Let V be a finite dimensional vector space over R and let R(V') be the space of inner
products on V; positive definite bi-linear forms. Two inner products are conformally
equivalent if Iy = AI; for some A € R*. Let C(V) be the quotient space of conformal
structures on V. The tangent space T7R(V') at an inner product I will the space sym-
metric bi-linear forms on V. Using I we can make a “change of type” to identify TrR(V)
with symmetric endomorphisms of V.

1.

Given A, B € End(V) define (A, B) by tr(A*B) where A* is the transpose. Show

that this defines an inner product.

. Every element of End(V) has a canonical decomposition into a multiple of the

identity, a traceless symmetric element and an anti-symmetric element. Show that
this decomposition is orthogonal with respect to the inner product.

. We have identified TyR(V) with End®™ (V). The quotient map R(V) — C(V)

gives a map on tangent spaces Ty R(V) — Tj7C(V). Show that the kernel of this
map is multiplies of the identity and therefore Tj;C(V) is canonically identified
with End®™o(V'), the traceless symmetric endomorphisms.

. Let g, be a Riemannian metric and g, = e?* g, be another metric in the same

conformal class (where X is a smooth function on M). If V is the Riemannian
connection for g, and V is the Riemannian connection for g, show that

VxY =VxY + (XN)Y + (YA X — g,(X,Y)VA

. Now let M be a surface with K, and K, the associated curvatures. Show that

K, =e K, — As)).

. Let (M, g) be Riemannian manifold with constant sectional curvature = —1. Show

that
g(R(X,Y)Z, W) = g()/a Z)g(Xv W) —g(X, Z)g(I/Va Y)

where R is the curvature tensor.

Let (M,g) be a Riemannian manifold with constant sectional curvature = —1.
Define E =TM &R to be the direct sum of the tangent bundle with R and define
a metric g on F by

g((X, f), (Y, h)) = g(X,Y) — fh

and a connection by

Vz(X. f) = (VzX + [Z,9(Z,X) + Zf).



Show that V is a connection.

(a)
(b) Show that it is compatible with g.
(c) Show that it is flat.

)

(d) Given a point p € M let U be a neighborhood such that E is trivial over U.
The flat connection gives a projection E(U) — E, to the fiber. Show that the
section of E given by

g~ (0,1)

composed with the projection gives an isometric embedding of U into the
Lorentzian metric on E,. Conclude that (M, g) is locally isometric to hyper-
bolic space.

8. Let (3, g) be a 2-dimensional Riemannian manifold and B: TY — T'Y a symmetric
bundle endomorphism that satisfies both the Gauss and Codazzi equations. Define
the bundle £ =T & R & R with metric

g((X, fo, f1), (Y, ho, h1)) = g(X,Y) + foho — filn
and connection
Vx(Y, f,h) = (VxY — fBX +hX,Xf+g(BX,Y),g(X,Y) + Xh).

As in previous problem check that V is a flat connection, compatible with g and
use this to show that (3, g) locally embeds in hyperbolic space with shape operator
B.



Let f: Q — C be locally univalent (i.e. f’ is nowhere zero). Then the Schwarzian

s16)= (767) -3 (767) -

One can calculate all the usual properties of the Schwarzian directly from this formula but
we will try to give a more motivated definition where the properties are more transparent.

Define My: 2 — PSLoC to be the osculating Mobius transformation to f. That is
M¢(z) is the unique M&bius transformation that agrees with f to second order:

My (2)(2) = f(2), (Mf(2))'(2) = f'(2) and (M(2))"(2) = f"(2).

The derivative

derivative is

d(Mf): T — TPSLQ(C

is a map from tangent spaces. Each tangent space of PSLsC is canonically identified
with the Lie algebra, sloC. Each tangent space of 2 is canonically identified with C
which has canonical basis 59 . Define a map

M}: Q— SZQC
by

M(2) = d(My). (;) |

1. Define a map w: PSL,C — C by 7(¢) = ¢~1(0). Show that this map is a submer-
sion.

2. Let m: M — N be a submersion and o a vector field on M with flow ¢;. Assume
that there are diffecomorphisms #;: N — N with m o ¢; = ¢ o . Show that
the pushforward m,v is well defined. That is show that if 7(z¢) = m(x1) then
T (x0) = mev(x1).

3. The Lie algebra sisC is the space of left-invariant vector fields of PSLyC. If v is a
left invariant vector field show that the push-forward m,v is well defined.

4. A vector field is conformal if its flow is conformal. Show that v = f % is conformal
if and only if f is holomorphic.

5. Show that a conformal vector field on all of C is of the form (az? + bz + 0)%.
6. Show that (m,v)(z) = (aw? + bw + c)a% for some a,b,c € C.

7. The Lie algebra sl>C is the space of two-by-two complex, traceless matrices. Ex-
plicitly give the isomorphism between sloC and conformal vector fields on C.



8.

10.

11.

12.

Let ¢(z) be a holomorphic family in PSLyC. If we write ¢(z)(w) as a power series,
centered at z, we have

$(2)(w) =) an(z)(w - 2)"
n=0

where the a,(z) are holomorphic functions. If we differentiate with respect to z
this becomes

¢ (2)(w) = Y (an(2)(w — 2)" = nag(z)(w — 2)" ).
n=0

Assuming that ¢(zg) is the identity show that ¢'(zg)(w) is quadratic polynomial
in w and conclude that

e ai(z) = 1;
o a,(z0) =0if n # 1 (these first two only require that ¢(zp) is the identity);
e al(z)=0ifn>3.

. Assume that M¢(zp) is the identity and apply the above result to show that

_ /") 20

Mj(z0) 5 (W= 20)" 5

Given locally univalent maps f: Q@ — C and g: f(Q2) — C show that

Myos(2) = My(f(2)) 0 M (2).

Define a map PSLyC x PSLyC — PSLyC by (¢,¢) = ¢ o ¢. Given (v,w) €
sloC x slyC (where we view v and w as conformal vector fields on C) show that
the derivative of this map at (1, ¢) is given by (v, w) — ¢*v + w.

We can write My, as a composition of maps
Q — f(Q) x PSLyC — PSLyC x PSLyC — PSL,yC

where the first map on the left is z — (f(z), Mf(2)), the second map is (z,¢) —
(My(2),¢) and the last map is the composition map from the previous problem.
Applying the chain rule to this composition show that

401 (2) = F1(2) (M (2))" (My(f(2))) + M (2).



13.

14.

15.

16.

17.

18.
19.

Given ¢ € PSLyC show that M, (z) = M}(2).

Let ¢ = (M{(20))"! be the unique element in PSLyC such that Myor(20) is the
identity and show that

(60" ) 20

!

Consider ((Mf(z0))"tof)(z) as a function of z and let Rf(29) be its third derivative
evaluated at zg. Show that

Rf(2)
5 (w—2) 0

(This is just a rephrasing of the previous problem.)

M}(z) =

Given ¢ € PSLyC let v(w) = (w — ¢(2))? 2. Show that

* o/ 0
(60 (w) = ¢/(2)(w = 2

Show that

, "(2)2Rg(f(z Rf(z 0
gof(z): (f( ) g(f(2 ))+ f( )) (w_z)Q%

Show that Sf(z) = Rf(z) and conclude that S(go f) = Sg(f(2))f'(2)? + Sf(z).

Assume that the domain €2 is the upper half plane U. We can use My to define a
map on the lower half plane L. In particular for z € I define

]‘_‘:LH@

by B
f(z) = Mg(2)(2)-

Show that the Beltrami differential pz(2) = —5JG) and conclude that f is quasi-

2Imz
Sf(z)

Im 2

conformal if and only if
1

5"

(Hint: Assume that My(Zp) is the identity and differentiate the series expansion

My(E)(E) = £ + £ @)D + LG +Z% (= —2)")



