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Vector bundles as graded bundles

@ A vector bundle is a locally trivial fibration 7 : E — M which, locally
over U C M, reads 77 1(U) ~ U x R”
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Vector bundles as graded bundles

@ A vector bundle is a locally trivial fibration 7 : E — M which, locally
over U C M, reads 771(U) ~ U x R" and admits an atlas in which
local trivializations transform linearly in fibers

UNV xR"3 (x,y) = (x,A(x)y) e UNnV x R",
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local trivializations transform linearly in fibers

UNV xR"3 (x,y) = (x,A(x)y) e UNnV x R",
A(x) € GL(n,R).
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over U C M, reads 771(U) ~ U x R" and admits an atlas in which
local trivializations transform linearly in fibers

UNV xR"3 (x,y) = (x,A(x)y) e UNnV x R",

A(x) € GL(n,R).

@ The latter property can also be expressed in the terms of the
gradation in which base coordinates x have degrees 0 and ‘linear
coordinates’ y have degree 1.
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Vector bundles as graded bundles

@ A vector bundle is a locally trivial fibration 7 : E — M which, locally
over U C M, reads 771(U) ~ U x R" and admits an atlas in which
local trivializations transform linearly in fibers

UNV xR"3 (x,y) = (x,A(x)y) e UNnV x R",

A(x) € GL(n,R).

@ The latter property can also be expressed in the terms of the
gradation in which base coordinates x have degrees 0 and ‘linear
coordinates’ y have degree 1. Linearity in y’s is now equivalent to the
fact that changes of coordinates respect the degrees.
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Vector bundles as graded bundles

@ A vector bundle is a locally trivial fibration 7 : E — M which, locally
over U C M, reads 771(U) ~ U x R" and admits an atlas in which
local trivializations transform linearly in fibers

UNV xR"3 (x,y) = (x,A(x)y) e UNnV x R",

A(x) € GL(n,R).

@ The latter property can also be expressed in the terms of the
gradation in which base coordinates x have degrees 0 and ‘linear
coordinates’ y have degree 1. Linearity in y’s is now equivalent to the
fact that changes of coordinates respect the degrees.

@ Morphisms in the category of vector bundles are represented by
commutative diagram of smooth maps

E, . E,
P -
My ? M,

being linear in fibres.
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7 : F — M with a local trivialization by U x R" as before,
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Graded bundles

@ Canonical examples and constructions: TM, T*M, E @y F, AKE, etc.

@ A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wi, ..., w,,
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Graded bundles

@ Canonical examples and constructions: TM, T*M, E @y F, AKE, etc.

@ A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wy, ..., wp,, that are
preserved by changes of local trivializations:

UNV xR"3 (x,y) = (x,A(x,y)) e UNV x R",
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Graded bundles

@ Canonical examples and constructions: TM, T*M, E @y F, AKE, etc.

@ A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wy, ..., wp,, that are
preserved by changes of local trivializations:

UNV xR"3 (x,y) = (x,A(x,y)) e UNV x R",

@ One can show that in this case A(x, y) must be polynomial in fiber
coordinates, i.e. any graded bundle is a polynomial bundle.
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Graded bundles

@ Canonical examples and constructions: TM, T*M, E @y F, AKE, etc.

@ A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wy, ..., wp,, that are
preserved by changes of local trivializations:

UNV xR"3 (x,y) = (x,A(x,y)) e UNV x R",
@ One can show that in this case A(x, y) must be polynomial in fiber
coordinates, i.e. any graded bundle is a polynomial bundle.

@ As these polynomials need not to be linear, graded bundles do not
have, in general, vector space structure in fibers.
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Graded bundles

Canonical examples and constructions: TM, T*M, E @y F, NKE | etc.

A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wy, ..., wp,, that are
preserved by changes of local trivializations:

UNV xR"3 (x,y) = (x,A(x,y)) e UNV x R",

One can show that in this case A(x, y) must be polynomial in fiber
coordinates, i.e. any graded bundle is a polynomial bundle.

As these polynomials need not to be linear, graded bundles do not
have, in general, vector space structure in fibers. For instance, if
(v,z) € R? are coordinates of degrees 1,2, respectively, then the map
(v,z) = (v, z + y?) is a diffeomorphism preserving the degrees, but it
is nonlinear.
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Graded bundles

Canonical examples and constructions: TM, T*M, E @y F, NKE | etc.

A straightforward generalization is the concept of a graded bundle
7 : F — M with a local trivialization by U x R" as before, and with
the difference that the local coordinates (y?!,...,y") in the fibres
have now associated positive integer weights wy, ..., wp,, that are
preserved by changes of local trivializations:

UNV xR"3 (x,y) = (x,A(x,y)) e UNV x R",

One can show that in this case A(x, y) must be polynomial in fiber
coordinates, i.e. any graded bundle is a polynomial bundle.

As these polynomials need not to be linear, graded bundles do not
have, in general, vector space structure in fibers. For instance, if
(v,z) € R? are coordinates of degrees 1,2, respectively, then the map
(v,z) = (v, z + y?) is a diffeomorphism preserving the degrees, but it
is nonlinear.

If all w; < r, we say that the graded bundle is of degree r.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.

o Graded bundles Fy of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

7k k=1 3 2 -1
Fk—>Fk_1—>~'-—>F2—>F1—>F0:M.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.

o Graded bundles Fy of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

7k k=1 3 2 -1
Fk—>Fk_1—>~'-—>F2—>F1—>F0:M.

o Canonical examples: TXM, with canonical coordinates (x, x, X, X,...)
of degrees, respectively, 0,1,2,3, etc.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.

o Graded bundles Fy of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

7k k=1 3 2 -1
Fk—>Fk_1—>~'-—>F2—>F1—>F0:M.

o Canonical examples: TXM, with canonical coordinates (x, x, X, X,...)
of degrees, respectively, 0,1,2,3, etc.
@ Another example.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.

o Graded bundles Fy of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

7k k=1 3 2 -1
Fk—>Fk_1—>~'-—>F2—>F1—>F0:M.

o Canonical examples: TXM, with canonical coordinates (x, x, X, X,...)
of degrees, respectively, 0,1,2,3, etc.
@ Another example. If 7: E — M is a vector bundle, then A"TE is
canonically a graded bundle of degree r with respect to the projection
NTr:NTE = ANTM.
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Graded bundles

@ In the above terminology, vector bundles are just graded bundles of
degree 1.

o Graded bundles Fy of degree k admit, like many jet bundles, a tower
of affine fibrations by their subbundles of lower degrees

7k k=1 3 2 -1
Fk—>Fk_1—>~'-—>F2—>F1—>F0:M.

o Canonical examples: TXM, with canonical coordinates (x, x, X, X,...)
of degrees, respectively, 0,1,2,3, etc.
@ Another example. If 7: E — M is a vector bundle, then A"TE is
canonically a graded bundle of degree r with respect to the projection
NTT:ANTE - NTM.
o Note that similar objects has been used in supergeometry by Severa,

Voronov, Roytenberg et al. under the name N-manifolds. However,
we will work with classical, purely even manifolds during this talk.
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Graded Bundles

@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x¢,
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@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x“, and degrees w, > 0 for the fibre coordinates y?,
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Graded Bundles

@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x“, and degrees w, > 0 for the fibre coordinates y?, we
can define on the graded bundle F a globally defined weight vector
field (Euler vector field)

Vi = Z Way?0ya .
a
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Graded Bundles

@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x“, and degrees w, > 0 for the fibre coordinates y?, we
can define on the graded bundle F a globally defined weight vector
field (Euler vector field)

VE= Z Wayaaya .

@ The flow of the weight vector field extends to a smooth action
R > t — h; of multiplicative reals on F, hy(x*,y?) = (x*, t"=y?).
Such an action h: R x F — F, hy o hs = hts, we will call a
homogeneity structure.
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Graded Bundles

@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x“, and degrees w, > 0 for the fibre coordinates y?, we
can define on the graded bundle F a globally defined weight vector
field (Euler vector field)

VE= Z Wayaaya .

@ The flow of the weight vector field extends to a smooth action
R > t — h; of multiplicative reals on F, hy(x*,y?) = (x*, t"=y?).
Such an action h: R x F — F, hy o hs = hts, we will call a
homogeneity structure.

@ A function f : F — R is called homogeneous of degree (weight) k if
f(he(x)) = t*f(x); similarly for the homogeneity of tensor fields.
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Graded Bundles

@ With the use of coordinates (x“, y?) with degrees 0 for basic
coordinates x“, and degrees w, > 0 for the fibre coordinates y?, we
can define on the graded bundle F a globally defined weight vector
field (Euler vector field)

Vi = Z Way?0ya .
@ The flow of the weight vector field extends to a smooth action
R > t +— h; of multiplicative reals on F, h(x*,y?) = (x*, t"=y?).
Such an action h: R x F — F, hs o he = hts, we will call a
homogeneity structure.

@ A function f : F — R is called homogeneous of degree (weight) k if
f(he(x)) = t*f(x); similarly for the homogeneity of tensor fields.

@ Morphisms of two homogeneity structures (F;, hi), i=1,2, are
defined as smooth maps @ : F; — F, intertwining the R-actions:
® o hl = h? o ®. Consequently, a homogeneity substructure is a
smooth submanifold S invariant with respect to h, h,(S) C S.
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Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded
bundles and homogeneity structures are in fact equivalent concepts.
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Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

For any homogeneity structure h on a manifold F, there is a smooth
submanifold M = hyo(F) C F, a non-negative integer k € N, and an
R-equivariant map <Dﬁ F — TkﬂM which identifies F with a graded
submanifold of the graded bundle TKF. In particular, there is an atlas on
F consisting of local homogeneous functions.
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Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

For any homogeneity structure h on a manifold F, there is a smooth
submanifold M = hyo(F) C F, a non-negative integer k € N, and an
R-equivariant map <Dﬁ F — TkﬂM which identifies F with a graded
submanifold of the graded bundle TKF. In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following:
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Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

For any homogeneity structure h on a manifold F, there is a smooth
submanifold M = hyo(F) C F, a non-negative integer k € N, and an
R-equivariant map <Dﬁ F — TkﬂM which identifies F with a graded
submanifold of the graded bundle TKF. In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following: A double graded bundle is a manifold equipped with two
homogeneity structures h', h> which are compatible in the sense that

htoh?=h2ohl foralls,tcR.

J.Grabowski (IMPAN) Higher Lagrangian mechanics on graded bur  Luxembourg, 9-11/12/2015 7 /28



Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded
bundles and homogeneity structures are in fact equivalent concepts.

For any homogeneity structure h on a manifold F, there is a smooth
submanifold M = hyo(F) C F, a non-negative integer k € N, and an
R-equivariant map <Dﬁ F — TkﬂM which identifies F with a graded
submanifold of the graded bundle TKF. In particular, there is an atlas on
F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two
homogeneity structures, the obvious concept of compatibility leads to the
following: A double graded bundle is a manifold equipped with two
homogeneity structures h', h> which are compatible in the sense that

htoh?=h2ohl foralls,tcR.

This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to n-tuple graded bundles in the obvious way.
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Double graded bundles - examples
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Double graded bundles - examples

o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k.
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Double graded bundles - examples

o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle.
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o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle. There are also
lifts of graded structures on F to T"F.
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Double graded bundles - examples

o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle. There are also
lifts of graded structures on F to T"F.

@ In particular, if 7: E — M is a vector bundle, then TE and T*E are
double vector bundles. The latter is isomorphic with T*E*.
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Double graded bundles - examples

o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle. There are also
lifts of graded structures on F to T"F.

@ In particular, if 7: E — M is a vector bundle, then TE and T*E are
double vector bundles. The latter is isomorphic with T*E*.

As a linear Poisson structure on E* yields a map T"E* — TE™,
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Double graded bundles - examples

o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle. There are also
lifts of graded structures on F to T"F.

@ In particular, if 7: E — M is a vector bundle, then TE and T*E are
double vector bundles. The latter is isomorphic with T*E*.

As a linear Poisson structure on E* yields a map T"E* — TE™,
a Lie algebroid structure on E can be encoded as a morphism of
double vector bundles, ¢ : T*"E — TE* (!)
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o Lifts. If 7: F — M is a graded bundle of degree k, then TF and T*F
carry canonical double graded bundle structure: one is the obvious
vector bundle, the other is of degree k. A double graded bundle
whose one structure is linear we will call a G£-bundle. There are also
lifts of graded structures on F to T"F.

@ In particular, if 7: E — M is a vector bundle, then TE and T*E are
double vector bundles. The latter is isomorphic with T*E*.
As a linear Poisson structure on E* yields a map T"E* — TE™,
a Lie algebroid structure on E can be encoded as a morphism of
double vector bundles, ¢ : T*"E — TE* (!)

o If 7: E— M is a vector bundle, then AKTE is canonically a
GL-bundle: AKTE

// k
E ANTM
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The Tulczyjew triple - Lagrangian side
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TM - (kinematic)
configurations,
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The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

L:TM — R - Lagrangian
T*M - phase space
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The Tulczyjew triple - Lagrangian side

M - positions, TTM —— = T TM
TM - (kinematic)
configurations,

N N
™ T
L:TM — R - Lagrangian /
T*M - phase space T*M\ T*I\/I\
M M

M

9 /28
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The Tulczyjew triple - Lagrangian side

M - positions, D TT*M o TTM <t

TM - (kinematic) \
configurations, TM cvnfsn
L:TM — R - Lagrangian B

T*M - phase space TM e

D = ayp (dL(TM))) = TL(TM),
the image of the Tulczyjew differential T L, is the phase dynamics,
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The Tulczyjew triple - Lagrangian side

M - positions, D TT*M o TTM <t

TM - (kinematic) \
configurations, TM cvnfsn
L:TM — R - Lagrangian B

T*M - phase space TM e

D = ayp (dL(TM))) = TL(TM),
the image of the Tulczyjew differential T L, is the phase dynamics,
oL oL
D = y > . = — > = —
{(X,p,xjp) P=2z P ax} ;

c . 9L _ d (oL
whence the Euler-Lagrange equation: 5= = & (E)

9 /28
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The Tulczyjew triple - Lagrangian side

M - positions, D TT*M o TTM <t

TM - (kinematic) \
configurations, TM cvnfsn
L:TM — R - Lagrangian B

T*M - phase space TM e

D = ayp (dL(TM))) = TL(TM),
the image of the Tulczyjew differential T L, is the phase dynamics,

. oL . oL
D:{(Xup)xvp): p:&7 p:aX}’

c . 9L _ d (oL
whence the Euler-Lagrange equation: 5= = & (E)

L
We have also the Legendre map: A\, : TM — T*M, A/ (x,x) = (x, g)
X

9 /28
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The Tulczyjew triple - Hamiltonian side
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The Tulczyjew triple - Hamiltonian side

H:T"M — R
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The Tulczyjew triple - Hamiltonian side

/ \TI\/I \TM
H:T*M — R / /
M
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The Tulczyjew triple - Hamiltonian side

H:T"M — R

D = By, (dH(T*M))
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The Tulczyjew triple - Hamiltonian side

H:T"M — R

D:{mmxm:pz
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The Tulczyjew triple - Hamiltonian side

dH \ \
H:T"M — R TM EE A

D = By, (dH(T*M))

o . OH . OH
D:{(X7pax7p): p:_a7 X:ap}7

whence the Hamilton equations.
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Algebroid setting
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Algebroid setting

E* E* E
4 ./ .
M M M
L:E—R
D, CT*E
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Algebroid setting

T E* TE* z "E <L
/ N L/ NTTE N
E ™ E
E*
./

D = TL(E) L:E—R
Dy CTE
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Algebroid setting

DH D,

D
7 i
/T E\ p TEM}
E*/ E*W
./ N
M M

H:E* —R D = TL(E) L:E—R
Dy C T*E* D = N(dH(E*)) D, CTE
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Algebroid setting with vakonomic constraints
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Algebroid setting with vakonomic constraints

where S, is the lagrangian submanifold in T*E induced by the Lagrangian
on the constraint S, and SL: S — T*E is the corresponding relation,
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Algebroid setting with vakonomic constraints

where S, is the lagrangian submanifold in T*E induced by the Lagrangian
on the constraint S, and SL: S — T*E is the corresponding relation,

St ={ae € T,E:e€ S and (ae, ve) = dL(ve) for every ve € TeS}.
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Algebroid setting with vakonomic constraints

D St

Tg* < TE
/ \ O\
™ EDS

E* E*V
NN

where S, is the lagrangian submanifold in T*E induced by the Lagrangian
on the constraint S, and SL: S — T*E is the corresponding relation,

St ={ae € T,E:e€ S and (ae, ve) = dL(ve) for every ve € TeS}.

The vakonomically constrained phase dynamics is just D = ¢(S;) C TE*.
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Higher order Lagrangians
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TQ — R is
traditionally constructed as a vakonomic mechanics,
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TQ — R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TXQ into the
tangent bundle TT¥~1Q as an affine subbundle of holonomic vectors.
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TQ — R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TXQ into the
tangent bundle TT¥~1Q as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where
M = Tk=1Q, with the presence of vakonomic constraint TEQ c TTF1Q:
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Higher order Lagrangians

The mechanics with a higher order Lagrangian L : TQ — R is
traditionally constructed as a vakonomic mechanics, thanks to the
canonical embedding of of the higher tangent bundle TXQ into the
tangent bundle TT¥~1Q as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where
M = Tk=1Q, with the presence of vakonomic constraint TEQ c TTF1Q:

TT*kalQ T*TkalQ 1 T*TkQ

e —

T*Tk—lQ \ Tk—lQ XQT*Q
TTF1Q S THQ
- N
Tk—lQ Tk—lQ
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Higher order Euler-Lagrange equations
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics

. . . oL . aL oL
D= (V,p,V,p): Vi—1 = Vi, Pi+Pi—1:W,PO:877Pk—1:m
0q qa dq
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics

.o . . oL . oL oL
D= (V7p7 v, p) D Viel1 =V, pi+pi-1= 0 , PO = 9 y Pk—1 = m
0q qa dq

This leads to the higher Euler-Lagrange equations in the traditional form:
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics

. . i oL oL oL
D= (V,p,V,p): Vi1 =V, pi+Ppi-1= (i)7p0:877pk—1:m
0q qa dq
This leads to the higher Euler-Lagrange equations in the traditional form:
() _dg .
=—,i=1 k
dt’ ) / ) 9 )
oL d /oL dk [ oL
0= —_ — (== e (=)
9 dt(8¢>+ MASRAPTT (ai})
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics

. . i oL oL oL
D= (V,p,V,p): Vi—1 = Vi, Pi+Pi—1:W,PO:877Pk—1:m
0q qa dq
This leads to the higher Euler-Lagrange equations in the traditional form:
() _dg .
=—,i=1,...,k
q dtl ) ! ) 9 )
oL d /oL dk [ oL
0= —_ — (== e (=)
oq  dt (az;) o D g o9

These equations can be viewed as a system of differential equations of
order k on TKQ
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Higher order Euler-Lagrange equations

k
The Lagrangian function L = L(q, ..., (q)) generates the phase dynamics

. . i oL oL oL
D= (V,p,V,p): Vi—1 = Vi, Pi+Pi—1:W,PO:877Pk—1:m
0q qa dq
This leads to the higher Euler-Lagrange equations in the traditional form:
() _dg .
q dtl ) ! ) 9 )
oL d /oL dk [ oL
0= —_ — (== e (=) | 2=
oq  dt (az;) o D g o9

These equations can be viewed as a system of differential equations of
order k on TKQ or, which is the standard point of view, as ordinary
differential equation of order 2k on Q.
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Linearisation of graded bundles
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TEQ — TTK1Q.
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fi_1,
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy,
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy, together with a graded embedding

t: Fx < D(Fx)of Fy as an affine subbundle of the vector bundle D(Fy).
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy, together with a graded embedding

t: Fx < D(Fx)of Fy as an affine subbundle of the vector bundle D(Fy).

Elements of Fx C D(Fy) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(Fy).
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy, together with a graded embedding

t: Fx < D(Fx)of Fy as an affine subbundle of the vector bundle D(Fy).

Elements of Fx C D(Fy) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(F). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fx) — Fx_1, compatible with
the second graded structure (homogeneity).
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy, together with a graded embedding

t: Fx < D(Fx)of Fy as an affine subbundle of the vector bundle D(Fy).

Elements of Fx C D(Fy) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(F). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fx) — Fx_1, compatible with
the second graded structure (homogeneity). We will call such G£-bundles
D weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid TTA~1M.
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Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on
the following generalization of the embedding TAQ — TTK~1Q.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the
category of GL-bundles which assigns, for an arbitrary graded bundle F) of
degree k, a canonical GL-bundle D(Fy) which is linear over Fy_1, called
the linearisation of Fy, together with a graded embedding

t: Fx < D(Fx)of Fy as an affine subbundle of the vector bundle D(Fy).

Elements of Fx C D(Fy) may be viewed as ‘holonomic vectors’ in the
linear-graded bundle D(F). Another geometric part we need is a (Lie)
algebroid structure on the vector bundle D(Fx) — Fx_1, compatible with
the second graded structure (homogeneity). We will call such G£-bundles
D weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid TTX"1M. Such D is called a VB-algebroid if it is a
double vector bundle.
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Linearisation in coordinates
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Linearisation in coordinates

If (x, yi,,z,) are coordinates on a graded bundle Fy
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Linearisation in coordinates

If (x, yi,,z,) are coordinates on a graded bundle Fy
such that x? are of degree 0,
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy
such that x? are of degree 0, y‘fv are of degree w, 0 < w < k,
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k,
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0),
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y! are of bi-degree (w, 1),
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y! are of bi-degree (w, 1), y/, are of
bi-degree (w, 1),
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y;, are of bi-degree (w, 1), y{, are of
bi-degree (w, 1), and z, are of bi-degree (k,1).
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy

such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y;, are of bi-degree (w, 1), y{, are of
bi-degree (w, 1), and z, are of bi-degree (k,1). Thus,

(X, Yl i ) = (32, yi)

is a linear fibration over Fj_1.
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy
such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y;, are of bi-degree (w, 1), y{, are of
bi-degree (w, 1), and z, are of bi-degree (k,1). Thus,

O, Yo Yurs 2) = (X7, v)
is a linear fibration over Fj_1.

The embedding ¢ : Fx < D(Fy) reads
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Linearisation in coordinates

If (x,y},,z.) are coordinates on a graded bundle Fy
such that x? are of degree 0, y‘fv are of degree w, 0 < w < k, and z,’( are
of degree k, then the induced coordinate system on D(F) is

(Xa7y|£v7y\£v’vz..[l()7

where x? are of bi-degree (0,0), y;, are of bi-degree (w, 1), y{, are of
bi-degree (w, 1), and z, are of bi-degree (k,1). Thus,

O, Yo Yurs 2) = (X7, v)
is a linear fibration over Fj_1.

The embedding ¢ : Fx < D(Fy) reads

X, Vi 2) = (X7, Yoo W'y k2L)
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Weighted Lie algebroids out of reductions

Let G = M be a Lie groupoid and consider the subbundle TG c TkG
consisting of all higher order velocities tangent to source-leaves.
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Let G = M be a Lie groupoid and consider the subbundle TG c TkG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg*

M I
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Let G = M be a Lie groupoid and consider the subbundle TG c TkG

consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg* y

inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A= Al(G) can be identified with the Lie algebroid of G.
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Weighted Lie algebroids out of reductions

Let G = M be a Lie groupoid and consider the subbundle TXG= c TG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg*

M )
inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A= Al(G) can be identified with the Lie algebroid of G.

The linearisation of AX(G) is given as
D(A (9)) = {(Y,2) € A(G) xm TAHG)| p(Y)=Tr(2)},
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Let G = M be a Lie groupoid and consider the subbundle TXG= c TG

consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg*

M )
inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A= Al(G) can be identified with the Lie algebroid of G.

Theorem

The linearisation of AX(G) is given as
D(A (9)) = {(Y,2) € A(G) xm TAHG)| p(Y)=Tr(2)},

viewed as a vector bundle over AK=1(G) with respect to the obvious
projection of part Z onto AK=1(G),
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Weighted Lie algebroids out of reductions

Let G = M be a Lie groupoid and consider the subbundle TXG= c TG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg*

M )
inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A= Al(G) can be identified with the Lie algebroid of G.

Theorem

The linearisation of AX(G) is given as
D(A (9)) = {(Y,2) € A(G) xm TAHG)| p(Y)=Tr(2)},

viewed as a vector bundle over AK=1(G) with respect to the obvious
projection of part Z onto A*=1(G), where p : A(G) — TM is the standard
anchor of the Lie algebroid and 7 : Ax"*(G) — M is the obvious projection.

J.Grabowski (IMPAN) Higher Lagrangian mechanics on graded bur Luxembourg, 9-11/12/2015 17 / 28



Weighted Lie algebroids out of reductions

Let G = M be a Lie groupoid and consider the subbundle TXG= c TG
consisting of all higher order velocities tangent to source-leaves. The
bundle

Fr = A%(G) .= TFg*

M )
inherits graded bundle structure of degree k as a graded subbundle of
TKG. Of course, A= Al(G) can be identified with the Lie algebroid of G.

Theorem

The linearisation of AX(G) is given as
D(A (9)) = {(Y,2) € A(G) xm TAHG)| p(Y)=Tr(2)},

viewed as a vector bundle over AK=1(G) with respect to the obvious
projection of part Z onto A*=1(G), where p : A(G) — TM is the standard
anchor of the Lie algebroid and 7 : Ax"*(G) — M is the obvious projection.
Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie
algebroid prolongation in the sense of Popescu and Martinez.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

D
a .

¥ A *
N e Y

7
Ml(Fk) (Fk)\ / Fk)\ /
—Fx 1

kal
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

D
& a

P(FH — " LTD*(F) T*F, <dL
dIV/ k\F ’ et 7 7@\2’
TF,_
k / k—1 /)/:L/ k
Mi(Fy) <7L D*(F) Mi(Fk) /
N\ N N

Here, the diagram consists of relations,

J.Grabowski (IMPAN) Higher Lagrangian mechanics on graded bur Luxembourg, 9-11/12/2015



Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple
D
2 .
€

F’f 4{“ TD*(Fy) TFy
v =Y

S
Ml(Fk) (Fk)\ 7 (Fk)\ /
—Fx 1

Fk,l Fr—1

Here, the diagram consists of relations, £ : T*F,—>T*D(Fy) — TD*(Fy),
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

D
& a

P(FH — " LTD*(F) T*F, <dL
dIV/ k\F ’ et 7 7@\2’
TF,_
k / k—1 /)/:L/ k
Mi(Fy) <7L D*(F) Mi(Fk) /
N\ N N

Here, the diagram consists of relations, & : T*F,—>T*D(Fx) — TD*(Fy),
and Mi(Fy) is the so called Mironian of Fy.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

Here, the diagram consists of relations, & : T*F,—>T*D(Fy) — TD*(Fy),
and Mi(Fy) is the so called Mironian of Fi. In the classical case,
Mi(TEM) = TF=IM x py T*M.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

Here, the diagram consists of relations, & : T*F,—>T*D(Fy) — TD*(Fy),
and Mi(Fy) is the so called Mironian of Fi. In the classical case,
Mi(TAM) = Tk=IM xp T*M. Forget the Hamiltonian side.

J.Grabowski (IMPAN) Higher Lagrangian mechanics on graded bur Luxembourg, 9-11/12/2015 18 / 28



Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

Here, the diagram consists of relations, & : T*F,—>T*D(Fy) — TD*(Fy),
and Mi(Fy) is the so called Mironian of Fi. In the classical case,
Mi(TAM) = Tk=IM xp T*M. Forget the Hamiltonian side.

T L is the Tulczyjew differential and A\, the Legendre relation.
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Lagrangian framework for graded bundles

A weighted Lie algebroid on D(Fy) gives the Tulczyjew triple

Here, the diagram consists of relations, & : T*F,—>T*D(Fy) — TD*(Fy),
and Mi(Fy) is the so called Mironian of Fi. In the classical case,
Mi(TAM) = Tk=IM xp T*M. Forget the Hamiltonian side.

T L is the Tulczyjew differential and A\, the Legendre relation.

The fact that we obtain the Euler-Lagrange equations of higher order
comes from the vakonomic constraint and the additional gradation.
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Let g be a Lie algebra and put F, = g» = g[1] x g[2], with coordinates
(x',Z/) on g» and coordinates (x, y/, z¥) on D(g2) = g[1] x g[1] x g[2].
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Let g be a Lie algebra and put F, = g» = g[1] x g[2], with coordinates
(x',Z/) on g» and coordinates (x, y/, z¥) on D(g2) = g[1] x g[1] x g[2].

The embedding ¢ : g» < D(g») takes the form ¢(x, z) = (x, x, z) and the
vector bundle projection is 7(x,y, z) = x.
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(x',Z/) on g» and coordinates (x, y/, z¥) on D(g2) = g[1] x g[1] x g[2].

The embedding ¢ : g» < D(g») takes the form ¢(x, z) = (x, x, z) and the
vector bundle projection is 7(x,y, z) = x.

The Lie algebroid structure € : T*D(g2) — TD*(g2) reads
(X7.y7z7a767f)/)H(X7187fy7z7ad;67a)'
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Let g be a Lie algebra and put F> = = g[1] x g[2], with coordinates
(x',Z/) on g» and coordinates (x ,yJ, k) on D(g) = g[1] x g[1] x g[2].

The embedding ¢ : g» < D(g») takes the form ¢(x, z) = (x, x, z) and the
vector bundle projection is 7(x,y, z) = x.

The Lie algebroid structure € : T*D(g2) — TD*(g2) reads
(X7.y7z7a767f)/)H(X7187fy7z7ad;67a)'

Given a Lagrangian L : go — R, the Tulczyjew differential relation
TL:g— TD*(g) is

TL(x,z)z{( ,5, (x 2),z,ad’B, ):Oz—i—ﬁ:gi(x,z)}.
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Let g be a Lie algebra and put F> = = g[1] x g[2], with coordinates
(x',Z/) on g» and coordinates (x ,yJ, k) on D(g) = g[1] x g[1] x g[2].

The embedding ¢ : g» < D(g») takes the form ¢(x, z) = (x, x, z) and the
vector bundle projection is 7(x,y, z) = x.

The Lie algebroid structure € : T*D(g2) — TD*(g2) reads
(X7.y7z7a767f)/)H(X7187fy7z7ad;67a)'

Given a Lagrangian L : go — R, the Tulczyjew differential relation
TL:g— TD*(g) is

TL(x,z)z{( ,5, (x 2),z,ad’B, ):Oz—i—ﬁ:gi(x,z)}.

Hence, for the phase dynamics,

oL d /0L
B = &(XJ) 4 (E)z(x’z)> .
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Example

This leads to the Euler-Lagrange equations on g»:
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This leads to the Euler-Lagrange equations on g»:

X = z,

di't <gi(x, 2)— d% <gi(x,z)>> — adt (gi(x,z) _cht (gi(x,z)>> .
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This leads to the Euler-Lagrange equations on g»:

X = z,

dilt <Z>L<(X’ z) — dilt <gi(x,z)>> = ad} (gi(x,z) _dilt (gi(sz)>> _

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:
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This leads to the Euler-Lagrange equations on g»:

X = z,

dilt <Z>L<(X’ z) — dilt <gi(x,z)>> = ad} (gi(x,z) _dilt (gi(sz)>> _

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

d% (gi(x,k) - ddt (gi(x,x')» — ad: (Zi(x,i() _ont <gi(x,>'<)>> .
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This leads to the Euler-Lagrange equations on g»:

X = z,

d /oL d /oL . (OL d /oL

gt (a4 (5:009)) = at (Grixa - g (500))
These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

3 (G & (8 <o (- & (09

For instance, the ‘free’ Lagrangian L(x,z) = 3 3, /i(z")? induces the
equations on g (c are structure constants, no summation convention):

le Zc lex'5
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This leads to the Euler-Lagrange equations on g»:

X = z,

di't <gi(x, 2)— d% <gi(x,z)>> — adt (gi(x,z) _cht (gi(x,z)>> .

These equations are second order and induce the Euler-Lagrange equations
on g which are of order 3:

3 (G & (8 <o (- & (09

For instance, the ‘free’ Lagrangian L(x,z) = 3 3, /i(z")? induces the
equations on g (c are structure constants, no summation convention):

le Zc lex'5

The latter can be viewed as ‘hlgher Euler equations’.
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Higher order Lagrangian mechanics on Lie algebroids
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = Ak(@).
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G).
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D c TD*(AK(G)) 2 T*D(AX(G))+—— T*A*(9)
D*(AK(G) \dL
v\ /
TA(9) . D(A¥(G)) <——— A%(9)
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D c TD*(AK(G)) 2 T*D(AX(G))+—— T*A*(9)
D*(AK(G) \dL
v\ /
TA(9) . D(A¥(G)) <——— A%(9)

Here, D(AK(G)) is the corresponding Lie algebroid prolongation,
D =corodlL(AX(G)), and )/ is the Legendre relation.
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Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid G and a Lagrangian L : A — R on
Ak = AK(G). We will refer to such systems as a k-th order Lagrangian
system on the Lie algebroid A(G). The relevant diagram here is

D c TD*(AK(G)) 2 T*D(AX(G))+—— T*A*(9)
D*(AK(G) \dL
v\ /
TA(9) . D(A¥(G)) <——— A%(9)

Here, D(AK(G)) is the corresponding Lie algebroid prolongation,
D =corodlL(AX(G)), and )/ is the Legendre relation.

Note that we deal with reductions: in the case G is a Lie group,

A(G) =TX(G)/G and D(A(G)) =TT1(G)/G.
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Higher order Lagrangian mechanics on Lie algebroids
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x”* as base coordinates,
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in AX,
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of

degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,...,k in D*(AX),
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,...,k in D*(AK), we get the equations for the Legendre
relation in the form
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,...,k in D*(AK), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,...,k in D*(AK), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

oL
knl = —_—,
G oL 1d /0L
k — 112 = — =
(k=1)m; ayp | kdt <ayf>’
., 0oL 1d /oL 1 d? /oL
4= 5vd oigi\avd ) T31d2 \avd ) T
dyf  20dt \ 9ys 3! dt* \ Oy
1 dk2 oL 1 d<1 /oL
+(_1)k _ k—2 d _(_ )k* k=1 \ 9.,d )’
(k— 1) dt ayd . k! dt %
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Higher order Lagrangian mechanics on Lie algebroids

For instance, using x* as base coordinates, and y? as fibre coordinates of
degree i =1,..., k in A¥, extended by the appropriate momenta 71‘{) of
degree j = 1,...,k in D*(AK), we get the equations for the Legendre
relation in the form (no Lie algebroid structure appears!):

oL
knl = —_—,
G oL 1d /0L
k — 112 = — =
(k=1)m; ayp | kdt <ayf>’
., 0oL 1d /oL 1 d? /oL
4= 5vd oigi\avd ) T31d2 \avd ) T
dyf  20dt \ 9ys 3! dt* \ Oy
1 dk2 oL 1 d<1 /oL
+(_1)k _ k—2 d _(_ )k* k=1 \ 9.,d )’
(k— 1) dt ayd . k! dt %

which we recognise as the Jacobi—Ostrogradski momenta.
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Higher order Lagrangian mechanics on Lie algebroids
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
aﬂs_ﬂf( )8 A + yP CE, () mE

)
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
aﬂ.s_pé\( )a A+.leba( ) ’

where p2' and C£, are structure functions of the Lie algebroid A = A(G).
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
dtﬂ-s:plaq( )a A+.leba( ) ’

where p2' and C£, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

pA(x
P4 ( 3 A
b 1d (oL k1 d<=t (oL
(05 g — 7' C,(x) (8y1 2 dt ;) (=15 G (@;))
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
dtﬂ.é(_plaé\( )a A+.leba( ) ’

where p2' and C£, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

b oL 1d (0L k1 d=1 (oL
(6§dt 341 Cga(x)) (8yf —2ldt <8yc> ce= (1) P} (37;f>>

which we define to be the k-th order Euler-Lagrange equations on A(G).
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
aﬂ.s_pé\( )a A+.leba( ) )

where p2' and C£, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

b oL 1d (oL k1 d=! (oL
(055 — ¥ C(x)) (8yf ~ 2 <ay;> = (51 g e (@))
which we define to be the k-th order Euler-Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by JéZzwikowski & Rotkiewicz,
Colombo & de Diego, as well as Martinez.
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Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

d oL
dtﬂ-s_plaq( )a A+.leba( ) )

where p2' and Cf, are structure functions of the Lie algebroid A = A(G).
The above equat|on can then be rewritten as

b oL 1d (oL k1 d=! (oL
(055 — ¥ C(x)) (8yf g <8yc> (=1 g G (@))
which we define to be the k-th order Euler-Lagrange equations on A(G).

The above higher order algebroid Euler-Lagrange equations are in
complete agrement with the ones obtained by JéZzwikowski & Rotkiewicz,
Colombo & de Diego, as well as Martinez. We clearly recover the standard
higher Euler-Lagrange equations on TXM as a particular example.
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The tip of a javelin
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,
1

L(X,y,Z) = 5 Z(yI)Z - (Zi)2
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,
1 2 2

L(Xayvz)_2<zl(y) _(Z) .
We can understand G = R3 here as a commutative Lie group,
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,

3
1 2 2
L(Xayvz)_2<zl(y) _(Z) .
We can understand G = R3 here as a commutative Lie group, and since L

is G-invariant, we get immediately the reduction to the graded bundle
R3[1] x R3[2).
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,

3
1 2 2
L(Xayvz)_2<zl(y) _(Z) .
We can understand G = R3 here as a commutative Lie group, and since L

is G-invariant, we get immediately the reduction to the graded bundle
R3[1] x R3[2]. The Euler-Lagrange equations on T2RR3,

d (oL 1d (ALY _,
dt \ oy 2dt\oz')) 7’
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We can understand G = R3 here as a commutative Lie group, and since L
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The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a
javelin defined on T2R3,
1

3
_ 2 2
L(X,y,Z) - 5 (Zl(y) _(Z) ) .
We can understand G = R3 here as a commutative Lie group, and since L

is G-invariant, we get immediately the reduction to the graded bundle
R3[1] x R3[2]. The Euler-Lagrange equations on T2RR3,

(31 ()
dt \ 9y’ 2dt \ oz ’
dy’ B 1d%Z
dt  2dt?’
so the Euler-Lagrange equation on R3 reads

d?x’ B 1d*x/
dt2  2.dt*

give in this case
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The Tulczyjew triple for strings
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The Tulczyjew triple for strings

Using the canonical multisymplectic structure on A°T*M, we get the
following Tulczyjew triple for multivector bundles, consisting of double
graded bundle morphisms:
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The Tulczyjew triple for strings

Using the canonical multisymplectic structure on A°T*M, we get the
following Tulczyjew triple for multivector bundles, consisting of double
graded bundle morphisms: D

2 \f 2

B «
T* A2 T*I\/I<7/\2T AN TEM Mo 15 A2 T M

N N

/\2TI\/I A2TM A2 TM
N T*M /\2T* N2 T*M A2TS

N N

M 2 R2
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The Tulczyjew triple for strings

Using the canonical multisymplectic structure on A°T*M, we get the
following Tulczyjew triple for multivector bundles, consisting of double
graded bundle morphisms: D

2 \f 2

B o
T* A2 T*I\/I<7/\2T AN TEM Mo 15 A2 T M

N N

/\2TI\/I A2TM A2 TM
N T*M /\2T* N2 T*M A2TS

N N

The way of obtaining the implicit phase dynamics D, as a submanifold of
A2T A2 T*M, from a Lagrangian L : A°TM — R (or from a Hamiltonian
H : A2T*M — R) is now standard: D = T L(A2TM).

M 2 R2
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The Euler-Lagrange equations
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The Euler-Lagrange equations

A surface S : (t,s) — (x?(t,s)) in M satisfies the Euler-Lagrange
equations
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The Euler-Lagrange equations

A surface S : (t,s) — (x?(t,s)) in M satisfies the Euler-Lagrange
equations if the image by dL of its prolongation to A>TM,

(t,S) — <XU(t,S),)'(’W _ %axl’ Ox* 8xy> |

ot ds Os Ot
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The Euler-Lagrange equations

A surface S : (t,s) — (x?(t,s)) in M satisfies the Euler-Lagrange
equations if the image by dL of its prolongation to A>TM,

OxP Ox¥  Ox* Ox¥
o cuv T _
(1:9) > (7(e.9) st = GO - OLOTY

is a%/,—related to an admissible surface, i.e. the prolongation of a surface
living in the phase space A2T*M to A°T A2 T*M.
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The Euler-Lagrange equations

A surface S : (t,s) — (x?(t,s)) in M satisfies the Euler-Lagrange
equations if the image by dL of its prolongation to A>TM,

(t,s) — <x”(t,s),>'<’“’ _ OO O 8xl’> ;

ot Os Os Ot
is a%/,—related to an admissible surface, i.e. the prolongation of a surface

living in the phase space A2T*M to A°T A2 T*M.
In coordinates, the Euler-Lagrange equations read

OxH* Ox¥  OxM* Ox¥
ot Os Os Ot '’

oL _ oxt o aL(t ) _oxt o aL(t)
ox® Ot 0s \oxpo ds Ot \osno )
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Plateau problem
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric,
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L(xH, %) =
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L x5y =[S ().
Ky

The Euler-Lagrange equation for surfaces being graphs
(x,y) = (x.y,2(x. )
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L x5y =[S ().
Ky

The Euler-Lagrange equation for surfaces being graphs

(x,y) = (x,y,z(x,y)) provides the well-known equation for minimal
surfaces, found already by Lagrange :
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In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L x5y =[S ().
Ky

The Euler-Lagrange equation for surfaces being graphs

(x,y) = (x,y,z(x,y)) provides the well-known equation for minimal
surfaces, found already by Lagrange :

0 Zy 0 z,

x|\ o ol Ty
X l—i—z)%—i—z}% Y 1—|—z§—|—z}%
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L x5y =[S ().
Ky

The Euler-Lagrange equation for surfaces being graphs

(x,y) = (x,y,z(x,y)) provides the well-known equation for minimal
surfaces, found already by Lagrange :

0 Zy 0 z,

x|\ o ol Ty
X l—i—z)%—i—z}% Y 1—|—z§—|—z}%

In another form:

=0.

(1+ 22)zyy — 222y + (1 + 27) 20 = 0.
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Plateau problem

In particular, if M = R3 = {(x! = x,x? = y, x> = z)} with the Euclidean
metric, the canonically induced ‘free’ Lagrangian on A>TM reads

L x5y =[S ().
Ky

The Euler-Lagrange equation for surfaces being graphs
(x,y) = (x,y,z(x,y)) provides the well-known equation for minimal
surfaces, found already by Lagrange :

0 Zy 0 z,

x|\ o ol Ty
X l—i—z)%—i—z}% Y 1—|—z§—|—z}%

In another form:

=0.

(1+ 22)zyy — 222y + (1 + 27) 20 = 0.

Starting with a Lorentz metric, we can obtain analogously the
Euler-Lagrange equations for the Nambu-Goto Lagrangian.
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THANK YOU FOR YOUR ATTENTION!
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