
Git for mathematicians

Pieter Belmans
December 4 2024

University of Luxembourg



Plan: become superheroes

1. understand why to use Git
2. learn the entire
commandline tool

3. getting started with Git
4. some fun more advanced
things

1



Why Git?



What is Git?

we won’t be talking about GIT, = Geometric Invariant Theory

Git is a free and open source distributed
version control system designed to han-
dle everything from small to very large
projects with speed and efficiency.

why does a mathematician need “distributed version control”?

2



Tools for collaborative paper writing

maybe you haven’t collaborated yet, but in case you have:
what did you use?

• emailing files back and forth
• Overleaf
• Dropbox

any others?

have you used something beyond Overleaf for LATEX editing?

3



What do you (or I) not like about them?

• lack of conflict resolution
• clutter of temporary files (with Dropbox)
• only with internet access (for Overleaf)
• paid accounts
• no real versioning: arXiv v1, submitted to journal, first
revision, …
(unless you remember to save them at the time, or use
Overleaf’s basic history functionality)

• no diffs: when your coauthor edits things, there is no
description of the changes, and no way to easily see what
has changed

4



What is Git?

Think of it as a much better form of Dropbox (but it’s not that
at all to be honest):

1. never have paper.tex, paperv2.tex, paperv3.tex,
paperv3final.tex, paperv3submitted.tex, …(and
the temporary files)

2. description of changes
3. good handling of conflicts: merge if possible, conflict
markers if not

5



What is Git? (2)

4. diffs
5. decentralised (so without
internet access)

6. …(more advanced use
cases later)

git diff

it has no interactive LATEX editing like Overleaf though: you can
use use your own preferred setup, or sync it up with Overleaf
even

6



What is GitHub?

Git is the software

GitHub is a service (website) to make interactions with Git
easier:

• central place for your projects
• many additional features

alternatives: use university-provided infrastructure
(gitlab.uni.lu), GitLab, BitBucket, …, or self-hosted

more benefits of GitHub:

• GitHub Codespaces: alternative to Overleaf (I don’t use
this, but you could!)

• GitHub Actions: partial alternative to Overleaf (I’m a big
fan, see later)

7



Learning Git



How not to learn Git

• only use Git from the commandline, especially if you never
used it before

• read https://git-scm.com/book/en/v2 from front
to cover, before starting a project

• first learn all about the history of CVS, Subversion,
Mercurial, Git

• make sure to learn all about the “philosophy” and
mathematics behind Git

instead:

• use a GUI (Graphical User Interface)
• just get started! mathematicians just need a few things

8

https://git-scm.com/book/en/v2


Getting started with Git



Workflow

0. write a paragraph or two for your awesome paper
1. stage the changes
2. write a commit message
3. commit

now repeat this process until your paper is ready

let’s see it in action

• commit message is human-readable description of change
• Git also gives you a diff
• commits have a unique identifier

9



Try it yourself

• install GitHub Desktop
• create a repository
• create a text file
• commit the text file

now you are good to work on your own

or:

• https://docs.github.com/en/get-started/
getting-started-with-git/set-up-git

• https://docs.github.com/en/get-started/
start-your-journey/hello-world

• https://skills.github.com/

10

https://docs.github.com/en/get-started/getting-started-with-git/set-up-git
https://docs.github.com/en/get-started/getting-started-with-git/set-up-git
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://docs.github.com/en/get-started/start-your-journey/hello-world
https://skills.github.com/


Collaborating

need a centralised location: GitHub

• push: move your changes to the central location

• pull: move changes from central location to your computer

you need to explicitly do this (unlike Dropbox or Overleaf)

I need a volunteer with GitHub account

• create and clone a repository on GitHub

• pull it

• create a commit

• push it

automatic merging whenever possible!

add collaborators in the settings of a GitHub repository

unlimited private repositories with unlimited collaborators

it’s decentralized: easy to move if you don’t like it anymore

11



Conflicts

if you and collaborator edited the same location in a file:
conflict

you have to resolve the conflict:

• choose between which changes to include
• conflicts are between markers:
>>>>>>>>>>>
first alternative
===========
second alternative
<<<<<<<<<<<

when Git no longer sees these symbols, the conflict is resolved
and you commit the merge

12



More references

• https:
//idrissi.eu/post/git-1-preliminaries,
https://idrissi.eu/post/git-2-theory,
https://idrissi.eu/post/git-3-practice

• https://www.math.cmu.edu/~gautam/sj/blog/
20130929-git-quickstart.html

13

https://idrissi.eu/post/git-1-preliminaries
https://idrissi.eu/post/git-1-preliminaries
https://idrissi.eu/post/git-2-theory
https://idrissi.eu/post/git-3-practice
https://www.math.cmu.edu/~gautam/sj/blog/20130929-git-quickstart.html
https://www.math.cmu.edu/~gautam/sj/blog/20130929-git-quickstart.html


Best practices in LATEX for version control

use short-ish lines: up to 100 characters

• better diffs
• your LATEX code looks like poetry
• insight into sentence structure

alternatively: 1 sentence per line

atomic commits

• 1 commit = 1 change
• makes it easy for your coauthors to keep track of why a
change happened

• let’s them ignore “irrelevant” commits (like typos) and
tells them where to pay attention

14



Other things

you can commit bits and pieces

• stage pieces of a file
• keeps commits atomic

you can discard changes:

• if you don’t like a change before you’ve committed it, just
get rid of it

• be careful: this is destructive

15



Things not to worry about

reading about Git can be daunting: it has many features:
mathematicians can ignore almost all

• I rarely use branches
• I rarely use pull requests
however, I do like to comment on GitHub: collaborator
immediately sees what you are referring to!

16



Some highly recommended tricks



.gitignore

LATEX creates all these pesky temporary files: nightmare in
Dropbox

Git can easily ignore these: .gitignore

https://github.com/github/gitignore/blob/main/
TeX.gitignore

17

https://github.com/github/gitignore/blob/main/TeX.gitignore
https://github.com/github/gitignore/blob/main/TeX.gitignore


latexdiff

create a pdf that highlights changes

integrates well with tags

• a tag is a human-readable label for a commit
• create tags for important versions: arXiv submissions,
journal submissions, …

18



Git LATEX template

https://github.com/pbelmans/latex-template

• my standard layout (you can and should use your own!)
• best practices implemented
• also some advanced things (see later)

19

https://github.com/pbelmans/latex-template


Some more advanced Git things



GitHub Issues

originally for bug reports

also ideal for mathematics discussion:

• no more chaotic and lengthy email discussions
• cross-references

20



GitHub Actions for LATEX

Overleaf has pdf view, Git is for source code management…

GitHub Actions allow you to

• start a virtual machine
• install and run LATEX inside it
• save the resulting pdf to the repository

sounds complicated, but you don’t have to do anything!
https://github.com/pbelmans/latex-template/
blob/main/.github/workflows/pdf.yml

21

https://github.com/pbelmans/latex-template/blob/main/.github/workflows/pdf.yml
https://github.com/pbelmans/latex-template/blob/main/.github/workflows/pdf.yml


Hooks

allow you to do something extra whenever Git does something

• post-commit hook with commit id
• https://ctan.org/pkg/gitinfo2
• footnote with current version

useful when

• sharing over email
• printing
• finer than just the date

22

https://ctan.org/pkg/gitinfo2


GitHub Pages

you can host static websites using GitHub:

• static site generator like Jekyll
• perfect for academic websites
• but also for documentation of projects

23



GitHub Actions for software development

https://github.com/QuiverTools/QuiverTools/
tree/main/.github/workflows

• automatic documentation builds
• automatic linting, = verifying code style
• automatic testing of code

24

https://github.com/QuiverTools/QuiverTools/tree/main/.github/workflows
https://github.com/QuiverTools/QuiverTools/tree/main/.github/workflows

	Why Git?
	Learning Git
	Getting started with Git
	Some highly recommended tricks
	Some more advanced Git things

