

BOUNDED COHOMOLOGY AND VOLUME RIGIDITY

EXERCISE 1. Use the continuous maps

$$C_b(G^n, \mathbb{R}) \xrightleftharpoons[\tau^n]{\rho^{n-1}} C_b(G^{n-1}, \mathbb{R})$$

defined by

$$\begin{aligned} (\rho^{n-1} f)(g_1, \dots, g_{n-1}) &:= f(e, g_1, g_1 g_2, \dots, g_1 g_2 \cdots g_{n-1}) \\ (\tau^n f')(g_1, \dots, g_n) &:= \pi(g_1) f'(g_1^{-1} g_2, g_2^{-1} g_3, \dots, g_{n-1}^{-1} g_n) \end{aligned}$$

for $f \in C_b(G^n, \mathbb{R})^G$ and $f' \in C_b(G^{n-1}, \mathbb{R})$ to give a non-homogeneous definition of continuous bounded cohomology.

EXERCISE 2. Compute

- (1) $H_{cb}^0(G, \mathbb{R})$
- (2) $H_{cb}^1(G, \mathbb{R})$

EXERCISE 3. Let $\mathcal{QM}(G, \mathbb{R})$ be the space of *quasimorphisms* of G , where $f : G \rightarrow \mathbb{R}$ is a quasimorphism if it satisfies

$$\sup_{g_1, g_2 \in G} |f(g_1 g_2) - f(g_1) - f(g_2)| < +\infty.$$

Show that

$$\ker\{H_{cb}^2(G, \mathbb{R}) \rightarrow H^2(G, \mathbb{R})\} \cong \mathcal{QM}(G, \mathbb{R}) / (\ell^\infty(G) + \text{Hom}(G, \mathbb{R}))$$

is an isomorphism of vector spaces.

EXERCISE 4. Let \mathbb{F}_2 be the free group in two generators.

- (1) Show that $H^2(\mathbb{F}_2, \mathbb{R}) = 0$;
- (2) Let $w \in \mathbb{F}_2$ be a reduced word and let $\theta_w : \mathbb{F}_2 \rightarrow \mathbb{Z}$ be the function that to $x \in \mathbb{F}_2$ associates the number of times the word w appears in x as a subword (with overlapping). Show that the function $f_w : \mathbb{F}_2 \rightarrow \mathbb{Z}$ defined by

$$f_w(x) := \theta_w(x) - \theta_{w^{-1}}(x)$$

is a quasi-morphism.

- (3) Try to use Part (2) to show that $H_b^2(\mathbb{F}_2, \mathbb{R})$ is infinite dimensional.
- (4) Show that $H_b^2(\mathbb{F}_2, \mathbb{R})$ is infinite dimensional by showing that there is an injection

$$\ell^\infty(\mathbb{Z}) \hookrightarrow H_b^2(\mathbb{F}_2, \mathbb{R}).$$

[*Hint:* Let $\sigma \in \ell^\infty(\mathbb{Z})$ be an odd sequence, that is $\sigma(-n) = -\sigma(n)$. If $\mathbb{F}_2 = \langle a, b \rangle$ and $x = a^{k_1}b^{k_2} \cdots a^{k_{n-1}}b^{k_n} \in \mathbb{F}_2$ with $k_2 \cdots k_{n-1} \neq 0$, show that the map $g_\sigma : \mathbb{F}_2 \rightarrow \mathbb{R}$ defined by

$$g_\sigma(x) = \sum_{j=1}^n \sigma(k_j)$$

is a quasi-morphism.]

EXERCISE 5.

- (1) Let $x \in S^1$ be fixed. Show that the function $c_x : \text{Homeo}^+(S^1)^3 \rightarrow \mathbb{Z}$ defined by

$$c_x(g_0, g_1, g_2) := \begin{cases} 1 & \text{if } (g_0x, g_1x, g_2x) \text{ is positively oriented} \\ -1 & \text{if } (g_0x, g_1x, g_2x) \text{ is negatively oriented} \\ 0 & \text{otherwise} \end{cases}$$

is a cocycle.

- (2) Show that if $y \in S^1$, the cocycles c_x and c_y are cohomologous.
- (3) Show that $[c] = -2e_b$.

EXERCISE 6. Let G be a locally compact group and (X, μ) a G -space with a quasi-invariant measure such that G acts transitively on n -tuples of points in X . Let $a, b : X^{n+1} \rightarrow \mathbb{R}$ be G -invariant cocycles such that

$$a|_{X^{n+1} \setminus X^{(n+1)}} = b|_{X^{n+1} \setminus X^{(n+1)}} = 0,$$

where $X^{(n+1)}$ is the subset of X^{n+1} consisting of $(n+1)$ -tuples with pairwise distinct elements. Show that if $a = b$ almost everywhere, then $a = b$ everywhere.

EXERCISE 7. Show that if G is amenable then $H_{\text{cb}}^n(G, \mathbb{R}) = 0$ for all $n \geq 1$.