
Let V be a finite dimensional vector space over R and let R(V ) be the space of inner
products on V ; positive definite bi-linear forms. Two inner products are conformally
equivalent if I0 = �I1 for some � 2 R+. Let C(V ) be the quotient space of conformal
structures on V . The tangent space TIR(V ) at an inner product I will the space sym-
metric bi-linear forms on V . Using I we can make a “change of type” to identify TIR(V )
with symmetric endomorphisms of V .

1. Given A,B 2 End(V ) define hA,Bi by tr(A⇤B) where A⇤ is the transpose. Show
that this defines an inner product.

2. Every element of End(V ) has a canonical decomposition into a multiple of the
identity, a traceless symmetric element and an anti-symmetric element. Show that
this decomposition is orthogonal with respect to the inner product.

3. We have identified TIR(V ) with Endsym(V ). The quotient map R(V ) ! C(V )
gives a map on tangent spaces TIR(V ) ! T[I]C(V ). Show that the kernel of this
map is multiplies of the identity and therefore T[I]C(V ) is canonically identified
with Endsym0(V ), the traceless symmetric endomorphisms.

4. Let g� be a Riemannian metric and g⇢ = e2�g� be another metric in the same
conformal class (where � is a smooth function on M). If r is the Riemannian
connection for g� and r̄ is the Riemannian connection for g⇢ show that

r̄XY = rXY + (X�)Y + (Y �)X � g�(X,Y )r�.

5. Now let M be a surface with K� and K⇢ the associated curvatures. Show that

K⇢ = e�2�(K� ����).

6. Let (M, g) be Riemannian manifold with constant sectional curvature = �1. Show
that

g(R(X,Y )Z,W ) = g(Y, Z)g(X,W )� g(X,Z)g(W,Y )

where R is the curvature tensor.

7. Let (M, g) be a Riemannian manifold with constant sectional curvature = �1.
Define E = TM �R to be the direct sum of the tangent bundle with R and define
a metric ḡ on E by

ḡ((X, f), (Y, h)) = g(X,Y )� fh

and a connection by

r̄Z(X, f) = (rZX + fZ, g(Z,X) + Zf).
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(a) Show that r̄ is a connection.

(b) Show that it is compatible with ḡ.

(c) Show that it is flat.

(d) Given a point p 2 M let U be a neighborhood such that E is trivial over U .
The flat connection gives a projection E(U) ! Ep to the fiber. Show that the
section of E given by

q 7! (0, 1)

composed with the projection gives an isometric embedding of U into the
Lorentzian metric on Ep. Conclude that (M, g) is locally isometric to hyper-
bolic space.

8. Let (⌃, g) be a 2-dimensional Riemannian manifold and B : T⌃ ! T⌃ a symmetric
bundle endomorphism that satisfies both the Gauss and Codazzi equations. Define
the bundle E = T⌃� R� R with metric

ḡ((X, f0, f1), (Y, h0, h1)) = g(X,Y ) + f0h0 � f1h1

and connection

r̄X(Y, f, h) = (rXY � fBX + hX,Xf + g(BX, Y ), g(X,Y ) +Xh).

As in previous problem check that r̄ is a flat connection, compatible with ḡ and
use this to show that (⌃, g) locally embeds in hyperbolic space with shape operator
B.
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Let f : ⌦ ! C be locally univalent (i.e. f 0 is nowhere zero). Then the Schwarzian
derivative is

Sf(z) =

✓
f 00(z)

f 0(z)

◆0
� 1

2

✓
f 00(z)

f 0(z)

◆2

.

One can calculate all the usual properties of the Schwarzian directly from this formula but
we will try to give a more motivated definition where the properties are more transparent.

Define Mf : ⌦ ! PSL2C to be the osculating Möbius transformation to f . That is
Mf (z) is the unique Möbius transformation that agrees with f to second order:

Mf (z)(z) = f(z), (Mf (z))
0(z) = f 0(z) and (Mf (z))

00(z) = f 00(z).

The derivative
d(Mf ) : T⌦ ! TPSL2C

is a map from tangent spaces. Each tangent space of PSL2C is canonically identified
with the Lie algebra, sl2C. Each tangent space of ⌦ is canonically identified with C
which has canonical basis @

@z . Define a map

M 0
f : ⌦ ! sl2C

by

M 0
f (z) = d(Mf )z

✓
@

@z

◆
.

1. Define a map ⇡ : PSL2C ! bC by ⇡(�) = ��1(0). Show that this map is a submer-
sion.

2. Let ⇡ : M ! N be a submersion and ṽ a vector field on M with flow �t. Assume
that there are di↵eomorphisms  t : N ! N with ⇡ � �t =  t � ⇡. Show that
the pushforward ⇡⇤ṽ is well defined. That is show that if ⇡(x0) = ⇡(x1) then
⇡⇤v(x0) = ⇡⇤v(x1).

3. The Lie algebra sl2C is the space of left-invariant vector fields of PSL2C. If v is a
left invariant vector field show that the push-forward ⇡⇤v is well defined.

4. A vector field is conformal if its flow is conformal. Show that v = f @
@z is conformal

if and only if f is holomorphic.

5. Show that a conformal vector field on all of bC is of the form (az2 + bz + c) @
@z .

6. Show that (⇡⇤v)(z) = (aw2 + bw + c) @
@w for some a, b, c 2 C.

7. The Lie algebra sl2C is the space of two-by-two complex, traceless matrices. Ex-
plicitly give the isomorphism between sl2C and conformal vector fields on bC.
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8. Let �(z) be a holomorphic family in PSL2C. If we write �(z)(w) as a power series,
centered at z, we have

�(z)(w) =
1X

n=0

an(z)(w � z)n

where the an(z) are holomorphic functions. If we di↵erentiate with respect to z
this becomes

�0(z)(w) =
1X

n=0

(a0n(z)(w � z)n � nan(z)(w � z)n�1).

Assuming that �(z0) is the identity show that �0(z0)(w) is quadratic polynomial
in w and conclude that

• a1(z0) = 1;

• an(z0) = 0 if n 6= 1 (these first two only require that �(z0) is the identity);

• a0n(z0) = 0 if n � 3.

9. Assume that Mf (z0) is the identity and apply the above result to show that

M 0
f (z0) =

f 000(z0)

2
(w � z0)

2 @

@w
.

10. Given locally univalent maps f : ⌦ ! C and g : f(⌦) ! C show that

Mg�f (z) = Mg(f(z)) �Mf (z).

11. Define a map PSL2C ⇥ PSL2C ! PSL2C by ( ,�) 7!  � �. Given (v, w) 2
sl2C ⇥ sl2C (where we view v and w as conformal vector fields on bC) show that
the derivative of this map at ( ,�) is given by (v, w) 7! �⇤v + w.

12. We can write Mg�f as a composition of maps

⌦ ! f(⌦)⇥ PSL2C ! PSL2C⇥ PSL2C ! PSL2C

where the first map on the left is z 7! (f(z),Mf (z)), the second map is (z,�) 7!
(Mg(z),�) and the last map is the composition map from the previous problem.
Applying the chain rule to this composition show that

M 0
g�f (z) = f 0(z)(Mf (z))

⇤(M 0
g(f(z))) +M 0

f (z).
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13. Given � 2 PSL2C show that M 0
��f (z) = M 0

f (z).

14. Let � = (Mf (z0))�1 be the unique element in PSL2C such that M��f (z0) is the
identity and show that

M 0
f (z0) =

(� � f)000(z0)
2

(w � z0)
2 @

@w
.

15. Consider ((Mf (z0))�1�f)(z) as a function of z and let Rf(z0) be its third derivative
evaluated at z0. Show that

M 0
f (z) =

Rf(z)

2
(w � z)2

@

@w
.

(This is just a rephrasing of the previous problem.)

16. Given � 2 PSL2C let v(w) = (w � �(z))2 @
@w . Show that

(�⇤v)(w) = �0(z)(w � z)2
@

@w
.

17. Show that

M 0
g�f (z) =

✓
f 0(z)2Rg(f(z)) +Rf(z)

2

◆
(w � z)2

@

@w
.

18. Show that Sf(z) = Rf(z) and conclude that S(g � f) = Sg(f(z))f 0(z)2 + Sf(z).

19. Assume that the domain ⌦ is the upper half plane U. We can use Mf to define a
map on the lower half plane L. In particular for z 2 L define

f̄ : L ! bC

by
f̄(z) = Mf (z)(z).

Show that the Beltrami di↵erential µf̄ (z) = �Sf(z)
2 Im z and conclude that f̄ is quasi-

conformal if and only if ����
Sf(z)

Im z

����
1

<
1

2
.

(Hint: Assume that Mf (z0) is the identity and di↵erentiate the series expansion

Mf (z)(z) = f(z) + f 0(z)(z � z) +
f 00(z)

2
(z � z)2 +

1X

n=3

an(z)(z � z)n.)
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