(11)

By inspection, a1 can be retrieved.
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Suppose an−1 has been computed. Then an is given by solving

Irr(α) ≡ 0 mod pn+1 = Irr(
∞∑
k=0

akp
k) ≡ 0 mod pn+1 =

Irr(a0 + a1 · p+ a2 · p2 + · · ·+ an · pn) ≡ 0 mod pn+1. (12)

A more e�cient, though more intricate approach consists in computing a0
as above and making use of the Taylor expansion in the neighbourhood of a0
to �nd the remaining coe�cients.

Again to apply the algorithm we must assume Hensel's lemma holds.

We proceed as follows. The Taylor expansion in the neighbourhood of a0 of
(11) yields

Irr(a0) + Irr′(a0) · (a0 + a1 · p− a0) +
1

2!
Irr′′(a0) · (a0 + a1 · p− a0)2

+
1

3!
Irr′′′(a0) · (a0 + a1 · p− a0)3 + · · · ≡ 0 mod p2

= Irr(a0) + Irr′(a0) · (a1 · p) ≡ 0 mod p2

which under division by p becomes

Irr(a0)

p
+ Irr′(a0) · a1 ≡ 0 mod p.

Assume a1 = ε, Irr′(a0) = β and γ = Irr(a0)
p

with β and γ known. We wind
up with the simple linear relation

γ + β · ε ≡ 0 mod p

⇔ ε ≡ −γ
β

mod p

⇔ ε ≡ −γ · β−1 mod p.

Once a1 is known, we shall determine inductively the rest of the coe�cients in
a similar manner as with the inspection approach. That is, we solve repeatedly
the Taylor expansion of (11) as above for each prime power n where n ∈
{2, 3, . . .} such that we obtain the matching an at each step.
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It is important to note that the usefulness of the Taylor expansion relies on
the fact that, for arbitrarily large n, the congruence expression boils down to
a straightforward linear equation that can be handled with relative ease.

As far as the uniqueness of p-adic expansions goes, some remarks have to
be included. Let us place ourselves exclusively in Zp. A p-adic expansion is
unique if ak ∈ Z/pZ � which is the case by the very de�nition of all p-adic
integer. However, the polynomial whose root is the desired p-adic integer
can furnish two or more p-adic expansions when the second condition (9) of
Hensel's Lemma is not veri�ed. This is the case when dealing with double
root polynomials, viz. polynomials with a given root α satisfying

f(α) ≡ 0 mod p

and
f ′(α) ≡ 0 mod p.

Moreover, Hensel's lemma (in particular the condition (9) is necessary since
division by Irr′(α) is used to retrieve the next p-adic digit of the expansion
at each inductive step. If this condition is not satis�ed cases arise where an
in�nite number of p-adic expansions are possible or none are.
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Example 1.18. A p-adic expansion can also be obtained by other means.
Let p = 3, x = 2

5
and n = 0. The p-adic expansion of x can be derived as

follows (provided x be a rational number).

2

5
= 1− 3

1

5
−4

5
= 1− 3

3

5

−1

5
= 1− 3

2

5
−3

5
= 0− 3

1

5

−2

5
= 2− 3

4

5
−1

5
= 1− 3

2

5
· · ·

Continuation of these elementary calculations inde�nitely yields the in�nite
series

2

5
= 1 · 30 + 1 · 31 + 2 · 32 + 1 · 33 + 0 · 34 + 1 · 55 + · · ·

which consists of the 3-adic expansion of 2
5
.

Example 1.19. Suppose
√
−1 is the number we want to consider the 5-adic

expansion of.
We de�ne Irr(x) = x2 + 1 as described above. Bringing Irr down to the
form (10) it follows that

a20 + 1 ≡ 0 mod 5

and we can conclude by inspection that a0 = 2 or a0 = 3.
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Case 1 : Assume a0 = 2. Then we move on to step two and (11) takes the
form

(2 + 5 · a1)2 + 1 ≡ 0 mod 25

⇔ 25 · a21 + 20 · a1 + 5 ≡ 0 mod 25

⇔ 20 · a1 + 5 ≡ 0 mod 25.

Notice a1 = 1 is the sole solution standing.

Case 2 : Assume a0 = 3. Again we move on to step two and (11) translates
into

(3 + 5 · a1)2 + 1 ≡ 0 mod 25

⇔ 25 · a21 + 30 · a1 + 10 ≡ 0 mod 25

⇔ 30 · a1 + 10 ≡ 0 mod 25.

And this time a1 = 3 is the sole solution standing.

All an, n ∈ {2, 3, . . .} will be determined in a unique way hereafter. The
choice of one expansion or the other has no consequences on the analytical
properties of the p-adic number being considered.

The precise reason why in this speci�c example two expansions take form is
further commented in (2.4).
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1.4 Shorthand notation

There exists several widespread notations employed to represent p-adic digits
in a concise manner. Most of them are written from right to left by con-
vention. We will adopt this convention and represent the p-adic sequences
accordingly.

De�nition 1.20. Let x ∈ Qp and let x =
∑∞

k=n akp
k be its p-adic expansion.

The p-adic notation of x is given by

x = · · · an+5 an+4 an+3 an+2 an+1 an
p
. (13)

Furthermore, if x is also a p-adic integer, its expansion is replaced by

x =
∞∑
k=n
n≥0

akp
k

from which we can always pick n = 0 (since any coe�cient can simply equal
0). Doing thus its p-adic notation will be

x = · · · a5 a4 a3 a2 a1 a0
p
. (14)

Example 1.21. Recall the p-adic integer in (1.18), with p = 3.

Its 3-adic expansion will be

2

5
= · · ·101211 3

with an in�nite development on the left side of the shorthand notation.
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2 Visualisation

The heart of the project will be resumed in this section. The central facet
of the project consists of devising a program capable of graphically repre-
senting the p-adic metric (for any given p). The section serves also as guide
to demonstrate how to set up and use the program. Furthermore, the rela-
tions between the norm of any two representable p-adic numbers can be seen
through the proposed choice of graphic examples at the end of the section.

Note : The program was only tested on Ubuntu and Lubuntu. This guide
should work identically on other Debian-based Linux OS's. Elsewhere, one
needs di�erent commands to achieve the same e�ect.

2.1 Prerequisites

The program was coded in SageMath, a mathematical software based on
the Python programming language. It is intended to be launched through
a Linux terminal, and uses LATEX in order to generate a pdf �le containing
the visualisation of the desired p-adic integer and the corresponding norm
(de�ned earlier). For the program to run properly, one needs the following.

• A Linux OS.

• The SageMath programming software (available at http://www.sagemath.
org/).

• A distribution of the document preparation system LATEX(the TEXLive
distribution is available at https://www.tug.org/texlive/)

17

http://www.sagemath.org/
http://www.sagemath.org/
https://www.tug.org/texlive/


2.2 Setting up the program

Let "Padic.sage" be the �le containing the code of the program, and let
"/home/F" be the path of the folder containing that �le.

1. Open your terminal and give the command "cd /home/F". Doing so
will change the directory you are currently working in to the one you
indicated.

2. Type "sage", and then hit "Enter" in order get into the environment
where you can execute sage commands.

3. Using "attach("Padic.sage")" will then enable you to use the com-
mands de�ned in the program and described in the next subsection.

2.3 Using the program

The program automatically creates a pdf �le in its root folder. That �le will
contain a �gure visualising p-adic integers and norms. The user can give
instructions in the form of parameters, which will be respected during the
program's execution. A user command must be of the form

padicPolygon(p, levels, rotation, labelling, size (optional), poly (optional))

• p : This represents the prime number considered in the de�nition of the

p-adic integers, and the p-adic norm. It also works with non-prime num-

bers, but the geometric �gure will lose its relation to p-adic integers as a

consequence.

• levels : Corresponds to a positive or zero integer, with which the user

can indicate how many levels of polygons they want. The program is subject

to the convention that level 0 corresponds to a single polygon.
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• rotation : Given by the user as an angle in radians, this parameter de-

termines the orientation of the polygons. Consider the circumscribed circle

C of the biggest polygon. Let O be its centre. De�ne a coordinate system

such that C is the unit circle. Let A be the point (1, 0), and P a summit of

the biggest polygon. Then rotation is the angle between (OA) and (OP ).

• labelling : Giving true as a value for this boolean will add the p-adic

expansion of the corresponding integer to each point of the polygons. Giving

false as a value will do no such thing.

• size : This optional real number will adjust the size of the polygon with

respect to its labels. The default value is 10.

• poly : Let x be a root of this polynomial. The p-adic expansion of x will

be calculated, and its location inside our �gure will be approximated, and

marked with a red dot (approximated meaning that the integer with the

same p-adic expansion up to the level indicated by the user will be chosen).

The size of the dot will also be a�ected by the value of the parameter size.

Note regarding the optionality of two arguments : There are three choices

on how many of the two last arguments the user can indicate, they are listed below.

• If none of the last two arguments are given, their default values will be

chosen. (10 for size and 0 for poly)

• If one of the last two arguments are given, that value will be assigned to

size, and poly will receive its default value.

• If both arguments are indicated, they will be a�ected to size and poly

respectively.
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2.4 Some visualisations of p-adic norms

A common method to represent integers is by equidistant points on a line. In this

way, the conventional norm in Z is visualised. The distance between two integers

is equal to the number of those equidistant segments between these points. Our

aim is to apply a similar visualisation with the p-adic norm.

Suppose the side of the biggest polygon is of length 1. Then the side of the second

biggest polygon is of size 1
p , that of the third biggest of size 1

p2
, and so on.

Let a, b ∈ R. The p-adic distance between a and b, |a − b|p is equal to the length

of the side of the smallest polygon containing a and b.

Let x ∈ N≥0, and x =
∑n

k=0 akp
k its p-adic expansion up to the order n ∈ N≥0.

Then the labels in the following �gures are of the form: [a0, a1, ..., an]

It is also possible to compute a p-adic expansion of some numbers that are not

positive integers or positive numbers, for instance the 3-adic expansions of negative

integers such as −1, quotients such as −1
2 , irrational numbers such as

√
7 or 5

√
5.

Even the 5-adic expansion of complex numbers such as
√
−1 exist.

The expansion of a ∈ Zp can be determined by the simplest polynomial with

integral coe�cients of root a. Note that such a polynomial can have other roots

too. Looking back to example (1.19), we notice that the polynomial x2+1 has the
roots

√
−1 and −

√
−1 (in C). So from that polynomial, it is possible to obtain

two di�erent expansions, one of which will be the expansion of
√
−1, and the other

that of −
√
−1. However, it is impossible to determine which expansion belongs to

which number, it is simply a matter of convention.
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[0, 0, 0]

[0, 0, 1] [0, 0, 2]

[0, 1, 0] [0, 1, 1]

[0, 1, 2]

[0, 2, 0]

[0, 2, 1]

[0, 2, 2]

[1, 0, 0] [1, 0, 1]

[1, 0, 2]

[1, 1, 0]

[1, 1, 1]

[1, 1, 2]

[1, 2, 0]

[1, 2, 1] [1, 2, 2]

[2, 0, 0]

[2, 0, 1]

[2, 0, 2]

[2, 1, 0]

[2, 1, 1] [2, 1, 2]

[2, 2, 0] [2, 2, 1]

[2, 2, 2]

Figure 1: 3-adic integers, level 2

21



[2, 0, 0, 1, 0, 0]

Figure 2: approximate location of 5
√
5 in the representation of 3-adic integers,

level 5

22



[0, 0, 0]

[0, 0, 1]

[0, 0, 2] [0, 0, 3]

[0, 0, 4]

[0, 1, 0]

[0, 1, 1] [0, 1, 2]

[0, 1, 3]

[0, 1, 4]

[0, 2, 0] [0, 2, 1]

[0, 2, 2]

[0, 2, 3]

[0, 2, 4]

[0, 3, 0]

[0, 3, 1]

[0, 3, 2]

[0, 3, 3]

[0, 3, 4]

[0, 4, 0]

[0, 4, 1]

[0, 4, 2]

[0, 4, 3] [0, 4, 4]

[1, 0, 0]

[1, 0, 1] [1, 0, 2]

[1, 0, 3]

[1, 0, 4]

[1, 1, 0] [1, 1, 1]

[1, 1, 2]

[1, 1, 3]

[1, 1, 4]

[1, 2, 0]

[1, 2, 1]

[1, 2, 2]

[1, 2, 3]

[1, 2, 4]

[1, 3, 0]

[1, 3, 1]

[1, 3, 2]

[1, 3, 3] [1, 3, 4]

[1, 4, 0]
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[2, 1, 0]
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[2, 1, 4]
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[3, 1, 0]

[3, 1, 1]

[3, 1, 2]

[3, 1, 3] [3, 1, 4]

[3, 2, 0]

[3, 2, 1]

[3, 2, 2] [3, 2, 3]

[3, 2, 4]

[3, 3, 0]

[3, 3, 1] [3, 3, 2]

[3, 3, 3]

[3, 3, 4]

[3, 4, 0] [3, 4, 1]

[3, 4, 2]

[3, 4, 3]

[3, 4, 4]

[4, 0, 0]

[4, 0, 1]

[4, 0, 2]

[4, 0, 3] [4, 0, 4]

[4, 1, 0]

[4, 1, 1]

[4, 1, 2] [4, 1, 3]

[4, 1, 4]

[4, 2, 0]

[4, 2, 1] [4, 2, 2]

[4, 2, 3]

[4, 2, 4]

[4, 3, 0] [4, 3, 1]

[4, 3, 2]

[4, 3, 3]

[4, 3, 4]

[4, 4, 0]

[4, 4, 1]

[4, 4, 2]

[4, 4, 3]

[4, 4, 4]

Figure 3: 5-adic integers, level 2
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[1, 0, 0, 0]

Figure 4: approximate location of
√
−1 or −

√
−1 in the representation of

5-adic integers, level 3
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Figure 5: 7-adic integers, level 2
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Figure 6: 11-adic integers, level 3
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Figure 7: 23-adic integers, level 2
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