## HIGHER LAGRANGIAN MECHANICS ON GRADED BUNDLES

## Janusz Grabowski

(Polish Academy of Sciences)


HIGHER GEOMETRY AND FIELD THEORY
Luxembourg, 9-11 December, 2015

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (ontionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W . M Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)
$\square$


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)
$\square$


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)



## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21-36
- Grabowska-Grabowski-Urbański, J. Geom. Mech. 6 (2014), 503-526.
- Bruce-Grabowska-Grabowski, J. Phys. A 48 (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, arXiv:1409.0439.


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21-36.
- Grabowska-Grabowski-Urbański, J. Geom. Mech. 6 (2014), 503-526.
- Bruce-Grabowska-Grabowski, J. Phys. A 48 (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, arXiv:1409.0439.


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21-36.
- Grabowska-Grabowski-Urbański, J. Geom. Mech. 6 (2014), 503-526.
- Bruce-Grabowska-Grabowski, J. Phys. A 48 (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, arXiv:1409.0439.


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21-36.
- Grabowska-Grabowski-Urbański, J. Geom. Mech. 6 (2014), 503-526.
- Bruce-Grabowska-Grabowski, J. Phys. A 48 (2015), 205203 (32pp).


## Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, J. Geom. Phys. 62 (2012), 21-36.
- Grabowska-Grabowski-Urbański, J. Geom. Mech. 6 (2014), 503-526.
- Bruce-Grabowska-Grabowski, J. Phys. A 48 (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, arXiv:1409.0439.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n},
$$

$A(x) \in \operatorname{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1. Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$
local trivializations transform linearly in fibers

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1. Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers
> $A(x) \in \mathrm{GL}(n, \mathbb{R})$
> - The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1. Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
> - Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1. Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$. fact that changes of coordinates respect the degrees.

- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1 . Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
commutative diagram of smooth maps

being linear in fibres.


## Vector bundles as graded bundles

- A vector bundle is a locally trivial fibration $\tau: E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^{n}$ and admits an atlas in which local trivializations transform linearly in fibers

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x) y) \in U \cap V \times \mathbb{R}^{n}
$$

$A(x) \in \mathrm{GL}(n, \mathbb{R})$.

- The latter property can also be expressed in the terms of the gradation in which base coordinates $x$ have degrees 0 and 'linear coordinates' $y$ have degree 1. Linearity in $y^{\prime} s$ is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

being linear in fibres.


## Graded bundles

- Canonical examples and constructions: $T M, T^{*} M, E \otimes M F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $m<r$, $w$ e say that the graded bundle is of degree $r$.


## Graded bundles

- Canonical examples and constructions: $T M, \mathrm{~T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree $r$


## Graded bundles

- Canonical examples and constructions: $T M, \mathrm{~T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:
- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear
- If all $w_{i}<r$, we say that the graded bundle is of degree $r$


## Graded bundles

- Canonical examples and constructions: $T M, \mathrm{~T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:
- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if
$(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear
- If all $w_{i} \leq r$, we say that the graded bundle is of degree $r$


## Graded bundles

- Canonical examples and constructions: $T M, \mathrm{~T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear
- If all $w_{i} \leq r$, we say that the graded bundle is of degree $r$


## Graded bundles

- Canonical examples and constructions: $\mathrm{T} M, \mathrm{~T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, \& have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
$\square$


## Graded bundles

- Canonical examples and constructions: TM, T* $M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n},
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers.
$(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map
$(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree r.


## Graded bundles

- Canonical examples and constructions: $\mathrm{TM}, \mathrm{T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree $r$.


## Graded bundles

- Canonical examples and constructions: $\mathrm{TM}, \mathrm{T}^{*} M, E \otimes_{M} F, \wedge^{k} E$, etc.
- A straightforward generalization is the concept of a graded bundle $\tau: F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^{n}$ as before, and with the difference that the local coordinates $\left(y^{1}, \ldots, y^{n}\right)$ in the fibres have now associated positive integer weights $w_{1}, \ldots, w_{n}$, that are preserved by changes of local trivializations:

$$
U \cap V \times \mathbb{R}^{n} \ni(x, y) \mapsto(x, A(x, y)) \in U \cap V \times \mathbb{R}^{n}
$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a polynomial bundle.
- As these polynomials need not to be linear, graded bundles do not have, in general, vector space structure in fibers. For instance, if $(y, z) \in \mathbb{R}^{2}$ are coordinates of degrees 1,2 , respectively, then the map $(y, z) \mapsto\left(y, z+y^{2}\right)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_{i} \leq r$, we say that the graded bundle is of degree $r$.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1 .
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
- Another example. If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{r} T E$ is canonically a graded bundle of degree $r$ with respect to the projection

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1 .
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
- Another example. If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{r} T E$ is canonically a graded bundle of degree $r$ with respect to the projection

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M .
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Canonical examples: $T^{k} M$, with canonical coordinates ( $x$, of degrees, respectively, $0,1,2,3$, etc.
- Another example. If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{r} T E$ is canonically a graded bundle of degree $r$ with respect to the projection $\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M$
- Note that similar objects has been used in supergeometry by Ševera Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
canonically a graded bundle of degree $r$ with respect to the projection
- Note that similar objects has been used in supergeometry by Ševera Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
- Another example. canonically a graded bundle of degree $r$ with respect to the projection
- Note that similar objects has been used in supergeometry by Ševera Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
- Another example. If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{r} T E$ is canonically a graded bundle of degree $r$ with respect to the projection

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- Note that similar objects has been used in supergeometry by Severa, Voronov, Roytenberg et al. under the name N -manifolds. However, we will work with classical, nurely even manifolds during this talk.


## Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1 .
- Graded bundles $F_{k}$ of degree $k$ admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$
F_{k} \xrightarrow{\tau^{k}} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^{3}} F_{2} \xrightarrow{\tau^{2}} F_{1} \xrightarrow{\tau^{1}} F_{0}=M .
$$

- Canonical examples: $T^{k} M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \ldots)$ of degrees, respectively, $0,1,2,3$, etc.
- Another example. If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{r} T E$ is canonically a graded bundle of degree $r$ with respect to the projection

$$
\wedge^{r} \mathrm{~T} \tau: \wedge^{r} \mathrm{~T} E \rightarrow \wedge^{r} \mathrm{~T} M
$$

- Note that similar objects has been used in supergeometry by Ševera, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum w_{a} y^{a} \partial_{y^{a}} .
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to $h_{,} h_{t}(S) \subset S$.


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to $h_{,} h_{t}(\underset{=}{(S) \subseteq S}$.


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to $h_{3} h_{t}(S) \subset S_{\overline{\underline{E}}}^{S} ;$


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum_{a} w_{a} y^{a} \partial_{y^{a}}
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures ( $F_{i}, h^{i}$ ), $i=1$. 2, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to $h_{,} h_{t}(S) \subset C_{i=1} S_{;}$


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum w_{a} y^{a} \partial_{y^{a}}
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight)
$f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{\frac{1}{t}}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum w_{a} y^{a} \partial_{y^{a}}
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to


## Graded Bundles

- With the use of coordinates $\left(x^{\alpha}, y^{a}\right)$ with degrees 0 for basic coordinates $x^{\alpha}$, and degrees $w_{a}>0$ for the fibre coordinates $y^{a}$, we can define on the graded bundle $F$ a globally defined weight vector field (Euler vector field)

$$
\nabla_{F}=\sum w_{a} y^{a} \partial_{y^{a}} .
$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_{t}$ of multiplicative reals on $F, h_{t}\left(x^{\mu}, y^{a}\right)=\left(x^{\mu}, t^{w_{a}} y^{a}\right)$. Such an action $h: \mathbb{R} \times F \rightarrow F, h_{t} \circ h_{s}=h_{t s}$, we will call a homogeneity structure.
- A function $f: F \rightarrow \mathbb{R}$ is called homogeneous of degree (weight) $k$ if $f\left(h_{t}(x)\right)=t^{k} f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms of two homogeneity structures $\left(F_{i}, h^{i}\right), i=1,2$, are defined as smooth maps $\Phi: F_{1} \rightarrow F_{2}$ intertwining the $\mathbb{R}$-actions: $\Phi \circ h_{t}^{1}=h_{t}^{2} \circ \Phi$. Consequently, a homogeneity substructure is a smooth submanifold $S$ invariant with respect to $h, h_{t}(S) \subset S$.


## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

This covers of course the concept of a double vector bundle of Pradines and Mackenzie, and extends to $n$-tuple graded bundles in the obvious way.

## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on $F$ consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that $h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad$ for all $s, t \in \mathbb{R}$
This covers of course the concept of a double vector bundle of Pradines and Mackenzie, and extends to $n$-tuple graded bundles in the obvious way.

## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on $F$ consisting of local homogeneous functions.

> As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that $h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad$ for all $s, t \in \mathbb{R}$
> This covers of course the concept of a double vector bundle of Pradines and Mackenzie, and extends to n-tuple graded bundles in the obvious way.

## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on $F$ consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following:
homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that

This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to n-tuple graded bundles in the obvious way

## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on $F$ consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

This covers of course the concept of a double vector bundle of Pradines
and Mackenzie, and extends to $n$-tuple graded bundles in the obvious way

## Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that graded bundles and homogeneity structures are in fact equivalent concepts.

## Theorem

For any homogeneity structure $h$ on a manifold $F$, there is a smooth submanifold $M=h_{0}(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an $\mathbb{R}$-equivariant map $\Phi_{h}^{k}: F \rightarrow T^{k} F_{\mid M}$ which identifies $F$ with a graded submanifold of the graded bundle $T^{k} F$. In particular, there is an atlas on $F$ consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A double graded bundle is a manifold equipped with two homogeneity structures $h^{1}, h^{2}$ which are compatible in the sense that

$$
h_{t}^{1} \circ h_{s}^{2}=h_{s}^{2} \circ h_{t}^{1} \quad \text { for all } s, t \in \mathbb{R}
$$

This covers of course the concept of a double vector bundle of Pradines and Mackenzie, and extends to $n$-tuple graded bundles in the obvious way.

## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $\mathrm{T}^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then TE and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$. As a linear Poisson structure on $E^{*}$ yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on $E$ can be encoded as a morphism of double vector bundles, $\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*}$ (!)
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a $\mathcal{G L}$-bundle:



## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$.
whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular if $\tau: E \rightarrow M$ is a vector bundle, then TE and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$ As a linear Poisson structure on $E^{*}$ yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on $E$ can be encoded as a morphism of double vector bundles, $\varepsilon: \mathrm{T}^{*} E \rightarrow T E^{*}$
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a $\mathcal{G L}$-bundle:



## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G L}$-bundle. There are also



## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $\mathrm{T} F$ and $\mathrm{T}^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.



## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$.
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a
$\mathcal{G L}$-bundle:


## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $\mathrm{T}^{*} E^{*}$. As a linear Poisson structure on $E^{*}$ yields a map $\mathrm{T}^{*} E^{*} \rightarrow \mathrm{~T} E^{*}$, double vector bundles, $\varepsilon: T^{*} E \rightarrow T E^{*}$ - If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a $\mathcal{G} \mathcal{L}$-bundle


## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G} \mathcal{L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $\mathrm{T}^{*} E^{*}$. As a linear Poisson structure on $E^{*}$ yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on $E$ can be encoded as a morphism of double vector bundles, $\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{TE}$ (!)
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a
$\mathcal{G L}$-bundle:


## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$. As a linear Poisson structure on $E^{*}$ yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on $E$ can be encoded as a morphism of double vector bundles, $\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*}(!)$
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a $\mathcal{G} \mathcal{L}$-bundle:


## Double graded bundles - examples

- Lifts. If $\tau: F \rightarrow M$ is a graded bundle of degree $k$, then $T F$ and $T^{*} F$ carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree $k$. A double graded bundle whose one structure is linear we will call a $\mathcal{G L}$-bundle. There are also lifts of graded structures on $F$ to $T^{r} F$.
- In particular, if $\tau: E \rightarrow M$ is a vector bundle, then $T E$ and $T^{*} E$ are double vector bundles. The latter is isomorphic with $T^{*} E^{*}$. As a linear Poisson structure on $E^{*}$ yields a map $T^{*} E^{*} \rightarrow T E^{*}$, a Lie algebroid structure on $E$ can be encoded as a morphism of double vector bundles, $\varepsilon: \mathrm{T}^{*} E \rightarrow \mathrm{~T} E^{*}(!)$
- If $\tau: E \rightarrow M$ is a vector bundle, then $\wedge^{k} T E$ is canonically a $\mathcal{G} \mathcal{L}$-bundle:



## The Tulczyjew triple - Lagrangian side

M - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space

$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(T M))\right)=\mathcal{T} L(T M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} \mathrm{M}$ - phase space

$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(T M),
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic)
configurations,
L: TM $\rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} M$ - phase space
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$T^{*} M$ - phase space
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic)
configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian
$\mathrm{T}^{*} M$ - phase space
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

M - positions,
TM - (kinematic) configurations,
$L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space

$\left.\mathcal{D}=\alpha_{M}^{-1}(d L(T M))\right)=\mathcal{T} L(T M)$
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

## The Tulczyjew triple - Lagrangian side

M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space


M ……...................... $M$

$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(\mathrm{~T} M))\right)=\mathcal{T} L(\mathrm{~T} M)
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,


## The Tulczyjew triple - Lagrangian side

M - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space


M ……....................... M

$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation:
$\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$

## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space


$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(\mathrm{TM}))\right)=\mathcal{T} L(\mathrm{TM})
$$

M
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$.

## The Tulczyjew triple - Lagrangian side

$M$ - positions,
TM - (kinematic) configurations, $L: T M \rightarrow \mathbb{R}$ - Lagrangian $\mathrm{T}^{*} M$ - phase space


$$
\left.\mathcal{D}=\alpha_{M}^{-1}(\mathrm{~d} L(\mathrm{~T} M))\right)=\mathcal{T} L(\mathrm{~T} M),
$$

M
the image of the Tulczyjew differential $\mathcal{T} L$, is the phase dynamics,

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad p=\frac{\partial L}{\partial \dot{x}}, \quad \dot{p}=\frac{\partial L}{\partial x}\right\}
$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x}=\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{x}}\right)$.
We have also the Legendre map: $\quad \lambda_{L}: \mathrm{T} M \rightarrow \mathrm{~T}^{*} M, \quad \lambda_{L}(x, \dot{x})=\left(x, \frac{\partial L}{\partial \dot{x}}\right)$.

## The Tulczyjew triple - Hamiltonian side


> whence the Hamilton equations.

## The Tulczyjew triple - Hamiltonian side

$H: T^{*} M \rightarrow \mathbb{R}$

## whence the Hamilton equations.

## The Tulczyjew triple - Hamiltonian side

$H: T^{*} M \rightarrow \mathbb{R}$


$$
\mathcal{D}=\beta_{M}^{-1}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)
$$

## The Tulczyjew triple - Hamiltonian side

$H: T^{*} M \rightarrow \mathbb{R}$


$$
\mathcal{D}=\beta_{M}^{-1}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)
$$



## The Tulczyjew triple - Hamiltonian side

$H: \mathrm{T}^{*} M \rightarrow \mathbb{R}$

$M$ M

$$
\mathcal{D}=\beta_{M}^{-1}\left(\mathrm{~d} H\left(\mathrm{~T}^{*} M\right)\right)
$$

$$
\mathcal{D}=\left\{(x, p, \dot{x}, \dot{p}): \quad \dot{p}=-\frac{\partial H}{\partial x}, \quad \dot{x}=\frac{\partial H}{\partial p}\right\}
$$

whence the Hamilton equations.

## The Tulczyjew triple - Hamiltonian side


whence the Hamilton equations.

## Algebroid setting


$\mathcal{D}=\mathcal{T} L(E)$
$\mathcal{D}=\tilde{\Pi}\left(\mathrm{d} H\left(E^{*}\right)\right)$


## Algebroid setting



## Algebroid setting


$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset \mathrm{~T}^{*} E^{*}$
$\mathcal{D}=\tilde{\Pi}\left(\mathrm{d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

## Algebroid setting


$H: E^{*} \longrightarrow \mathbb{R}$
$\mathcal{D}_{H} \subset \mathrm{~T}^{*} E^{*}$
$\mathcal{D}=\mathcal{T} L(E)$
$L: E \longrightarrow \mathbb{R}$
$\mathcal{D}=\tilde{\Pi}\left(\mathrm{d} H\left(E^{*}\right)\right)$
$\mathcal{D}_{L} \subset \mathrm{~T}^{*} E$

## Algebroid setting with vakonomic constraints


where $S_{L}$ is the lagrangian submanifold in $T^{*} E$ induced by the Lagrangian on the constraint $S$, and $\mathcal{S L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \top_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=d \dot{L}\left(v_{e}\right) \text { for every } v_{e} \in \top_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset \mathrm{TE}^{*}$

## Algebroid setting with vakonomic constraints


where $S_{L}$ is the lagrangian submanifold in $T^{*} E$ induced by the Lagrangian on the constraint $S$, and $\mathcal{S L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,
$S_{L}=\left\{\alpha_{e} \in T_{e}^{*} E: e \in S\right.$ and $\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{dL}\left(v_{e}\right)$ for every $\left.v_{e} \in T_{e} S\right\}$
The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset T E^{*}$

## Algebroid setting with vakonomic constraints


where $S_{L}$ is the lagrangian submanifold in $\mathrm{T}^{*} E$ induced by the Lagrangian on the constraint $S$, and $\mathcal{S L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

## Algebroid setting with vakonomic constraints


where $S_{L}$ is the lagrangian submanifold in $\mathrm{T}^{*} E$ induced by the Lagrangian on the constraint $S$, and $\mathcal{S L}: S \rightarrow \mathrm{~T}^{*} E$ is the corresponding relation,

$$
S_{L}=\left\{\alpha_{e} \in \mathrm{~T}_{e}^{*} E: e \in S \text { and }\left\langle\alpha_{e}, v_{e}\right\rangle=\mathrm{d} L\left(v_{e}\right) \text { for every } v_{e} \in \mathrm{~T}_{e} S\right\}
$$

The vakonomically constrained phase dynamics is just $\mathcal{D}=\varepsilon\left(S_{L}\right) \subset \mathrm{T} E^{*}$.

## Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $T T^{k-1} Q$ as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where $M=T^{k-1} Q$, with the presence of vakonomic constraint $T^{k} Q \subset T^{-}{ }^{-1} Q$ :


## Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TMA where $M=T^{k-1} Q$, with the presence of vakonomic constraint $T^{k} Q \subset T T^{k-1} Q$ :


## Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors.


## Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint $\mathrm{T}^{k} Q \subset \mathrm{TT}^{k-1} Q$ :

## Higher order Lagrangians

The mechanics with a higher order Lagrangian $L: T^{k} Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of of the higher tangent bundle $T^{k} Q$ into the tangent bundle $\mathrm{TT}^{k-1} Q$ as an affine subbundle of holonomic vectors.

Thus we work with the standard Tulczyjew triple for TM, where $M=\mathrm{T}^{k-1} Q$, with the presence of vakonomic constraint $\mathrm{T}^{k} Q \subset \mathrm{TT}^{k-1} Q$ :


## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics


This leads to the higher Euler-Lagrange equations in the traditional form:



These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$.

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics


This leads to the higher Euler-Lagrange equations in the traditional form:


These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:


These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:


These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial \underset{q}{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial \underset{q}{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial \stackrel{(k)}{q}}\right) .
\end{array}
$$

These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$.

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial_{q}^{(k)}}\right) .
\end{array}
$$

These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ differential equation of order $2 k$ on $Q$

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial \stackrel{(k)}{q}}\right) .
\end{array}
$$

These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, differential equation of order $2 k$ on $Q$

## Higher order Euler-Lagrange equations

The Lagrangian function $L=L(q, \ldots, \stackrel{(k)}{q})$ generates the phase dynamics
$\mathcal{D}=\left\{(v, p, \dot{v}, \dot{p}): \dot{v}_{i-1}=v_{i}, \quad \dot{p}_{i}+p_{i-1}=\frac{\partial L}{\partial_{q}^{(i)}}, \dot{p}_{0}=\frac{\partial L}{\partial q}, p_{k-1}=\frac{\partial L}{\partial_{q}^{(k)}}\right\}$.
This leads to the higher Euler-Lagrange equations in the traditional form:

$$
\begin{array}{r}
\stackrel{(i)}{q}=\frac{\mathrm{d}^{i} q}{\mathrm{~d} t^{i}}, \quad i=1, \ldots, k, \\
0=\frac{\partial L}{\partial q}-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}}\right)+\cdots+(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} t^{k}}\left(\frac{\partial L}{\partial^{(k)}}\right) .
\end{array}
$$

These equations can be viewed as a system of differential equations of order $k$ on $T^{k} Q$ or, which is the standard point of view, as ordinary differential equation of order $2 k$ on $Q$.

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Burce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G L}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such $\mathcal{G} \mathcal{L}$-bundles $D$ weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $T^{k-1} M$. Such $D$ is called a $\mathcal{V B}$-algebroid if it is a double vector bundle.

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

```
Theorem (Bruce-Grabowska-Grabowski)
There is a canonical functor from the category of graded bundles into the category of \(\mathcal{G L}\)-bundles which assigns, for an arbitrary graded bundle \(F_{k}\) of degree \(k\), a canonical \(\mathcal{G} \mathcal{L}\)-bundle \(D\left(F_{k}\right)\) which is linear over \(F_{k-1}\), called the linearisation of \(F_{k}\), together with a graded embedding \(\iota: F_{k} \hookrightarrow D\left(F_{k}\right)\) of \(F_{k}\) as an affine subbundle of the vector bundle \(D\left(F_{k}\right)\)
```

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such $\mathcal{G} \mathcal{L}$-bundles $D$ weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $\mathrm{TT}^{k-1} M$. Such $D$ is called a $\mathcal{V B}$-algebroid if it is a double vector bundle.

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G L}$-bundles


## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G L}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$,


## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G L}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, $\qquad$
as an affine subbundle of the vector bundle $D\left(F_{k}\right)$


## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G L}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

> Elements of $F_{k} \subset D(F$
linear-graded bundle
algebroid structure on
the second graded str
$D$ weighted (Lie) alge
the Lie algebroid $T T^{k}$
double vector bundle.

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G \mathcal { L }}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$.

Another geometric part we need is a (Lie)
algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with
the second graded structure (homogeneity). We will call such $\mathcal{G} \mathcal{L}$-bundles
$D$ weighted (Lie) algebroids and view them as abstract generalizations of
the Lie algebroid $T T^{k-1} M$. Such $D$ is called a $\nu \mathcal{B}$-algebroid if it is a
double vector bundle.

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G \mathcal { L }}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity).

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G \mathcal { L }}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such $\mathcal{G} \mathcal{L}$-bundles $D$ weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $\mathrm{TT}^{k-1} M$. Such $D$ is called a VB-algebroid if it is a

## Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $\mathrm{T}^{k} Q \hookrightarrow \mathrm{~T}^{k-1} Q$.

## Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of $\mathcal{G \mathcal { L }}$-bundles which assigns, for an arbitrary graded bundle $F_{k}$ of degree $k$, a canonical $\mathcal{G} \mathcal{L}$-bundle $D\left(F_{k}\right)$ which is linear over $F_{k-1}$, called the linearisation of $F_{k}$, together with a graded embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ of $F_{k}$ as an affine subbundle of the vector bundle $D\left(F_{k}\right)$.

Elements of $F_{k} \subset D\left(F_{k}\right)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D\left(F_{k}\right)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D\left(F_{k}\right) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such $\mathcal{G} \mathcal{L}$-bundles $D$ weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $\mathrm{TT}^{k-1} M$. Such $D$ is called a $\mathcal{V B}$-algebroid if it is a double vector bundle.

## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{\prime}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), \quad y_{w}^{i}$ are of bi-degree $(w, 1), \quad \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{J}$ are of bi-degree $(k, 1)$. Thus,

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right) \mapsto\left(x^{a}, y_{w}^{i}\right)
$$

is a linear fibration over $F_{k-1}$.
The embedding $: \digamma_{k} \rightarrow D\left(\Gamma_{k}\right)$ reads

$$
\iota\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)=\left(x^{a}, y_{w}^{i}, w^{\prime} y_{w^{\prime}}^{i^{\prime}}, k z_{k}^{j}\right)
$$

## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

where $x^{a}$ are of bi-degree $(0,0), \quad y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{J}$ are of bi-degree $(k, 1)$. Thus,

is a linear fibration over $F_{k-1}$.
The embedding $L: \Gamma_{k} \leftrightarrow D^{\prime}\left(\Gamma_{k}\right)$ reads


## Linearisation in coordinates

```
If ( }\mp@subsup{x}{}{a},\mp@subsup{y}{w}{i},\mp@subsup{z}{k}{j})\mathrm{ are coordinates on a graded bundle }\mp@subsup{F}{k}{
such that }\mp@subsup{x}{}{a}\mathrm{ are of degree 0,
of degree }k\mathrm{ , then the induced coordinate system on D(F
(xa},\mp@subsup{y}{w}{i},\mp@subsup{\dot{y}}{\mp@subsup{w}{}{\prime}}{i\prime},\mp@subsup{\dot{z}}{k}{j}
where }\mp@subsup{x}{}{a}\mathrm{ are of bi-degree (0,0), y'w are of bi-degree (w,1), y}\mp@subsup{y}{w}{\prime}\mathrm{ are of
bi-degree (w,1), and z
```



```
is a linear fibration over \(F_{k-1}\)
The embedding \(L: F_{k} \hookrightarrow D^{\prime}\left(F_{k}\right)\) reads
```



## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is
where $x^{a}$ are of bi-degree $(0,0), \quad y_{w}^{i}$ are of bi-degree $(w, 1), \quad \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree $(k, 1)$. Thus,

is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

where $x^{a}$ are of bi-degree $(0,0), \quad y_{w}^{i}$ are of bi-degree $(w, 1), \quad \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{J}$ are of bi-degree $(k, 1)$. Thus,

is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i \prime}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), \quad y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree $(k, 1)$. Thus,

is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0)$,

# bi-degree ( $w, 1$ ), and $z_{k}$ are of bi-degree ( $k, 1$ ). Thus, 


is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i \prime}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1)$, bi-degree $(w, 1)$, and $z_{k}^{J}$ are of bi-degree ( $k, 1$ ). Thus,

is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i \prime}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree ( $k, 1$ ). Thus,
is a linear fibration over $F_{k-1}$
The embedding , : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree ( $k, 1$ ). Thus,
is a linear fibration over $F_{k-1}$
The embedding, : $F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i \prime}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree $(k, 1)$. Thus,

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right) \mapsto\left(x^{a}, y_{w}^{i}\right)
$$

is a linear fibration over $F_{k-1}$.
The embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree $(k, 1)$. Thus,

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right) \mapsto\left(x^{a}, y_{w}^{i}\right)
$$

is a linear fibration over $F_{k-1}$.
The embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ reads


## Linearisation in coordinates

If $\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)$ are coordinates on a graded bundle $F_{k}$ such that $x^{a}$ are of degree $0, y_{w}^{i}$ are of degree $w, 0<w<k$, and $z_{k}^{j}$ are of degree $k$, then the induced coordinate system on $D\left(F_{k}\right)$ is

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right)
$$

where $x^{a}$ are of bi-degree $(0,0), y_{w}^{i}$ are of bi-degree $(w, 1), \dot{y}_{w}^{i}$ are of bi-degree $(w, 1)$, and $z_{k}^{j}$ are of bi-degree $(k, 1)$. Thus,

$$
\left(x^{a}, y_{w}^{i}, \dot{y}_{w^{\prime}}^{i^{\prime}}, \dot{z}_{k}^{j}\right) \mapsto\left(x^{a}, y_{w}^{i}\right)
$$

is a linear fibration over $F_{k-1}$.
The embedding $\iota: F_{k} \hookrightarrow D\left(F_{k}\right)$ reads

$$
\iota\left(x^{a}, y_{w}^{i}, z_{k}^{j}\right)=\left(x^{a}, y_{w}^{i}, w^{\prime} y_{w^{\prime}}^{i^{\prime}}, k z_{k}^{j}\right) .
$$

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\mathrm{T}^{k} \mathcal{G}^{\underline{s}}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $T^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as

$$
D\left(A^{k}(\mathcal{G})\right) \sim\left\{(Y, Z) \in A(\mathcal{G}) \times M T A^{k-1}(G) \mid \quad \rho(Y)=T \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow \mathrm{TM}$ is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{\underline{s}} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves.
bundle
inherits graded bundle structure of degree $k$ as a graded subbundle of $T^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as
$D\left(A^{k}(\mathcal{G})\right) \sim\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} T A^{k-1}(G) \mid \quad p(Y)=T \tau(Z)\right\}$
viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow \mathrm{TM}$ is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{\underline{s}} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $T^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as
$D\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times{ }_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}$
viemed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{\underline{s}} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

```
Theorem
The linearisation of }\mp@subsup{A}{}{k}(\mathcal{G})\mathrm{ is given as
```



```
viewed as a vector bundle over }\mp@subsup{A}{}{k-1}(\mathcal{G})\mathrm{ with respect to the obvious
projection of part Z onto }\mp@subsup{A}{}{k-1}(\mathcal{G})\mathrm{ , where }\rho:A(\mathcal{G})->\mathrm{ TM is the standard
anchor of the Lie algebroid and \tau:A}\mp@subsup{A}{}{k-1}(\mathcal{G})->M\mathrm{ is the obvious projection.
Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie
algebroid prolongation in the sense of Popescu and Martínez.
```


## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{s} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as

$$
D\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious
projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{s} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{\underline{s}}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as

$$
D\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$,

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $\mathrm{T}^{k} \mathcal{G}^{s} \subset \mathrm{~T}^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{s}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as

$$
D\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow \mathrm{TM}$ is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection.

## Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^{k} \mathcal{G}^{s} \subset T^{k} \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$
F_{k}=A^{k}(\mathcal{G}):=\left.\mathrm{T}^{k} \mathcal{G}^{s}\right|_{M}
$$

inherits graded bundle structure of degree $k$ as a graded subbundle of $\mathrm{T}^{k} \mathcal{G}$. Of course, $A=A^{1}(\mathcal{G})$ can be identified with the Lie algebroid of $\mathcal{G}$.

## Theorem

The linearisation of $A^{k}(\mathcal{G})$ is given as

$$
D\left(A^{k}(\mathcal{G})\right) \simeq\left\{(Y, Z) \in A(\mathcal{G}) \times_{M} \mathrm{~T} A^{k-1}(\mathcal{G}) \mid \quad \rho(Y)=\mathrm{T} \tau(Z)\right\}
$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part $Z$ onto $A^{k-1}(\mathcal{G})$, where $\rho: A(\mathcal{G}) \rightarrow$ TM is the standard anchor of the Lie algebroid and $\tau: A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M$.
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Fuler-I agrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


> Here, the diagram consists of relations, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times M T^{*} M$ $\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.

> The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: T^{*} F_{k} \longrightarrow T^{*} D\left(F_{k}\right) \rightarrow T D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\mathrm{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M$. Forget the Hamiltonian side.
$T L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations,
and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case,
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\mathrm{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case,
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-L agrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case,
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Fuler-I agrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M$.
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=\mathrm{T}^{k-1} M \times_{M} \mathrm{~T}^{*} M$. Forget the Hamiltonian side.
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=\mathrm{T}^{k-1} M \times_{M} \mathrm{~T}^{*} M$. Forget the Hamiltonian side.
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Lagrangian framework for graded bundles

A weighted Lie algebroid on $D\left(F_{k}\right)$ gives the Tulczyjew triple


Here, the diagram consists of relations, $\hat{\varepsilon}: \mathrm{T}^{*} F_{k} \longrightarrow \mathrm{~T}^{*} D\left(F_{k}\right) \rightarrow \mathrm{T} D^{*}\left(F_{k}\right)$, and $\operatorname{Mi}\left(F_{k}\right)$ is the so called Mironian of $F_{k}$. In the classical case, $\operatorname{Mi}\left(T^{k} M\right)=T^{k-1} M \times_{M} T^{*} M$. Forget the Hamiltonian side.
$\mathcal{T} L$ is the Tulczyjew differential and $\lambda_{L}$ the Legendre relation.
The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.
The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} D\left(g_{2}\right) \rightarrow \mathrm{T} D^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \mathrm{ad}_{y}^{*} \beta, \alpha\right)
$$

Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} D^{*}\left(g_{2}\right)$ is

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
\beta=\frac{\partial L}{\partial x}(x, z)-\frac{d}{d t}\left(\frac{\partial L}{\partial z}(x, z)\right)
$$

## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.
The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} D\left(g_{2}\right) \rightarrow \mathrm{T} D^{*}\left(g_{2}\right)$ reads


Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation


Hence, for the phase dynamics,


## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.

The Lie algebroid structure $\varepsilon: T^{*} D\left(g_{2}\right) \rightarrow T D^{*}\left(g_{2}\right)$ reads

Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation


Hence, for the phase dynamics,


## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} D\left(g_{2}\right) \rightarrow \mathrm{T} D^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

Given a Lagrangian L

$\mathrm{S}_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation


Hence, for the phase dynamics,


## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} D\left(g_{2}\right) \rightarrow \mathrm{T} D^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} D^{*}\left(g_{2}\right)$ is

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\} .
$$

Hence, for the phase dynamics,

## Example

Let $g$ be a Lie algebra and put $F_{2}=g_{2}=g[1] \times g[2]$, with coordinates $\left(x^{i}, z^{j}\right)$ on $g_{2}$ and coordinates $\left(x^{i}, y^{j}, z^{k}\right)$ on $D\left(g_{2}\right)=g[1] \times g[1] \times g[2]$. The embedding $\iota: g_{2} \hookrightarrow D\left(g_{2}\right)$ takes the form $\iota(x, z)=(x, x, z)$ and the vector bundle projection is $\tau(x, y, z)=x$.

The Lie algebroid structure $\varepsilon: \mathrm{T}^{*} D\left(g_{2}\right) \rightarrow \mathrm{T} D^{*}\left(g_{2}\right)$ reads

$$
(x, y, z, \alpha, \beta, \gamma) \mapsto\left(x, \beta, \gamma, z, \operatorname{ad}_{y}^{*} \beta, \alpha\right)
$$

Given a Lagrangian $L: g_{2} \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T} L: g_{2} \rightarrow \mathrm{~T} D^{*}\left(g_{2}\right)$ is

$$
\mathcal{T} L(x, z)=\left\{\left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \operatorname{ad}_{x}^{*} \beta, \alpha\right): \alpha+\beta=\frac{\partial L}{\partial x}(x, z)\right\}
$$

Hence, for the phase dynamics,

$$
\beta=\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right) .
$$

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\dot{x}=z
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$
These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g\left(c_{i j}^{k}\right.$ are structure constants, no summation convention):

$$
I_{j} \dddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k}
$$

The latter can be viewed as 'higher Euler equations'.

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :
$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$

These equations are second order and induce the Euler-'Lagrange equations on $g$ which are of order 3:


For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g$ ( $c_{i j}^{k}$ are structure constants, no summation convention):


The latter can be viewed as 'higher Euler equations'

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\dot{x}=z,
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$.
These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3:


For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g$ ( $c_{i j}^{k}$ are structure constants, no summation convention):


The latter can be viewed as 'higher Euler equations'.

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3:


For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g$ ( $c_{i j}^{k}$ are structure constants, no summation convention):

The latter can be viewed as 'higher Euler equations'

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\dot{x}=z
$$

$\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right)$.
These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3 :

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right) .
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g$ ( $c_{i j}^{k}$ are structure constants, no summation convention):

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g\left(c_{i j}^{k}\right.$ are structure constants, no summation convention):

$$
I_{j} \ddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k} .
$$

The latter can be viewed as 'higher Euler equations'

## Example

This leads to the Euler-Lagrange equations on $g_{2}$ :

$$
\begin{aligned}
\dot{x} & =z \\
\frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) & =\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, z)-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, z)\right)\right) .
\end{aligned}
$$

These equations are second order and induce the Euler-Lagrange equations on $g$ which are of order 3:

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)=\operatorname{ad}_{x}^{*}\left(\frac{\partial L}{\partial x}(x, \dot{x})-\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z}(x, \dot{x})\right)\right)
$$

For instance, the 'free' Lagrangian $L(x, z)=\frac{1}{2} \sum_{i} I_{i}\left(z^{i}\right)^{2}$ induces the equations on $g\left(c_{i j}^{k}\right.$ are structure constants, no summation convention):

$$
I_{j} \dddot{x}^{j}=\sum_{i, k} c_{i j}^{k} I_{k} x^{i} \ddot{x}^{k} .
$$

The latter can be viewed as 'higher Euler equations'.

## Higher order Lagrangian mechanics on Lie algebroids

## Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on

 $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ \mathrm{~d} L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation.

Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,

$$
A^{k}(\mathcal{G})=\mathrm{T}^{k}(\mathcal{G}) / \mathcal{G} \quad \text { and } \quad D\left(A^{k}(\mathcal{G})\right)=\mathrm{T}^{k-1}(\mathcal{G}) / \mathcal{G}
$$

## Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is


Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ d L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation.

Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,


## Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$.


Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ d L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation. Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,


## Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is

Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ d L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation.

Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,

## Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is


Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ \mathrm{~d} L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation.
Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,

## Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid $\mathcal{G}$ and a Lagrangian $L: A^{k} \rightarrow \mathbb{R}$ on $A^{k}=A^{k}(\mathcal{G})$. We will refer to such systems as a k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$. The relevant diagram here is


Here, $D\left(A^{k}(\mathcal{G})\right)$ is the corresponding Lie algebroid prolongation, $\mathcal{D}=\varepsilon \circ r \circ \mathrm{~d} L\left(A^{k}(\mathcal{G})\right)$, and $\lambda_{L}$ is the Legendre relation.
Note that we deal with reductions: in the case $\mathcal{G}$ is a Lie group,

$$
A^{k}(\mathcal{G})=\mathrm{T}^{k}(\mathcal{G}) / \mathcal{G} \quad \text { and } \quad D\left(A^{k}(\mathcal{G})\right)=\mathrm{T}^{k-1}(\mathcal{G}) / \mathcal{G}
$$

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{J}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}}
$$


which we recognise as the Jacobi-Ostrogradski momenta.

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):


[^0]
## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

which we recognise as the Jacobi-Ostrogradski momenta.

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$,
relation in the form (no Lie algebroid structure appears!):

which we recognise as the Jacobi-Ostrogradski momenta.

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form


[^1]
## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

which we recognise as the Jacobi-Ostrogradski momenta.

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
\begin{aligned}
& k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}} \\
& (k-1) \pi_{b}^{2}=\frac{\partial L}{\partial y_{k-1}^{b}}-\frac{1}{k} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{k}^{b}}\right) \\
& \vdots \\
& \pi_{d}^{k}=\frac{\partial L}{\partial y_{1}^{d}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{d}}\right)+\frac{1}{3!} \frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial y_{3}^{d}}\right)-\cdots \\
& +(-1)^{k} \frac{1}{(k-1)!} \frac{d^{k-2}}{d t^{k-2}}\left(\frac{\partial L}{\partial y_{k-1}^{d}}\right)-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{d}}\right),
\end{aligned}
$$

## Higher order Lagrangian mechanics on Lie algebroids

For instance, using $x^{A}$ as base coordinates, and $y_{i}^{a}$ as fibre coordinates of degree $i=1, \ldots, k$ in $A^{k}$, extended by the appropriate momenta $\pi_{b}^{j}$ of degree $j=1, \ldots, k$ in $D^{*}\left(A^{k}\right)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$
\begin{aligned}
& k \pi_{a}^{1}=\frac{\partial L}{\partial y_{k}^{a}} \\
& (k-1) \pi_{b}^{2}=\frac{\partial L}{\partial y_{k-1}^{b}}-\frac{1}{k} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{k}^{b}}\right) \\
& \vdots \\
& \pi_{d}^{k}=\frac{\partial L}{\partial y_{1}^{d}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{d}}\right)+\frac{1}{3!} \frac{d^{2}}{d t^{2}}\left(\frac{\partial L}{\partial y_{3}^{d}}\right)-\cdots \\
& +(-1)^{k} \frac{1}{(k-1)!} \frac{d^{k-2}}{d t^{k-2}}\left(\frac{\partial L}{\partial y_{k-1}^{d}}\right)-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{d}}\right),
\end{aligned}
$$

which we recognise as the Jacobi-Ostrogradski momenta.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

which we define to be the $k$-th order Euler-Lagrange equations on $A(\mathcal{G})$
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$.

which we define to be the $k$-th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Fuler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the $k$-th order Euler-Lagrange equations on $A(\mathcal{G})$
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.

> The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k},
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the k -th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez.

## Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$
\frac{d}{d t} \pi_{a}^{k}=\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}+y_{1}^{b} C_{b a}^{c}(x) \pi_{c}^{k}
$$

where $\rho_{a}^{A}$ and $C_{b a}^{c}$ are structure functions of the Lie algebroid $A=A(\mathcal{G})$. The above equation can then be rewritten as

$$
\begin{gathered}
\rho_{a}^{A}(x) \frac{\partial L}{\partial x^{A}}= \\
\left(\delta_{a}^{c} \frac{d}{d t}-y_{1}^{b} C_{b a}^{c}(x)\right)\left(\frac{\partial L}{\partial y_{1}^{c}}-\frac{1}{2!} \frac{d}{d t}\left(\frac{\partial L}{\partial y_{2}^{c}}\right) \cdots-(-1)^{k} \frac{1}{k!} \frac{d^{k-1}}{d t^{k-1}}\left(\frac{\partial L}{\partial y_{k}^{c}}\right)\right)
\end{gathered}
$$

which we define to be the $k$-th order Euler-Lagrange equations on $A(\mathcal{G})$.
The above higher order algebroid Euler-Lagrange equations are in complete agrement with the ones obtained by Jóźwikowski \& Rotkiewicz, Colombo \& de Diego, as well as Martínez. We clearly recover the standard higher Euler-Lagrange equations on $T^{k} M$ as a particular example.

## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{i}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z^{i}}\right)\right)=0
$$

give in this case

$$
\frac{\mathrm{d} y^{i}}{\mathrm{~d} t}=\frac{1}{2} \frac{\mathrm{~d}^{2} z^{i}}{\mathrm{~d} t^{2}},
$$

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads


## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right) .
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,

give in this case

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads


## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,

give in this case

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads


## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$.

give in this case

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads


## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{i}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z^{i}}\right)\right)=0
$$

give in this case

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads

## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,
give in this case

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{i}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z^{i}}\right)\right)=0, \\
\frac{\mathrm{~d} y^{i}}{\mathrm{~d} t}=\frac{1}{2} \frac{\mathrm{~d}^{2} z^{i}}{\mathrm{~d} t^{2}}
\end{gathered}
$$

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads

## The tip of a javelin

For instance, let $L$ be the Lagrangian, governing the motion of the tip of a javelin defined on $T^{2} \mathbb{R}^{3}$,

$$
L(x, y, z)=\frac{1}{2}\left(\sum_{i=1}^{3}\left(y^{i}\right)^{2}-\left(z^{i}\right)^{2}\right)
$$

We can understand $G=\mathbb{R}^{3}$ here as a commutative Lie group, and since $L$ is $G$-invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^{3}[1] \times \mathbb{R}^{3}[2]$. The Euler-Lagrange equations on $T^{2} \mathbb{R}^{3}$,
give in this case

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial y^{i}}-\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial z^{i}}\right)\right)=0, \\
\frac{\mathrm{~d} y^{i}}{\mathrm{~d} t}=\frac{1}{2} \frac{\mathrm{~d}^{2} z^{i}}{\mathrm{~d} t^{2}}
\end{gathered}
$$

so the Euler-Lagrange equation on $\mathbb{R}^{3}$ reads

$$
\frac{\mathrm{d}^{2} x^{i}}{\mathrm{~d} t^{2}}=\frac{1}{2} \frac{\mathrm{~d}^{4} x^{i}}{\mathrm{~d} t^{4}}
$$

## The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:


The way of obtaining the implicit phase dynamics $\mathcal{D}$, as a submanifold of $\wedge^{2} T \wedge^{2} T^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ (or from a Hamiltonian $\left.H: \Lambda^{2} T^{*} M \rightarrow \mathbb{R}\right)$ is now standard: $D=T L\left(\Lambda^{2} T M\right)$.

## The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:


## The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

D


The way of obtaining the implicit phase dynamics $\mathcal{D}$, as a submanifold of
$\square$

## The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^{2} T^{*} M$, we get the following Tulczyjew triple for multivector bundles, consisting of double graded bundle morphisms:

D


The way of obtaining the implicit phase dynamics $\mathcal{D}$, as a submanifold of $\wedge^{2} \mathrm{~T} \wedge^{2} \mathrm{~T}^{*} M$, from a Lagrangian $L: \wedge^{2} T M \rightarrow \mathbb{R}$ (or from a Hamiltonian $\left.H: \wedge^{2} T^{*} M \rightarrow \mathbb{R}\right)$ is now standard: $\mathcal{D}=\mathcal{T} L\left(\wedge^{2} T M\right)$.

## The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in $M$ satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read


## The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in $M$ satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\Lambda^{2} T M$,

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read


## The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in $M$ satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-r e l a t e d ~}}^{2}$ to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read


## The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in $M$ satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$.
In coordinates, the Euler-Lagrange equations read


## The Euler-Lagrange equations

A surface $S:(t, s) \mapsto\left(x^{\sigma}(t, s)\right)$ in $M$ satisfies the Euler-Lagrange equations if the image by $d L$ of its prolongation to $\wedge^{2} T M$,

$$
(t, s) \mapsto\left(x^{\sigma}(t, s), \dot{x}^{\mu \nu}=\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t}\right)
$$

is $\alpha_{M^{-}}^{2}$-related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^{2} T^{*} M$ to $\wedge^{2} T \wedge^{2} T^{*} M$. In coordinates, the Euler-Lagrange equations read

$$
\begin{aligned}
\dot{x}^{\mu \nu} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial x^{\nu}}{\partial s}-\frac{\partial x^{\mu}}{\partial s} \frac{\partial x^{\nu}}{\partial t} \\
\frac{\partial L}{\partial x^{\sigma}} & =\frac{\partial x^{\mu}}{\partial t} \frac{\partial}{\partial s}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right)-\frac{\partial x^{\mu}}{\partial s} \frac{\partial}{\partial t}\left(\frac{\partial L}{\partial \dot{x}^{\mu \sigma}}(t, s)\right) .
\end{aligned}
$$

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} \mathrm{~T} M$ reads


The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :


In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

Starting with a Lorentz metric, we can obtain analogously the


## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads


The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange


In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Starting with a Lorentz metric, we can obtain analogously the


## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange


In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0 .
$$

Starting with a Lorentz metric, we can obtain analogously the

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange


In another form:


Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lagrangian s 三 ,

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :


In another form:


Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:


Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the 1

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

Starting with a Lorentz metric, we can obtain analogously the

## Plateau problem

In particular, if $M=\mathbb{R}^{3}=\left\{\left(x^{1}=x, x^{2}=y, x^{3}=z\right)\right\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^{2} T M$ reads

$$
L\left(x^{\mu}, \dot{x}^{\kappa \lambda}\right)=\sqrt{\sum_{\kappa, \lambda}\left(\dot{x}^{\kappa \lambda}\right)^{2}} .
$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto(x, y, z(x, y))$ provides the well-known equation for minimal surfaces, found already by Lagrange :

$$
\frac{\partial}{\partial x}\left(\frac{z_{x}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)+\frac{\partial}{\partial y}\left(\frac{z_{y}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}\right)=0
$$

In another form:

$$
\left(1+z_{x}^{2}\right) z_{y y}-2 z_{x} z_{y} z_{x y}+\left(1+z_{y}^{2}\right) z_{x x}=0
$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the Nambu-Goto Lagrangian,

## THANK YOU FOR YOUR ATTENTION!


[^0]:    which we recognise as the Jacobi-Ostrogradski momenta.

[^1]:    which we recognise as the Jacobi-Ostrogradski momenta.

