

HIGHER LAGRANGIAN MECHANICS ON GRADED BUNDLES

Janusz Grabowski
(Polish Academy of Sciences)

HIGHER GEOMETRY AND FIELD THEORY
Luxembourg, 9-11 December, 2015

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
 - Mechanics on algebroids with vakonomic constraints
 - Higher order Lagrangians
 - Lagrangian framework for graded bundles
 - Higher order Lagrangian mechanics on Lie algebroids
 - Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
 - Higher order Lagrangian mechanics on Lie algebroids
 - Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#)

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, *arXiv:1409.0439*

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of W. M. Tulczyjew and my collaboration with A. Bruce, K. Grabowska, M. Rotkiewicz and P. Urbański:

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, *arXiv:1409.0439*

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#).

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, *J. Geom. Phys.* **62** (2012), 21–36.
- Grabowska-Grabowski-Urbański, *J. Geom. Mech.* **6** (2014), 503–526.
- Bruce-Grabowska-Grabowski, *J. Phys. A* **48** (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#).

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, [J. Geom. Phys. 62](#) (2012), 21–36.
- Grabowska-Grabowski-Urbański, [J. Geom. Mech. 6](#) (2014), 503–526.
- Bruce-Grabowska-Grabowski, [J. Phys. A 48](#) (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#).

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, [J. Geom. Phys. 62](#) (2012), 21–36.
- Grabowska-Grabowski-Urbański, [J. Geom. Mech. 6](#) (2014), 503–526.
- Bruce-Grabowska-Grabowski, [J. Phys. A 48](#) (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#).

Contents

- Graded and double graded bundles
- Tulczyjew triples
- Mechanics on algebroids with vakonomic constraints
- Higher order Lagrangians
- Lagrangian framework for graded bundles
- Higher order Lagrangian mechanics on Lie algebroids
- Geometric mechanics of strings (optionally)

The talk is based on some ideas of [W. M. Tulczyjew](#) and my collaboration with [A. Bruce](#), [K. Grabowska](#), [M. Rotkiewicz](#) and [P. Urbański](#):

- Grabowski-Rotkiewicz, [J. Geom. Phys. 62](#) (2012), 21–36.
- Grabowska-Grabowski-Urbański, [J. Geom. Mech. 6](#) (2014), 503–526.
- Bruce-Grabowska-Grabowski, [J. Phys. A 48](#) (2015), 205203 (32pp).
- Bruce-Grabowska-Grabowski, [arXiv:1409.0439](#).

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees 0 and 'linear coordinates' y have degree 1. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees **0** and 'linear coordinates' y have degree **1**. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees **0** and 'linear coordinates' y have degree **1**. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Vector bundles as graded bundles

- A **vector bundle** is a locally trivial fibration $\tau : E \rightarrow M$ which, locally over $U \subset M$, reads $\tau^{-1}(U) \simeq U \times \mathbb{R}^n$ and admits an atlas in which local trivializations transform linearly in fibers

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x)y) \in U \cap V \times \mathbb{R}^n,$$

$$A(x) \in \mathrm{GL}(n, \mathbb{R}).$$

- The latter property can also be expressed in the terms of the gradation in which base coordinates x have degrees **0** and 'linear coordinates' y have degree **1**. Linearity in y 's is now equivalent to the fact that changes of coordinates respect the degrees.
- Morphisms in the category of vector bundles are represented by commutative diagram of smooth maps

$$\begin{array}{ccc} E_1 & \xrightarrow{\Phi} & E_2 \\ \downarrow \tau_1 & & \downarrow \tau_2 \\ M_1 & \xrightarrow{\varphi} & M_2 \end{array}$$

being linear in fibres.

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\Lambda^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- Canonical examples and constructions: TM , T^*M , $E \otimes_M F$, $\wedge^k E$, etc.
- A straightforward generalization is the concept of a **graded bundle** $\tau : F \rightarrow M$ with a local trivialization by $U \times \mathbb{R}^n$ as before, and with the difference that the local coordinates (y^1, \dots, y^n) in the fibres have now associated positive integer weights w_1, \dots, w_n , that are preserved by changes of local trivializations:

$$U \cap V \times \mathbb{R}^n \ni (x, y) \mapsto (x, A(x, y)) \in U \cap V \times \mathbb{R}^n,$$

- One can show that in this case $A(x, y)$ must be polynomial in fiber coordinates, i.e. any graded bundle is a **polynomial bundle**.
- As these polynomials need not to be linear, **graded bundles do not have, in general, vector space structure in fibers**. For instance, if $(y, z) \in \mathbb{R}^2$ are coordinates of degrees 1, 2, respectively, then the map $(y, z) \mapsto (y, z + y^2)$ is a diffeomorphism preserving the degrees, but it is nonlinear.
- If all $w_i \leq r$, we say that the graded bundle is **of degree r** .

Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- **Canonical examples:** $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, 0, 1, 2, 3, etc.
- **Another example.** If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by [Severa](#), [Voronov](#), [Roytenberg](#) et al. under the name **N-manifolds**. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- Canonical examples: $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, 0, 1, 2, 3, etc.
- Another example. If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by Severa, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, **vector bundles** are just graded bundles of **degree 1**.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- **Canonical examples:** $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, $0, 1, 2, 3$, etc.
- **Another example.** If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by **Severa, Voronov, Roytenberg** et al. under the name **N-manifolds**. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, **vector bundles** are just graded bundles of **degree 1**.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- **Canonical examples:** $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, $0, 1, 2, 3$, etc.
- **Another example.** If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by **Severa, Voronov, Roytenberg** et al. under the name **N-manifolds**. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, **vector bundles** are just graded bundles of **degree 1**.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- **Canonical examples:** $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, $0, 1, 2, 3$, etc.
- **Another example.** If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by **Severa, Voronov, Roytenberg** et al. under the name **N-manifolds**. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- Canonical examples: $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, 0, 1, 2, 3, etc.
- Another example. If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by Severa, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded bundles

- In the above terminology, vector bundles are just graded bundles of degree 1.
- Graded bundles F_k of degree k admit, like many jet bundles, a tower of affine fibrations by their subbundles of lower degrees

$$F_k \xrightarrow{\tau^k} F_{k-1} \xrightarrow{\tau^{k-1}} \cdots \xrightarrow{\tau^3} F_2 \xrightarrow{\tau^2} F_1 \xrightarrow{\tau^1} F_0 = M.$$

- Canonical examples: $T^k M$, with canonical coordinates $(x, \dot{x}, \ddot{x}, \dddot{x}, \dots)$ of degrees, respectively, 0, 1, 2, 3, etc.
- Another example. If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^r TE$ is canonically a graded bundle of degree r with respect to the projection

$$\wedge^r T\tau : \wedge^r TE \rightarrow \wedge^r TM.$$

- Note that similar objects has been used in supergeometry by Severa, Voronov, Roytenberg et al. under the name N-manifolds. However, we will work with classical, purely even manifolds during this talk.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined **weight vector field** (**Euler vector field**)

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h_i^a) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h_i^a) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined weight vector field (Euler vector field)

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h_i^a) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined **weight vector field (Euler vector field)**

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h^i) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined **weight vector field** (**Euler vector field**)

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h_i^a) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined **weight vector field** (**Euler vector field**)

$$\nabla_F = \sum a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h_i^a) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Graded Bundles

- With the use of coordinates (x^α, y^a) with degrees 0 for basic coordinates x^α , and degrees $w_a > 0$ for the fibre coordinates y^a , we can define on the graded bundle F a globally defined **weight vector field** (**Euler vector field**)

$$\nabla_F = \sum_a w_a y^a \partial_{y^a}.$$

- The flow of the weight vector field extends to a smooth action $\mathbb{R} \ni t \mapsto h_t^a$ of multiplicative reals on F , $h_t(x^\mu, y^a) = (x^\mu, t^{w_a} y^a)$. Such an action $h : \mathbb{R} \times F \rightarrow F$, $h_t \circ h_s = h_{ts}$, we will call a **homogeneity structure**.
- A function $f : F \rightarrow \mathbb{R}$ is called **homogeneous of degree (weight) k** if $f(h_t(x)) = t^k f(x)$; similarly for the homogeneity of tensor fields.
- Morphisms** of two homogeneity structures (F_i, h^i) , $i = 1, 2$, are defined as smooth maps $\Phi : F_1 \rightarrow F_2$ intertwining the \mathbb{R} -actions: $\Phi \circ h_t^1 = h_t^2 \circ \Phi$. Consequently, a **homogeneity substructure** is a smooth submanifold S invariant with respect to h , $h_t(S) \subset S$.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles** and **homogeneity structures** are in fact equivalent concepts.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles and homogeneity structures are in fact equivalent concepts**.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles and homogeneity structures are in fact equivalent concepts**.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles and homogeneity structures are in fact equivalent concepts**.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles and homogeneity structures are in fact equivalent concepts**.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

Double Graded Bundles

The fundamental fact (cf. [Grabowski-Rotkiewicz]) says that **graded bundles and homogeneity structures are in fact equivalent concepts**.

Theorem

For any homogeneity structure h on a manifold F , there is a smooth submanifold $M = h_0(F) \subset F$, a non-negative integer $k \in \mathbb{N}$, and an \mathbb{R} -equivariant map $\Phi_h^k : F \rightarrow T^k F|_M$ which identifies F with a graded submanifold of the graded bundle $T^k F$. In particular, there is an atlas on F consisting of local homogeneous functions.

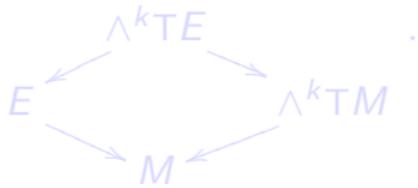
As two graded bundle structure on the same manifold are just two homogeneity structures, the obvious concept of compatibility leads to the following: A **double graded bundle** is a manifold equipped with two homogeneity structures h^1, h^2 which are **compatible** in the sense that

$$h_t^1 \circ h_s^2 = h_s^2 \circ h_t^1 \quad \text{for all } s, t \in \mathbb{R}.$$

This covers of course the concept of a **double vector bundle** of Pradines and Mackenzie, and extends to **n -tuple** graded bundles in the obvious way.

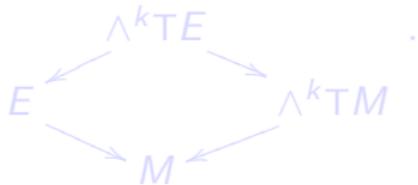
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to $T^r F$.
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:



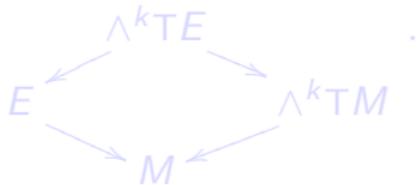
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to $T^r F$.
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* . As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:



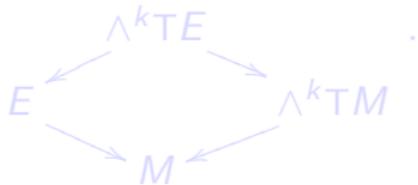
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a **\mathcal{GL} -bundle**. There are also lifts of graded structures on F to $T^r F$.
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* . As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a **\mathcal{GL} -bundle**:



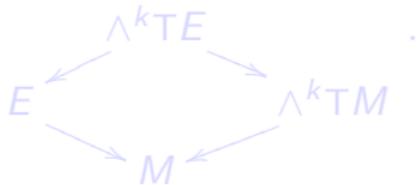
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a **\mathcal{GL} -bundle**. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a **\mathcal{GL} -bundle**:



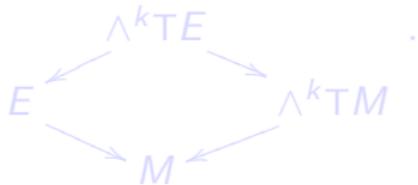
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:



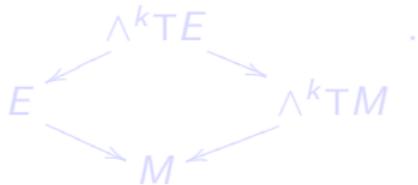
Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:



Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$,
a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:

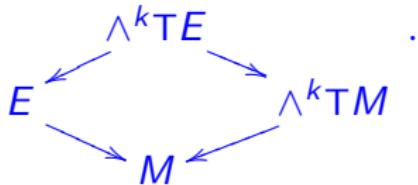


Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$,
a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:

Double graded bundles - examples

- **Lifts.** If $\tau : F \rightarrow M$ is a graded bundle of degree k , then TF and T^*F carry canonical double graded bundle structure: one is the obvious vector bundle, the other is of degree k . A double graded bundle whose one structure is linear we will call a \mathcal{GL} -bundle. There are also lifts of graded structures on F to T^*F .
- In particular, if $\tau : E \rightarrow M$ is a vector bundle, then TE and T^*E are double vector bundles. The latter is isomorphic with T^*E^* .
As a linear Poisson structure on E^* yields a map $T^*E^* \rightarrow TE^*$, a Lie algebroid structure on E can be encoded as a morphism of double vector bundles, $\varepsilon : T^*E \rightarrow TE^*$ (!)
- If $\tau : E \rightarrow M$ is a vector bundle, then $\wedge^k TE$ is canonically a \mathcal{GL} -bundle:



The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)

configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space

$$\mathcal{D} = \alpha_M^{-1}(dL(TM))) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M$, $\lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$.

The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)

configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space

$$\mathcal{D} = \alpha_M^{-1}(dL(TM))) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M$, $\lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$.

The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space

$$\mathcal{D} = \alpha_M^{-1}(dL(TM))) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M, \lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$

The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)

configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space

$$\mathcal{D} = \alpha_M^{-1}(dL(TM))) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M$, $\lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$.

The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space

$$\mathcal{D} = \alpha_M^{-1}(dL(TM))) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M, \lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$

The Tulczyjew triple - Lagrangian side

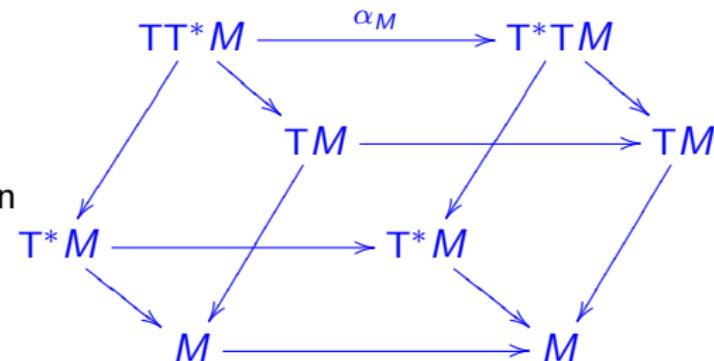
M - positions,

TM - (kinematic)

configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space



$$\mathcal{D} = \alpha_M^{-1}(dL(TM)) = \mathcal{TL}(TM),$$

the image of the Tulczyjew differential \mathcal{TL} , is the phase dynamics,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^*M$, $\lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$.

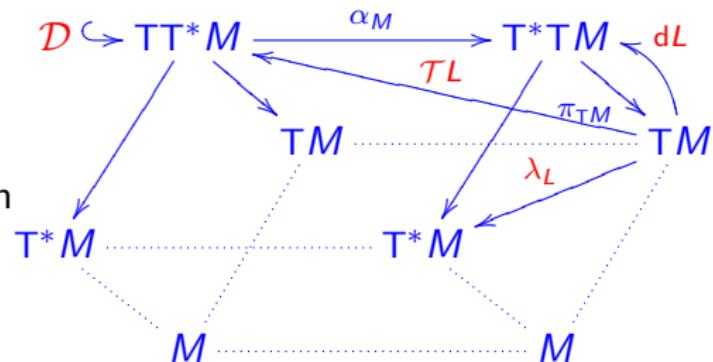
The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space



$$\mathcal{D} = \alpha_M^{-1}(dL(TM)) = \tau L(TM),$$

the image of the **Tulczyjew differential** τL , is the **phase dynamics**,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right)$.

We have also the Legendre map: $\lambda_L : TM \rightarrow T^* M$, $\lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$.

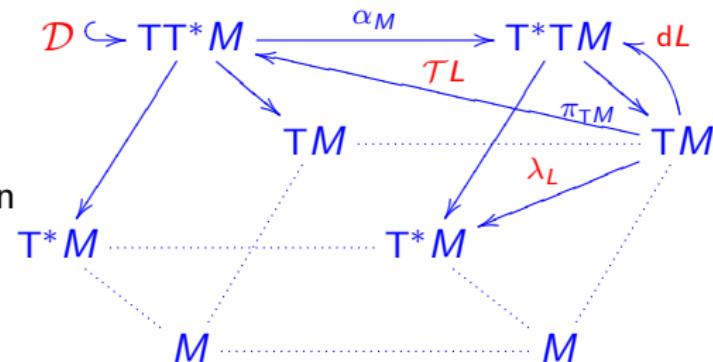
The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space



$$\mathcal{D} = \alpha_M^{-1}(dL(TM)) = \mathcal{TL}(TM),$$

the image of the **Tulczyjew differential** \mathcal{TL} , is the **phase dynamics**,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the Legendre map: $\lambda_L : TM \rightarrow T^* M, \lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}})$

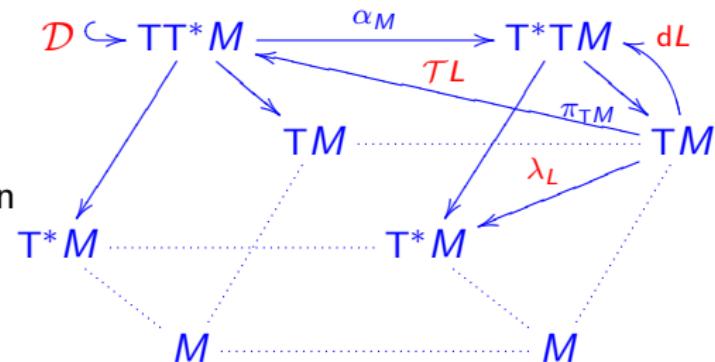
The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space



$$\mathcal{D} = \alpha_M^{-1}(dL(TM)) = \mathcal{TL}(TM),$$

the image of the **Tulczyjew differential** \mathcal{TL} , is the **phase dynamics**,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the **Legendre map**: $\lambda_L : TM \rightarrow T^*M, \lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}}).$

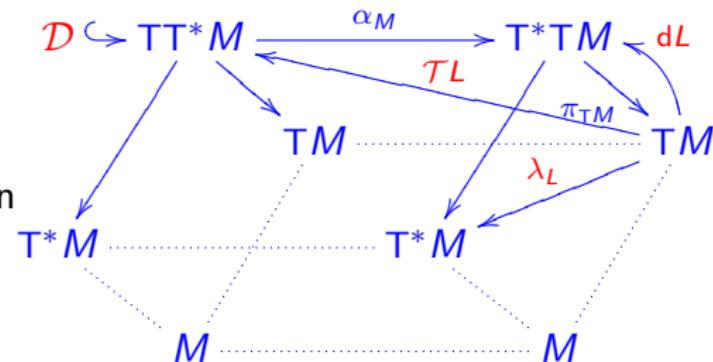
The Tulczyjew triple - Lagrangian side

M - positions,

TM - (kinematic)
configurations,

$L : TM \rightarrow \mathbb{R}$ - Lagrangian

T^*M - phase space



$$\mathcal{D} = \alpha_M^{-1}(dL(TM)) = \mathcal{T}L(TM),$$

the image of the **Tulczyjew differential** $\mathcal{T}L$, is the **phase dynamics**,

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : p = \frac{\partial L}{\partial \dot{x}}, \dot{p} = \frac{\partial L}{\partial x} \right\},$$

whence the Euler-Lagrange equation: $\frac{\partial L}{\partial x} = \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right).$

We have also the **Legendre map**: $\lambda_L : TM \rightarrow T^* M, \lambda_L(x, \dot{x}) = (x, \frac{\partial L}{\partial \dot{x}}).$

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$

$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$

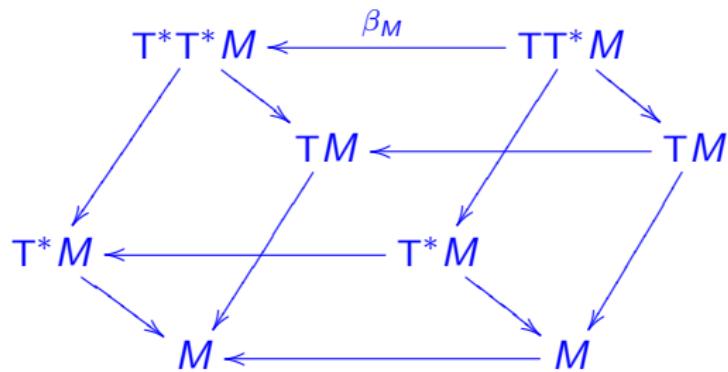
$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$



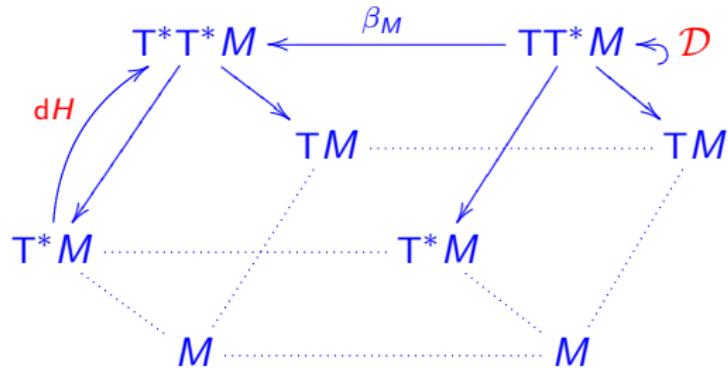
$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$



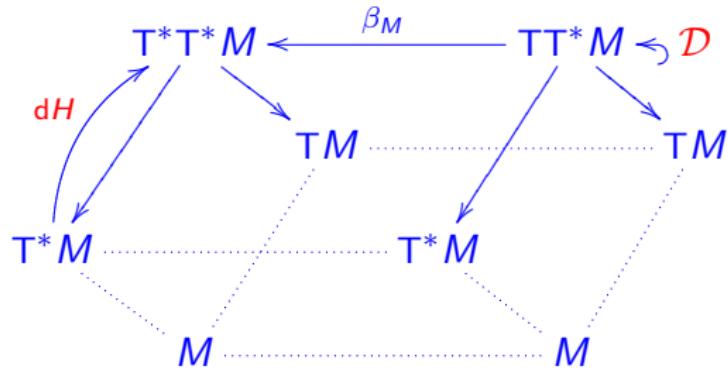
$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$



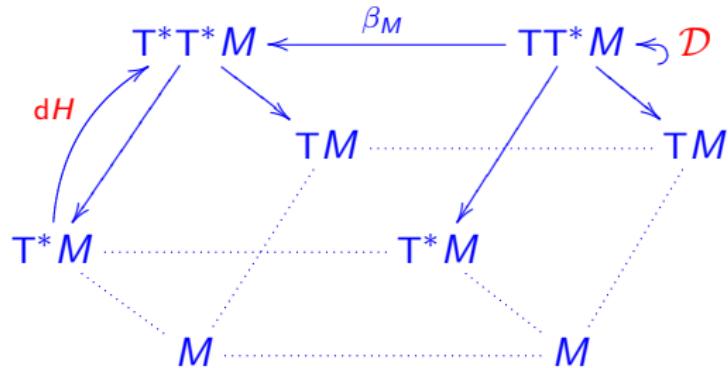
$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

The Tulczyjew triple - Hamiltonian side

$$H : T^*M \rightarrow \mathbb{R}$$

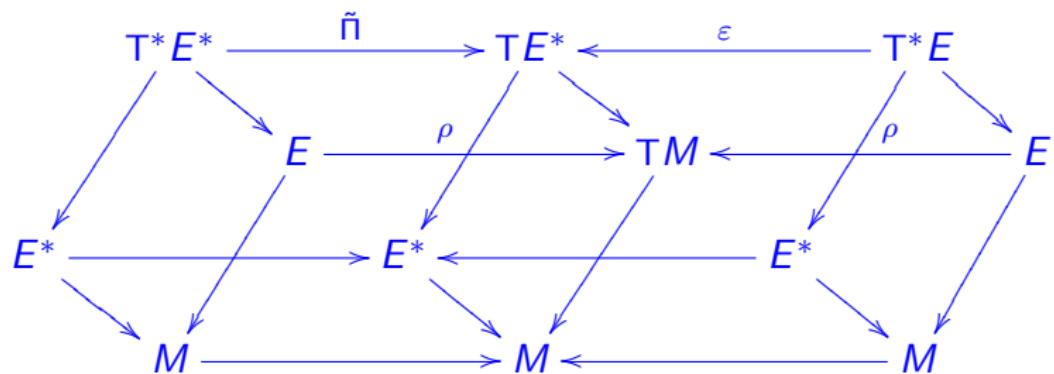


$$\mathcal{D} = \beta_M^{-1}(dH(T^*M))$$

$$\mathcal{D} = \left\{ (x, p, \dot{x}, \dot{p}) : \dot{p} = -\frac{\partial H}{\partial x}, \dot{x} = \frac{\partial H}{\partial p} \right\},$$

whence the Hamilton equations.

Algebroid setting



$$H: E^* \rightarrow \mathbb{R}$$

$$\mathcal{D}_H \subset T^*E^*$$

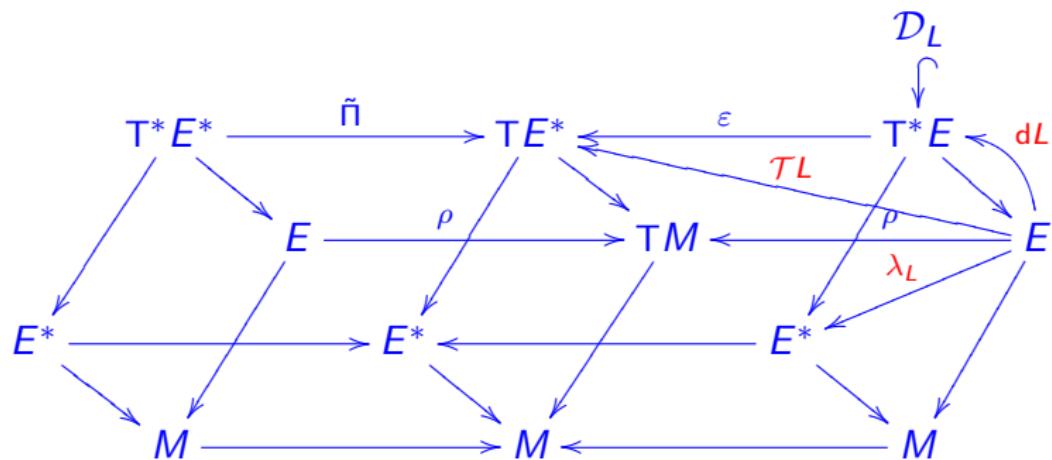
$$\mathcal{D} = \mathcal{T}L(E)$$

$$\mathcal{D} = \tilde{\Pi}(\mathrm{d}H(E^*))$$

$$L: E \rightarrow \mathbb{R}$$

$$\mathcal{D}_L \subset T^*E$$

Algebroid setting



$$H : E^* \longrightarrow \mathbb{R}$$

$$\mathcal{D}_H \subset T^*E^*$$

$$\mathcal{D} = \mathcal{TL}(E)$$

$$\mathcal{D} = \tilde{\Pi}(dH(E^*))$$

$$L : E \longrightarrow \mathbb{R}$$

$$\mathcal{D}_L \subset T^*E$$

Algebroid setting



$$H: E^* \rightarrow \mathbb{R}$$

$$\mathcal{D}_H \subset T^*E^*$$

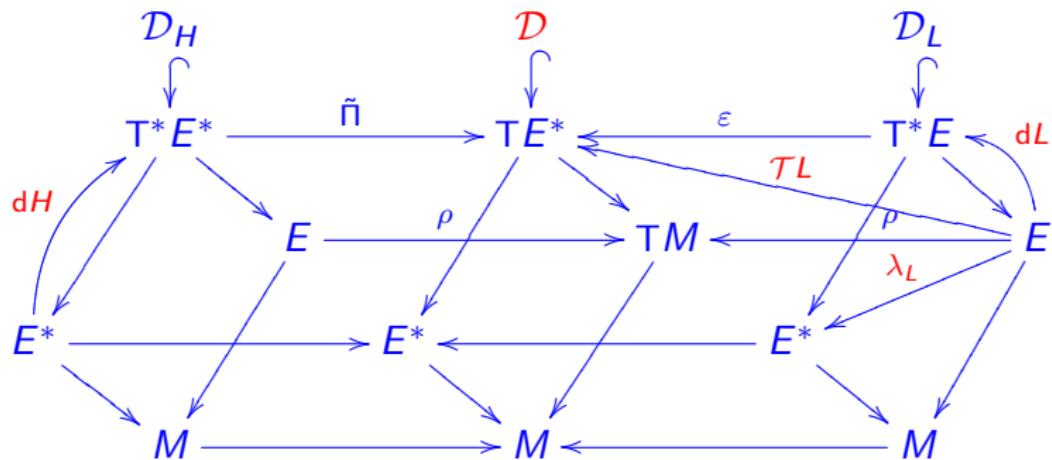
$$\mathcal{D} = \mathcal{T}L(E)$$

$$\mathcal{D} = \tilde{\Pi}(\mathrm{d}H(E^*))$$

$$L : E \rightarrow \mathbb{R}$$

$$\mathcal{D}_L \subset T^*E$$

Algebroid setting



$$H: E^* \rightarrow \mathbb{R}$$

$$\mathcal{D}_H \subset T^*E^*$$

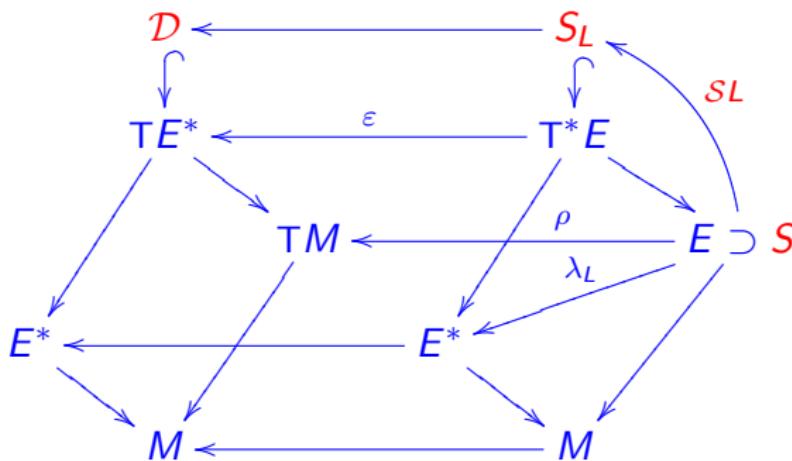
$$\mathcal{D} = \mathcal{T}L(E)$$

$$\mathcal{D} = \tilde{\Pi}(\mathrm{d}H(E^*))$$

$$L : E \rightarrow \mathbb{R}$$

$$\mathcal{D}_L \subset T^*E$$

Algebroid setting with vakonomic constraints

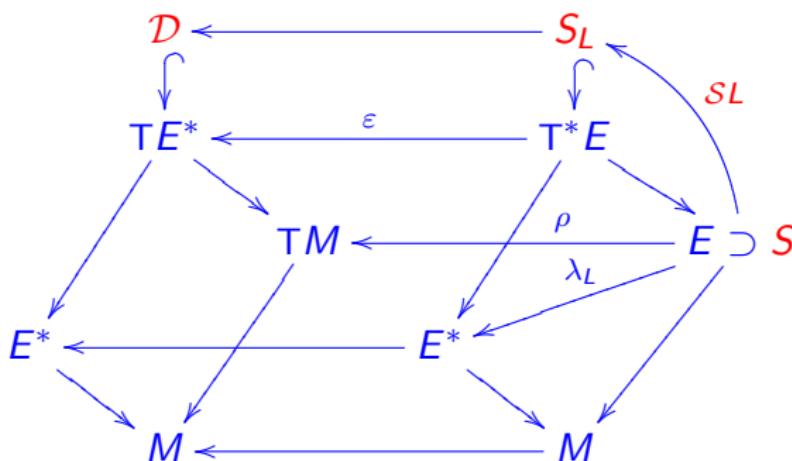


where S_L is the lagrangian submanifold in $T^* E$ induced by the Lagrangian on the constraint S , and $SL: S \rightarrow T^* E$ is the corresponding relation,

$$S_L = \{\alpha_e \in T_e^* E : e \in S \text{ and } \langle \alpha_e, v_e \rangle = dL(v_e) \text{ for every } v_e \in T_e S\}.$$

The vakonomically constrained phase dynamics is just $\mathcal{D} = \varepsilon(S_L) \subset TE^*$.

Algebroid setting with vakonomic constraints

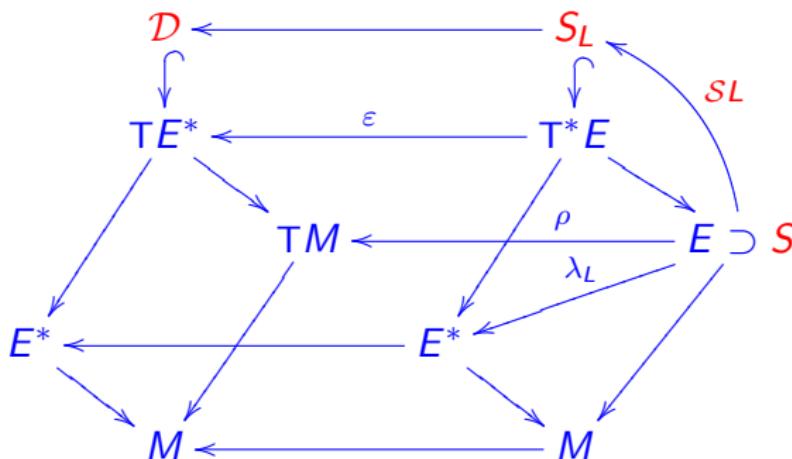


where S_L is the lagrangian submanifold in $T^* E$ induced by the Lagrangian on the constraint S , and $SL: S \rightarrow T^* E$ is the corresponding relation,

$$S_L = \{\alpha_e \in T_e^* E : e \in S \text{ and } \langle \alpha_e, v_e \rangle = dL(v_e) \text{ for every } v_e \in T_e S\}.$$

The vakonomically constrained phase dynamics is just $\mathcal{D} = \epsilon(S_L) \subset TE^*$.

Algebroid setting with vakonomic constraints

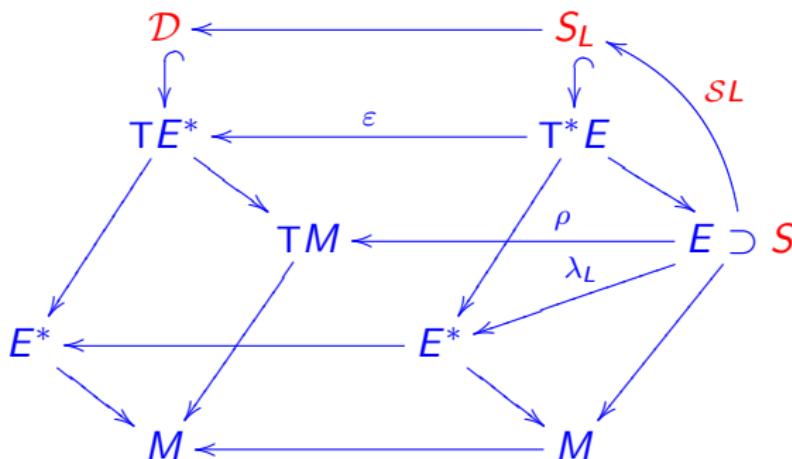


where S_L is the lagrangian submanifold in $T^* E$ induced by the Lagrangian on the constraint S , and $SL: S \rightarrow T^* E$ is the corresponding relation,

$$S_L = \{\alpha_e \in T_e^* E : e \in S \text{ and } \langle \alpha_e, v_e \rangle = dL(v_e) \text{ for every } v_e \in T_e S\}.$$

The vakonomically constrained phase dynamics is just $\mathcal{D} = \epsilon(S_L) \subset TE^*$.

Algebroid setting with vakonomic constraints



where S_L is the lagrangian submanifold in $T^* E$ induced by the Lagrangian on the constraint S , and $SL: S \rightarrow T^* E$ is the corresponding relation,

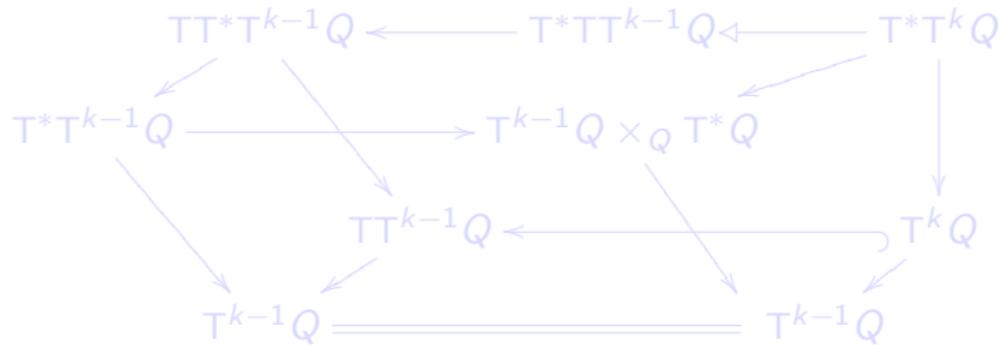
$$S_L = \{\alpha_e \in T_e^* E : e \in S \text{ and } \langle \alpha_e, v_e \rangle = dL(v_e) \text{ for every } v_e \in T_e S\}.$$

The vakonomically constrained phase dynamics is just $\mathcal{D} = \varepsilon(S_L) \subset TE^*$.

Higher order Lagrangians

The mechanics with a higher order Lagrangian $L : T^k Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of the higher tangent bundle $T^k Q$ into the tangent bundle $TT^{k-1}Q$ as an affine subbundle of **holonomic vectors**.

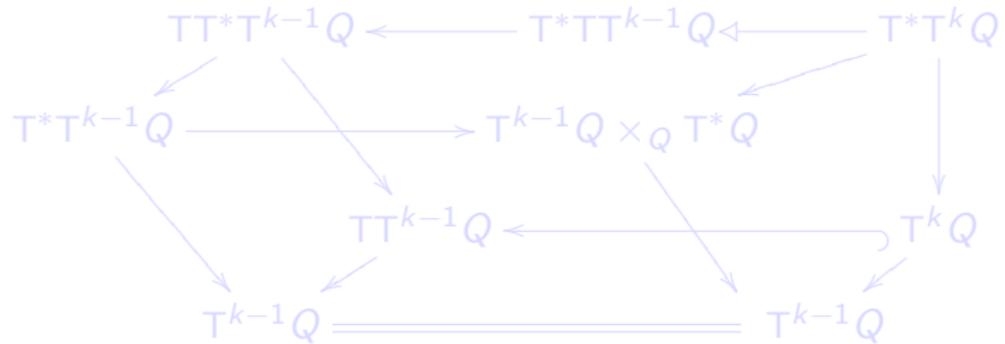
Thus we work with the standard Tulczyjew triple for TM , where $M = T^{k-1}Q$, with the presence of vakonomic constraint $T^k Q \subset TT^{k-1}Q$:



Higher order Lagrangians

The mechanics with a higher order Lagrangian $L : T^k Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of the higher tangent bundle $T^k Q$ into the tangent bundle $TT^{k-1}Q$ as an affine subbundle of **holonomic vectors**.

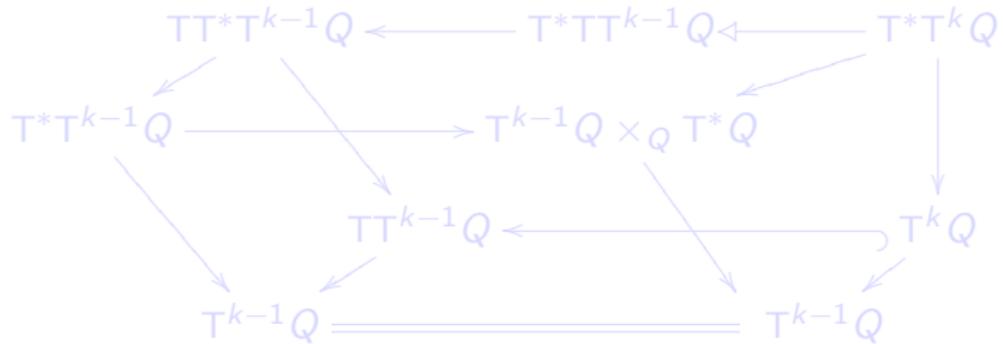
Thus we work with the standard Tulczyjew triple for TM , where $M = T^{k-1}Q$, with the presence of vakonomic constraint $T^k Q \subset TT^{k-1}Q$:



Higher order Lagrangians

The mechanics with a higher order Lagrangian $L : T^k Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of the higher tangent bundle $T^k Q$ into the tangent bundle $TT^{k-1}Q$ as an affine subbundle of **holonomic vectors**.

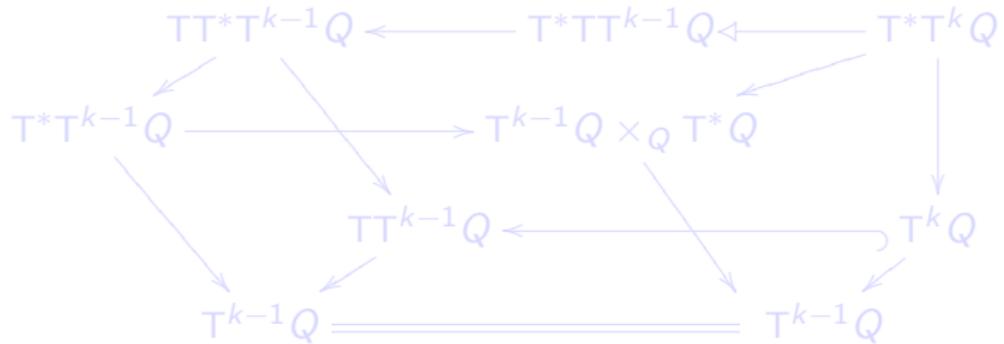
Thus we work with the standard Tulczyjew triple for TM , where $M = T^{k-1}Q$, with the presence of vakonomic constraint $T^k Q \subset TT^{k-1}Q$:



Higher order Lagrangians

The mechanics with a higher order Lagrangian $L : T^k Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of the higher tangent bundle $T^k Q$ into the tangent bundle $TT^{k-1}Q$ as an affine subbundle of **holonomic vectors**.

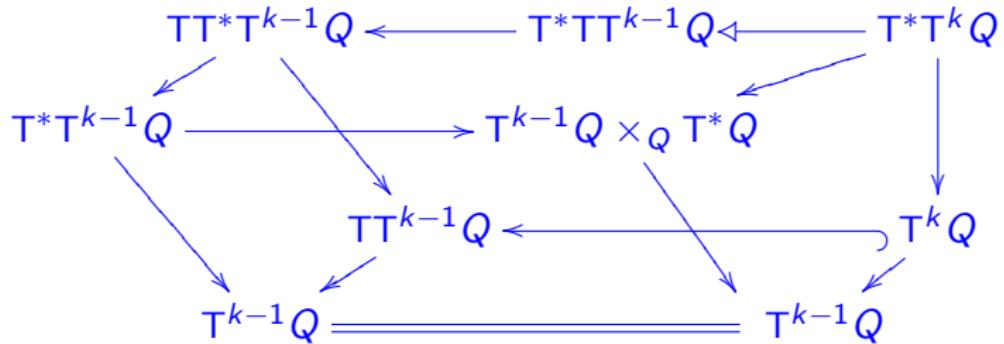
Thus we work with the standard Tulczyjew triple for TM , where $M = T^{k-1}Q$, with the presence of vakonomic constraint $T^k Q \subset TT^{k-1}Q$:



Higher order Lagrangians

The mechanics with a higher order Lagrangian $L : T^k Q \rightarrow \mathbb{R}$ is traditionally constructed as a vakonomic mechanics, thanks to the canonical embedding of the higher tangent bundle $T^k Q$ into the tangent bundle $TT^{k-1}Q$ as an affine subbundle of **holonomic vectors**.

Thus we work with the standard Tulczyjew triple for TM , where $M = T^{k-1}Q$, with the presence of vakonomic constraint $T^k Q \subset TT^{k-1}Q$:



Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial \dot{q}}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Higher order Euler-Lagrange equations

The Lagrangian function $L = L(q, \dots, \overset{(k)}{q})$ generates the phase dynamics

$$\mathcal{D} = \left\{ (v, p, \dot{v}, \dot{p}) : \dot{v}_{i-1} = v_i, \dot{p}_i + p_{i-1} = \frac{\partial L}{\partial \overset{(i)}{q}}, \dot{p}_0 = \frac{\partial L}{\partial q}, p_{k-1} = \frac{\partial L}{\partial \overset{(k)}{q}} \right\}.$$

This leads to the **higher Euler-Lagrange equations** in the traditional form:

$$\overset{(i)}{\dot{q}} = \frac{d^i q}{dt^i}, \quad i = 1, \dots, k,$$

$$0 = \frac{\partial L}{\partial q} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}} \right) + \dots + (-1)^k \frac{d^k}{dt^k} \left(\frac{\partial L}{\partial \overset{(k)}{q}} \right).$$

These equations can be viewed as a system of differential equations of order k on $T^k Q$ or, which is the standard point of view, as ordinary differential equation of order $2k$ on Q .

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow T T^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the linearisation of F_k , together with a graded embedding

$\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $T T^{k-1} M$. Such D is called a \mathcal{VB} -algebroid if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the linearisation of F_k , together with a graded embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a \mathcal{VB} -algebroid if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the linearisation of F_k , together with a graded embedding $\iota: F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a \mathcal{VB} -algebroid if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the linearisation of F_k , together with a graded embedding $\iota: F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D weighted (Lie) algebroids and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a \mathcal{VB} -algebroid if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles **D weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as 'holonomic vectors' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D **weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as '**holonomic vectors**' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles **D weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as '**holonomic vectors**' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles D **weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as '**holonomic vectors**' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles **D weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation of graded bundles

The possibility of constructing mechanics on graded bundles is based on the following generalization of the embedding $T^k Q \hookrightarrow TT^{k-1} Q$.

Theorem (Bruce-Grabowska-Grabowski)

*There is a canonical functor from the category of graded bundles into the category of \mathcal{GL} -bundles which assigns, for an arbitrary graded bundle F_k of degree k , a canonical \mathcal{GL} -bundle $D(F_k)$ which is linear over F_{k-1} , called the **linearisation of F_k** , together with a **graded** embedding $\iota : F_k \hookrightarrow D(F_k)$ of F_k as an affine subbundle of the vector bundle $D(F_k)$.*

Elements of $F_k \subset D(F_k)$ may be viewed as '**holonomic vectors**' in the linear-graded bundle $D(F_k)$. Another geometric part we need is a (Lie) algebroid structure on the vector bundle $D(F_k) \rightarrow F_{k-1}$, compatible with the second graded structure (homogeneity). We will call such \mathcal{GL} -bundles **D weighted (Lie) algebroids** and view them as abstract generalizations of the Lie algebroid $TT^{k-1} M$. Such D is called a **\mathcal{VB} -algebroid** if it is a double vector bundle.

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k

such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Linearisation in coordinates

If (x^a, y_w^i, z_k^j) are coordinates on a graded bundle F_k such that x^a are of degree 0, y_w^i are of degree w , $0 < w < k$, and z_k^j are of degree k , then the induced coordinate system on $D(F_k)$ is

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j),$$

where x^a are of bi-degree $(0, 0)$, y_w^i are of bi-degree $(w, 1)$, $\dot{y}_{w'}^{i'}$ are of bi-degree $(w, 1)$, and \dot{z}_k^j are of bi-degree $(k, 1)$. Thus,

$$(x^a, y_w^i, \dot{y}_{w'}^{i'}, \dot{z}_k^j) \mapsto (x^a, y_w^i)$$

is a linear fibration over F_{k-1} .

The embedding $\iota : F_k \hookrightarrow D(F_k)$ reads

$$\iota(x^a, y_w^i, z_k^j) = (x^a, y_w^i, w' y_{w'}^{i'}, k z_k^j).$$

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a Lie algebroid prolongation in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection.

Moreover, the above bundle is canonically a weighted Lie algebroid, a *Lie algebroid prolongation* in the sense of Popescu and Martínez.

Weighted Lie algebroids out of reductions

Let $\mathcal{G} \rightrightarrows M$ be a Lie groupoid and consider the subbundle $T^k \mathcal{G}^s \subset T^k \mathcal{G}$ consisting of all higher order velocities tangent to source-leaves. The bundle

$$F_k = A^k(\mathcal{G}) := T^k \mathcal{G}^s \Big|_M,$$

inherits graded bundle structure of degree k as a graded subbundle of $T^k \mathcal{G}$. Of course, $A = A^1(\mathcal{G})$ can be identified with the Lie algebroid of \mathcal{G} .

Theorem

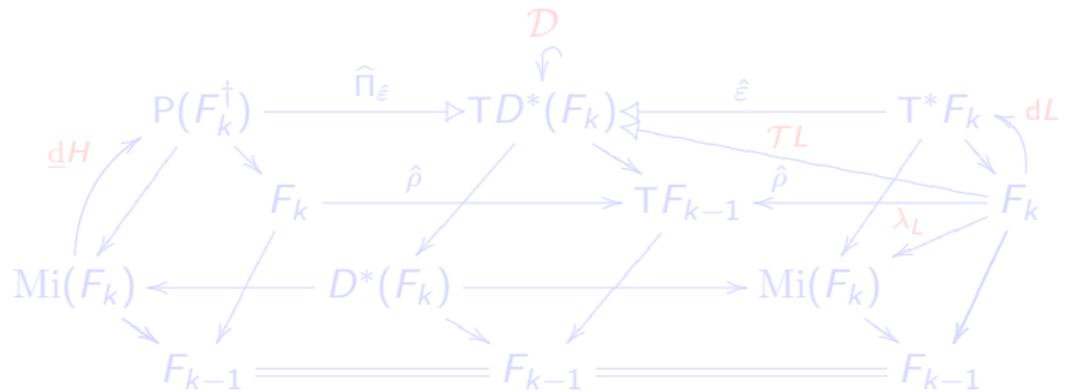
The linearisation of $A^k(\mathcal{G})$ is given as

$$D(A^k(\mathcal{G})) \simeq \{(Y, Z) \in A(\mathcal{G}) \times_M TA^{k-1}(\mathcal{G}) \mid \rho(Y) = T\tau(Z)\},$$

viewed as a vector bundle over $A^{k-1}(\mathcal{G})$ with respect to the obvious projection of part Z onto $A^{k-1}(\mathcal{G})$, where $\rho : A(\mathcal{G}) \rightarrow TM$ is the standard anchor of the Lie algebroid and $\tau : A^{k-1}(\mathcal{G}) \rightarrow M$ is the obvious projection. Moreover, the above bundle is canonically a weighted Lie algebroid, a **Lie algebroid prolongation** in the sense of **Popescu** and **Martínez**.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



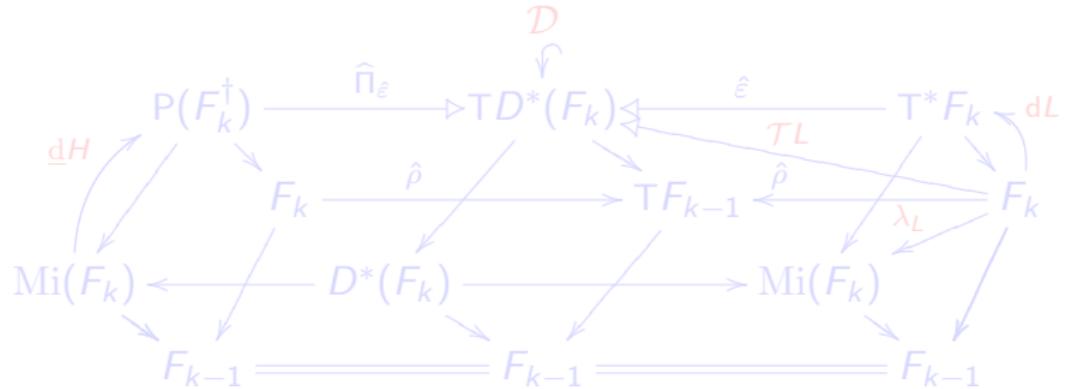
Here, the diagram consists of relations, $\widehat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



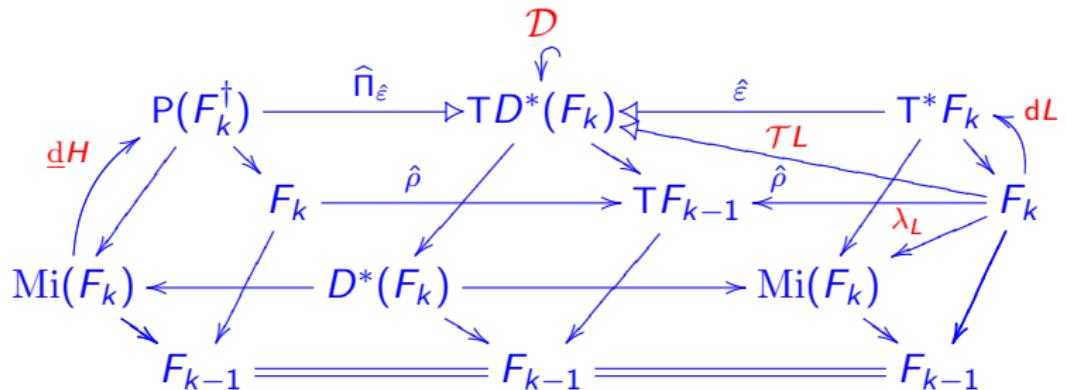
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



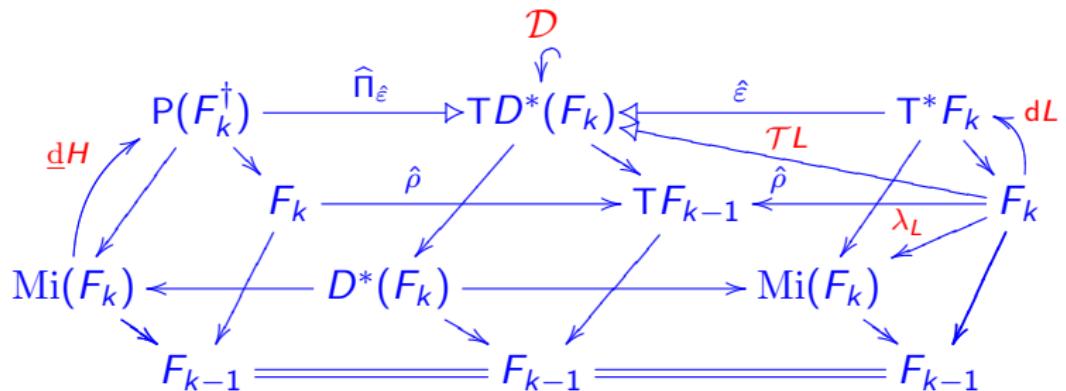
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



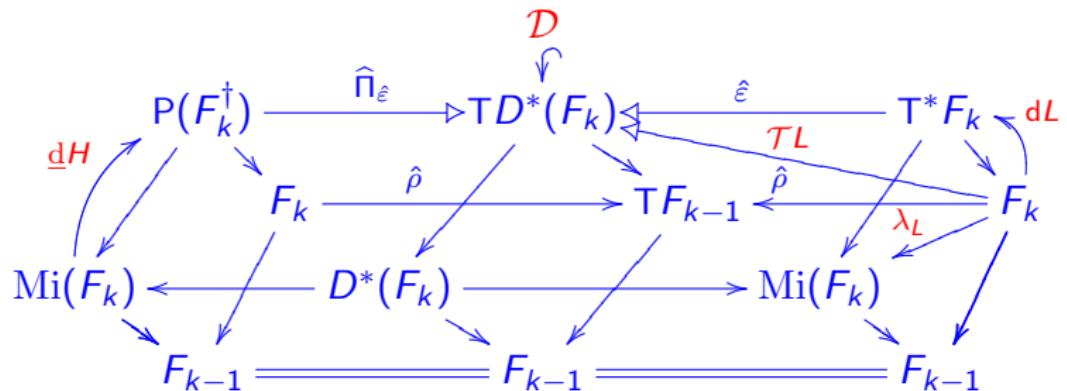
Here, the diagram consists of relations, $\hat{\epsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

TL is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



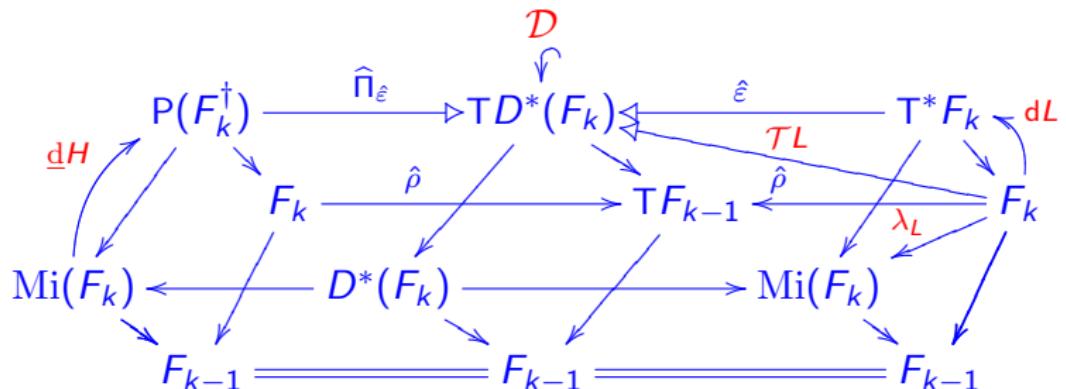
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

TL is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



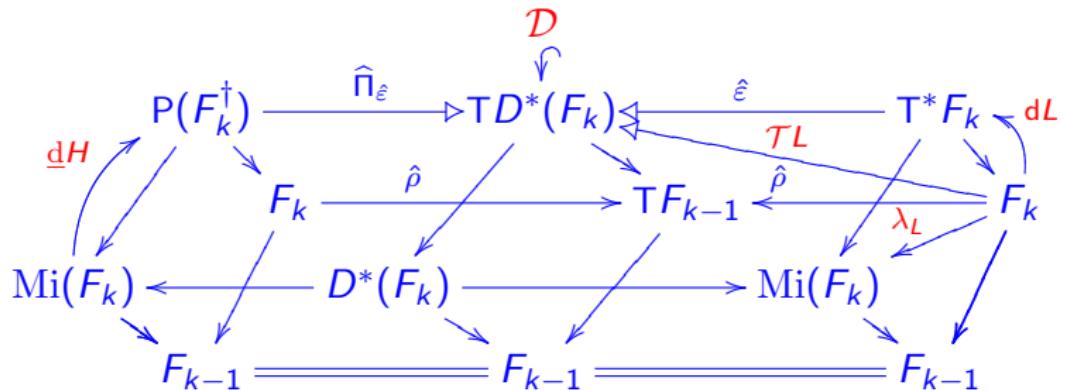
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



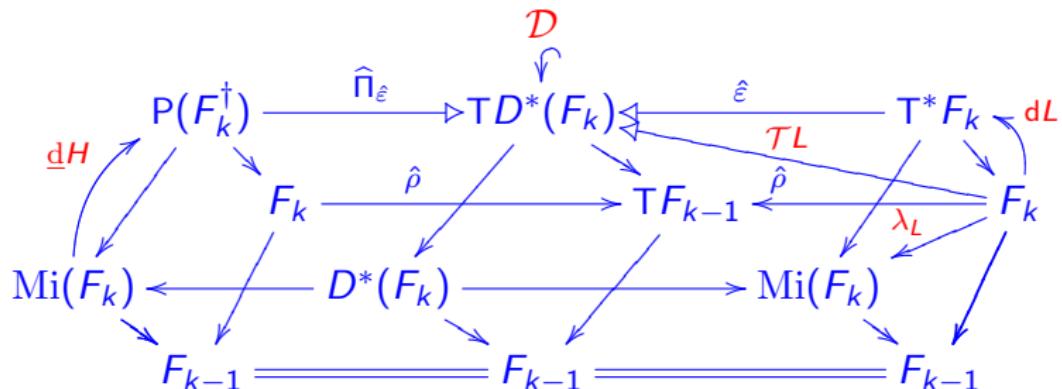
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



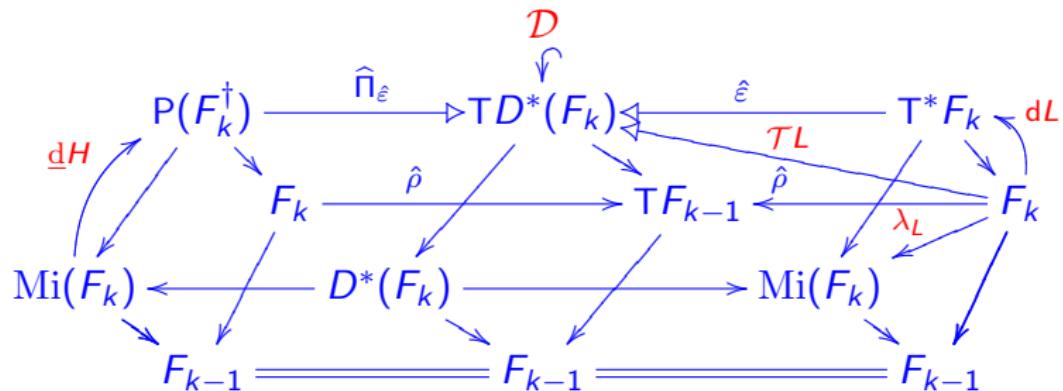
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



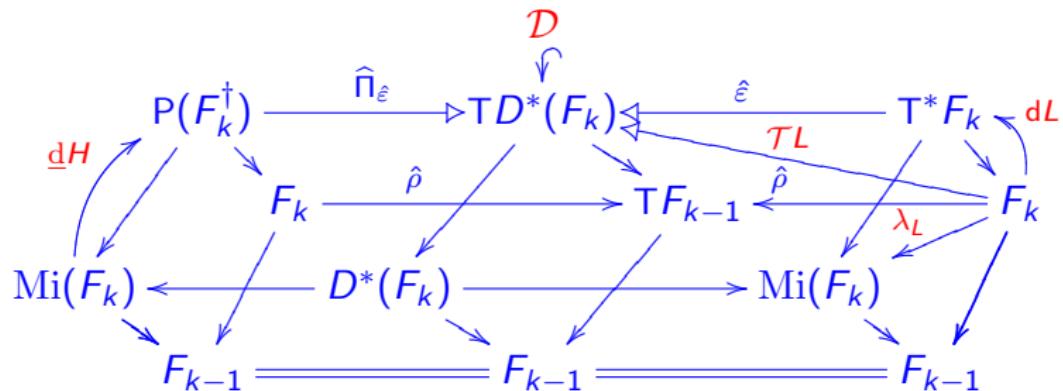
Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Lagrangian framework for graded bundles

A weighted Lie algebroid on $D(F_k)$ gives the Tulczyjew triple



Here, the diagram consists of relations, $\hat{\varepsilon} : T^*F_k \rightarrow TD^*(F_k) \rightarrow TD^*(F_k)$, and $Mi(F_k)$ is the so called **Mironian** of F_k . In the classical case, $Mi(T^k M) = T^{k-1}M \times_M T^*M$. Forget the Hamiltonian side.

\mathcal{TL} is the **Tulczyjew differential** and λ_L the **Legendre relation**.

The fact that we obtain the Euler-Lagrange equations of higher order comes from the vakonomic constraint and the additional gradation.

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T}L : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{T}L(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{TL} : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{TL}(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T}L : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{T}L(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the Tulczyjew differential relation $\mathcal{T}L : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{T}L(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the **Tulczyjew differential relation** $\mathcal{T}L : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{T}L(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

Let g be a Lie algebra and put $F_2 = g_2 = g[1] \times g[2]$, with coordinates (x^i, z^j) on g_2 and coordinates (x^i, y^j, z^k) on $D(g_2) = g[1] \times g[1] \times g[2]$.

The embedding $\iota : g_2 \hookrightarrow D(g_2)$ takes the form $\iota(x, z) = (x, x, z)$ and the vector bundle projection is $\tau(x, y, z) = x$.

The Lie algebroid structure $\varepsilon : T^*D(g_2) \rightarrow TD^*(g_2)$ reads

$$(x, y, z, \alpha, \beta, \gamma) \mapsto (x, \beta, \gamma, z, \text{ad}_y^* \beta, \alpha).$$

Given a Lagrangian $L : g_2 \rightarrow \mathbb{R}$, the **Tulczyjew differential relation** $\mathcal{T}L : g_2 \rightarrow TD^*(g_2)$ is

$$\mathcal{T}L(x, z) = \left\{ \left(x, \beta, \frac{\partial L}{\partial z}(x, z), z, \text{ad}_x^* \beta, \alpha \right) : \alpha + \beta = \frac{\partial L}{\partial x}(x, z) \right\}.$$

Hence, for the phase dynamics,

$$\beta = \frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right).$$

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\dot{x} = z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \ddot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\dot{x} = z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \ddot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\begin{aligned}\dot{x} &= z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) &= \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).\end{aligned}$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \ddot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\begin{aligned}\dot{x} &= z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) &= \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).\end{aligned}$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \ddot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\dot{x} = z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \ddot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\dot{x} = z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \dot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Example

This leads to the Euler-Lagrange equations on g_2 :

$$\dot{x} = z, \\ \frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, z) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, z) \right) \right).$$

These equations are second order and induce the Euler-Lagrange equations on g which are of order 3:

$$\frac{d}{dt} \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right) = \text{ad}_x^* \left(\frac{\partial L}{\partial x}(x, \dot{x}) - \frac{d}{dt} \left(\frac{\partial L}{\partial z}(x, \dot{x}) \right) \right).$$

For instance, the 'free' Lagrangian $L(x, z) = \frac{1}{2} \sum_i I_i(z^i)^2$ induces the equations on g (c_{ij}^k are structure constants, no summation convention):

$$I_j \ddot{x}^j = \sum_{i,k} c_{ij}^k I_k x^i \dot{x}^k.$$

The latter can be viewed as 'higher Euler equations'.

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & & \downarrow \\ & D^*(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow & \searrow & \\ & & D(A^k(\mathcal{G})) & \xleftarrow{\lambda_L} & \\ & \downarrow & & \downarrow & \\ TA(\mathcal{G}) & \xleftarrow{\rho} & D(A^k(\mathcal{G})) & \xleftarrow{\iota} & A^k(\mathcal{G}) \end{array}$$

dL

Here, $D(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad D(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & & \downarrow \\ & D^*(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow & \searrow & \\ & & D(A^k(\mathcal{G})) & \xleftarrow{\lambda_L} & \\ & \downarrow & & \downarrow & \\ TA(\mathcal{G}) & \xleftarrow{\rho} & D(A^k(\mathcal{G})) & \xleftarrow{\iota} & A^k(\mathcal{G}) \end{array}$$

dL

Here, $D(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad D(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & & \downarrow dL \\ & D^*(A^k(\mathcal{G})) & & \xleftarrow{\lambda_L} & \\ & \downarrow & & \searrow & \\ TA(\mathcal{G}) & \xleftarrow{\rho} & D(A^k(\mathcal{G})) & \xleftarrow{\iota} & A^k(\mathcal{G}) \end{array}$$

Here, $D(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad D(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & \searrow & \downarrow \\ & D^*(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow & \downarrow & \\ & \mathcal{D}(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow & \downarrow & \\ & \mathcal{D}(A^k(\mathcal{G})) & \xleftarrow{\rho} & TA(\mathcal{G}) & \\ & & \searrow & \downarrow & \\ & & \lambda_L & & \\ & & \searrow & \downarrow & \\ & & & \mathcal{D}(A^k(\mathcal{G})) & \xleftarrow{\iota} \\ & & & & A^k(\mathcal{G}) \end{array}$$

dL

Here, $\mathcal{D}(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad \mathcal{D}(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & \searrow & \downarrow \\ & D^*(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow & \downarrow & \\ & TA(\mathcal{G}) & \xleftarrow{\rho} & D(A^k(\mathcal{G})) & \xleftarrow{\iota} A^k(\mathcal{G}) \end{array}$$

dL

Diagram illustrating the relationships between various spaces related to a Lie groupoid \mathcal{G} and a Lagrangian L on its Lie algebroid $A(\mathcal{G})$. The spaces are arranged in a diamond-like structure:

- Top row: $\mathcal{D} \subset TD^*(A^k(\mathcal{G}))$, $T^*D(A^k(\mathcal{G}))$, $T^*A^k(\mathcal{G})$.
- Bottom row: $TA(\mathcal{G})$, $D(A^k(\mathcal{G}))$, $A^k(\mathcal{G})$.
- Left column: \mathcal{D} , $D^*(A^k(\mathcal{G}))$, $TA(\mathcal{G})$.
- Right column: $T^*D(A^k(\mathcal{G}))$, $D(A^k(\mathcal{G}))$, $A^k(\mathcal{G})$.

Arrows indicate the following relationships:

- ε : $\mathcal{D} \rightarrow T^*D(A^k(\mathcal{G}))$
- r : $T^*D(A^k(\mathcal{G})) \rightarrow T^*A^k(\mathcal{G})$
- ρ : $TA(\mathcal{G}) \rightarrow D(A^k(\mathcal{G}))$
- ι : $D(A^k(\mathcal{G})) \rightarrow A^k(\mathcal{G})$
- λ_L : $D^*(A^k(\mathcal{G})) \rightarrow D(A^k(\mathcal{G}))$
- dL : A curved arrow from $T^*A^k(\mathcal{G})$ down to $A^k(\mathcal{G})$.

Here, $D(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad D(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

Let us consider a general Lie groupoid \mathcal{G} and a Lagrangian $L : A^k \rightarrow \mathbb{R}$ on $A^k = A^k(\mathcal{G})$. We will refer to such systems as a **k-th order Lagrangian system on the Lie algebroid $A(\mathcal{G})$** . The relevant diagram here is

$$\begin{array}{ccccc} \mathcal{D} \subset TD^*(A^k(\mathcal{G})) & \xleftarrow{\varepsilon} & T^*D(A^k(\mathcal{G})) & \xleftarrow{r} & T^*A^k(\mathcal{G}) \\ \downarrow & \searrow & \downarrow & \swarrow & \downarrow \\ & D^*(A^k(\mathcal{G})) & & & \\ & \downarrow & \swarrow \lambda_L & \searrow & \downarrow dL \\ & TA(\mathcal{G}) & \xleftarrow{\rho} & D(A^k(\mathcal{G})) & \xleftarrow{\iota} A^k(\mathcal{G}) \end{array}$$

Here, $D(A^k(\mathcal{G}))$ is the corresponding Lie algebroid prolongation, $\mathcal{D} = \varepsilon \circ r \circ dL(A^k(\mathcal{G}))$, and λ_L is the **Legendre relation**.

Note that we deal with reductions: in the case \mathcal{G} is a Lie group,

$$A^k(\mathcal{G}) = T^k(\mathcal{G})/\mathcal{G} \quad \text{and} \quad D(A^k(\mathcal{G})) = TT^{k-1}(\mathcal{G})/\mathcal{G}.$$

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$\begin{aligned} k\pi_a^1 &= \frac{\partial L}{\partial y_k^a}, \\ (k-1)\pi_b^2 &= \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right), \\ &\vdots \\ \pi_d^k &= \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots \\ &+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right), \end{aligned}$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

For instance, using x^A as base coordinates, and y_i^a as fibre coordinates of degree $i = 1, \dots, k$ in A^k , extended by the appropriate momenta π_b^j of degree $j = 1, \dots, k$ in $D^*(A^k)$, we get the equations for the Legendre relation in the form (no Lie algebroid structure appears!):

$$k\pi_a^1 = \frac{\partial L}{\partial y_k^a},$$

$$(k-1)\pi_b^2 = \frac{\partial L}{\partial y_{k-1}^b} - \frac{1}{k} \frac{d}{dt} \left(\frac{\partial L}{\partial y_k^b} \right),$$

⋮

$$\pi_d^k = \frac{\partial L}{\partial y_1^d} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^d} \right) + \frac{1}{3!} \frac{d^2}{dt^2} \left(\frac{\partial L}{\partial y_3^d} \right) - \dots$$

$$+ (-1)^k \frac{1}{(k-1)!} \frac{d^{k-2}}{dt^{k-2}} \left(\frac{\partial L}{\partial y_{k-1}^d} \right) - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^d} \right),$$

which we recognise as the **Jacobi–Ostrogradski momenta**.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.
The above equation can then be rewritten as

$$\rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right)$$

which we define to be the k -th order Euler–Lagrange equations on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by Józwikowski & Rotkiewicz, Colombo & de Diego, as well as Martínez. We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.
The above equation can then be rewritten as

$$\rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right)$$

which we define to be the k -th order Euler–Lagrange equations on $A(\mathcal{G})$.

The above higher order algebroid Euler-Lagrange equations are in complete agreement with the ones obtained by Józwikowski & Rotkiewicz, Colombo & de Diego, as well as Martínez. We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.

The above equation can then be rewritten as

$$\begin{aligned} \rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right) \end{aligned}$$

which we define to be the k -th order Euler–Lagrange equations on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by Józwikowski & Rotkiewicz, Colombo & de Diego, as well as Martínez. We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.

The above equation can then be rewritten as

$$\rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right)$$

which we define to be the k -th order Euler–Lagrange equations on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by Józwikowski & Rotkiewicz, Colombo & de Diego, as well as Martínez. We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.

The above equation can then be rewritten as

$$\begin{aligned} \rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right) \end{aligned}$$

which we define to be the **k-th order Euler–Lagrange equations** on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by Józwikowski & Rotkiewicz, Colombo & de Diego, as well as Martínez. We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.

The above equation can then be rewritten as

$$\begin{aligned} \rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right) \end{aligned}$$

which we define to be the **k-th order Euler–Lagrange equations** on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by [Józwikowski & Rotkiewicz](#), [Colombo & de Diego](#), as well as [Martínez](#). We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

Higher order Lagrangian mechanics on Lie algebroids

The remaining equation for the dynamics is

$$\frac{d}{dt}\pi_a^k = \rho_a^A(x) \frac{\partial L}{\partial x^A} + y_1^b C_{ba}^c(x) \pi_c^k,$$

where ρ_a^A and C_{ba}^c are structure functions of the Lie algebroid $A = A(\mathcal{G})$.

The above equation can then be rewritten as

$$\begin{aligned} \rho_a^A(x) \frac{\partial L}{\partial x^A} = \\ (\delta_a^c \frac{d}{dt} - y_1^b C_{ba}^c(x)) \left(\frac{\partial L}{\partial y_1^c} - \frac{1}{2!} \frac{d}{dt} \left(\frac{\partial L}{\partial y_2^c} \right) \cdots - (-1)^k \frac{1}{k!} \frac{d^{k-1}}{dt^{k-1}} \left(\frac{\partial L}{\partial y_k^c} \right) \right) \end{aligned}$$

which we define to be the **k-th order Euler–Lagrange equations** on $A(\mathcal{G})$.

The above higher order algebroid Euler–Lagrange equations are in complete agreement with the ones obtained by [Józwikowski & Rotkiewicz](#), [Colombo & de Diego](#), as well as [Martínez](#). We clearly recover the standard higher Euler–Lagrange equations on $T^k M$ as a particular example.

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

Jump to end

The tip of a javelin

For instance, let L be the Lagrangian, governing the motion of the tip of a javelin defined on $T^2\mathbb{R}^3$,

$$L(x, y, z) = \frac{1}{2} \left(\sum_{i=1}^3 (y^i)^2 - (z^i)^2 \right).$$

We can understand $G = \mathbb{R}^3$ here as a commutative Lie group, and since L is G -invariant, we get immediately the reduction to the graded bundle $\mathbb{R}^3[1] \times \mathbb{R}^3[2]$. The Euler-Lagrange equations on $T^2\mathbb{R}^3$,

$$\frac{d}{dt} \left(\frac{\partial L}{\partial y^i} - \frac{1}{2} \frac{d}{dt} \left(\frac{\partial L}{\partial z^i} \right) \right) = 0,$$

give in this case

$$\frac{dy^i}{dt} = \frac{1}{2} \frac{d^2 z^i}{dt^2},$$

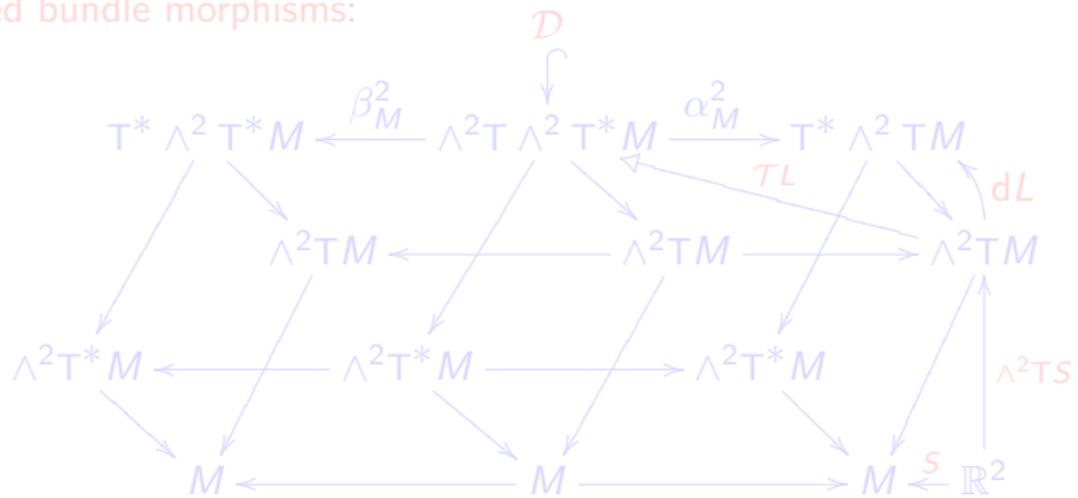
so the Euler-Lagrange equation on \mathbb{R}^3 reads

$$\frac{d^2 x^i}{dt^2} = \frac{1}{2} \frac{d^4 x^i}{dt^4}.$$

▶ Jump to end

The Tulczyjew triple for strings

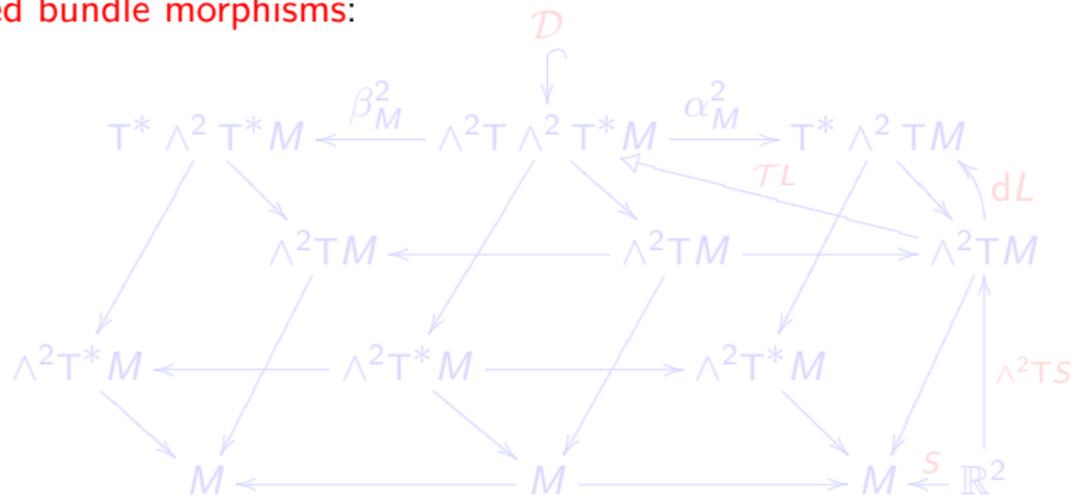
Using the canonical multisymplectic structure on $\Lambda^2 T^* M$, we get the following **Tulczyjew triple** for multivector bundles, consisting of **double graded bundle morphisms**:



The way of obtaining the implicit phase dynamics \mathcal{D} , as a submanifold of $\Lambda^2 T \Lambda^2 T^* M$, from a Lagrangian $L : \Lambda^2 TM \rightarrow \mathbb{R}$ (or from a Hamiltonian $H : \Lambda^2 T^* M \rightarrow \mathbb{R}$) is now standard: $\mathcal{D} = TL(\Lambda^2 TM)$.

The Tulczyjew triple for strings

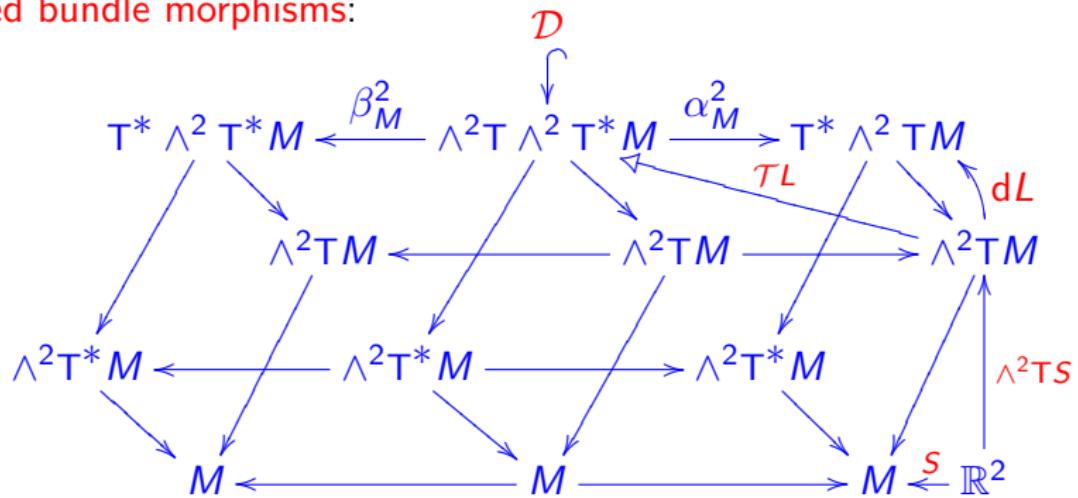
Using the canonical multisymplectic structure on $\wedge^2 T^* M$, we get the following **Tulczyjew triple** for multivector bundles, consisting of **double graded bundle morphisms**:



The way of obtaining the implicit phase dynamics \mathcal{D} , as a submanifold of $\wedge^2 T \wedge^2 T^* M$, from a Lagrangian $L: \wedge^2 TM \rightarrow \mathbb{R}$ (or from a Hamiltonian $H: \wedge^2 T^* M \rightarrow \mathbb{R}$) is now standard: $\mathcal{D} = \mathcal{TL}(\wedge^2 TM)$.

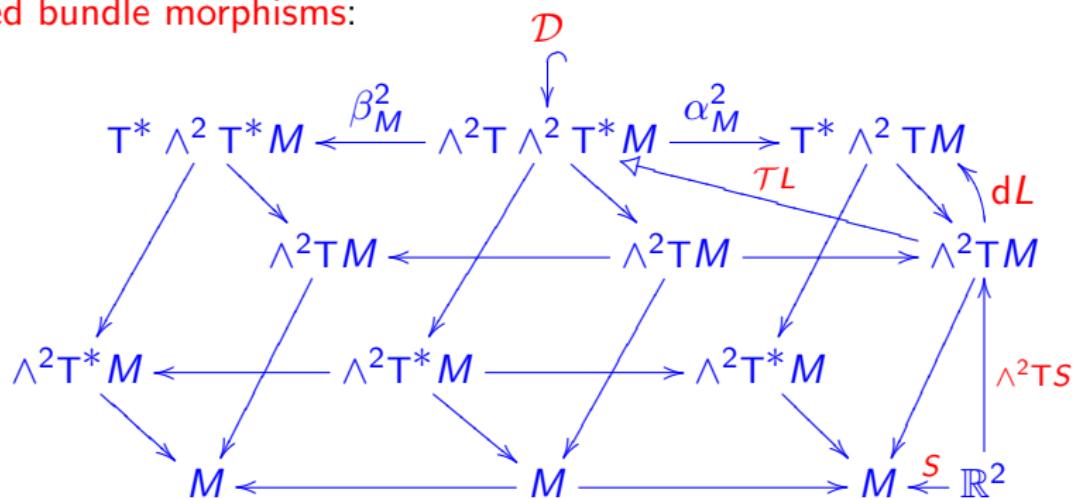
The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^2 T^*M$, we get the following **Tulczyjew triple** for multivector bundles, consisting of **double graded bundle morphisms**:



The Tulczyjew triple for strings

Using the canonical multisymplectic structure on $\wedge^2 T^* M$, we get the following **Tulczyjew triple** for multivector bundles, consisting of **double graded bundle morphisms**:



The way of obtaining the implicit phase dynamics \mathcal{D} , as a submanifold of $\wedge^2 T \wedge^2 T^* M$, from a Lagrangian $L: \wedge^2 TM \rightarrow \mathbb{R}$ (or from a Hamiltonian $H: \wedge^2 T^* M \rightarrow \mathbb{R}$) is now standard: $\mathcal{D} = \mathcal{TL}(\wedge^2 TM)$.

The Euler-Lagrange equations

A surface $S : (t, s) \mapsto (x^\sigma(t, s))$ in M satisfies the Euler-Lagrange equations if the image by dL of its prolongation to $\wedge^2 TM$,

$$(t, s) \mapsto \left(x^\sigma(t, s), \dot{x}^{\mu\nu} = \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t} \right),$$

is α_M^2 -related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^2 T^* M$ to $\wedge^2 T \wedge^2 T^* M$.

In coordinates, the Euler-Lagrange equations read

$$\begin{aligned}\dot{x}^{\mu\nu} &= \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t}, \\ \frac{\partial L}{\partial x^\sigma} &= \frac{\partial x^\mu}{\partial t} \frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right) - \frac{\partial x^\mu}{\partial s} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right).\end{aligned}$$

The Euler-Lagrange equations

A surface $S : (t, s) \mapsto (x^\sigma(t, s))$ in M satisfies the Euler-Lagrange equations if the image by dL of its prolongation to $\wedge^2 TM$,

$$(t, s) \mapsto \left(x^\sigma(t, s), \dot{x}^{\mu\nu} = \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t} \right),$$

is α_M^2 -related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^2 T^* M$ to $\wedge^2 T \wedge^2 T^* M$.

In coordinates, the Euler-Lagrange equations read

$$\begin{aligned}\dot{x}^{\mu\nu} &= \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t}, \\ \frac{\partial L}{\partial x^\sigma} &= \frac{\partial x^\mu}{\partial t} \frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right) - \frac{\partial x^\mu}{\partial s} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right).\end{aligned}$$

The Euler-Lagrange equations

A surface $S : (t, s) \mapsto (x^\sigma(t, s))$ in M satisfies the Euler-Lagrange equations if the image by dL of its prolongation to $\wedge^2 TM$,

$$(t, s) \mapsto \left(x^\sigma(t, s), \dot{x}^{\mu\nu} = \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t} \right),$$

is α_M^2 -related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^2 T^* M$ to $\wedge^2 T \wedge^2 T^* M$.

In coordinates, the Euler-Lagrange equations read

$$\begin{aligned}\dot{x}^{\mu\nu} &= \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t}, \\ \frac{\partial L}{\partial x^\sigma} &= \frac{\partial x^\mu}{\partial t} \frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right) - \frac{\partial x^\mu}{\partial s} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right).\end{aligned}$$

The Euler-Lagrange equations

A surface $S : (t, s) \mapsto (x^\sigma(t, s))$ in M satisfies the Euler-Lagrange equations if the image by dL of its prolongation to $\wedge^2 TM$,

$$(t, s) \mapsto \left(x^\sigma(t, s), \dot{x}^{\mu\nu} = \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t} \right),$$

is α_M^2 -related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^2 T^* M$ to $\wedge^2 T \wedge^2 T^* M$.

In coordinates, the Euler-Lagrange equations read

$$\begin{aligned}\dot{x}^{\mu\nu} &= \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t}, \\ \frac{\partial L}{\partial x^\sigma} &= \frac{\partial x^\mu}{\partial t} \frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right) - \frac{\partial x^\mu}{\partial s} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right).\end{aligned}$$

The Euler-Lagrange equations

A surface $S : (t, s) \mapsto (x^\sigma(t, s))$ in M satisfies the Euler-Lagrange equations if the image by dL of its prolongation to $\wedge^2 TM$,

$$(t, s) \mapsto \left(x^\sigma(t, s), \dot{x}^{\mu\nu} = \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t} \right),$$

is α_M^2 -related to an admissible surface, i.e. the prolongation of a surface living in the phase space $\wedge^2 T^* M$ to $\wedge^2 T \wedge^2 T^* M$.

In coordinates, the Euler-Lagrange equations read

$$\begin{aligned}\dot{x}^{\mu\nu} &= \frac{\partial x^\mu}{\partial t} \frac{\partial x^\nu}{\partial s} - \frac{\partial x^\mu}{\partial s} \frac{\partial x^\nu}{\partial t}, \\ \frac{\partial L}{\partial x^\sigma} &= \frac{\partial x^\mu}{\partial t} \frac{\partial}{\partial s} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right) - \frac{\partial x^\mu}{\partial s} \frac{\partial}{\partial t} \left(\frac{\partial L}{\partial \dot{x}^{\mu\sigma}}(t, s) \right).\end{aligned}$$

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\Lambda^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_x z_y z_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_xz_yz_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_x z_y z_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_xz_yz_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_x z_y z_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_xz_yz_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_x z_y z_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**

Plateau problem

In particular, if $M = \mathbb{R}^3 = \{(x^1 = x, x^2 = y, x^3 = z)\}$ with the Euclidean metric, the canonically induced 'free' Lagrangian on $\wedge^2 TM$ reads

$$L(x^\mu, \dot{x}^{\kappa\lambda}) = \sqrt{\sum_{\kappa, \lambda} (\dot{x}^{\kappa\lambda})^2}.$$

The Euler-Lagrange equation for surfaces being graphs $(x, y) \mapsto (x, y, z(x, y))$ provides the well-known equation for **minimal surfaces**, found already by Lagrange :

$$\frac{\partial}{\partial x} \left(\frac{z_x}{\sqrt{1 + z_x^2 + z_y^2}} \right) + \frac{\partial}{\partial y} \left(\frac{z_y}{\sqrt{1 + z_x^2 + z_y^2}} \right) = 0.$$

In another form:

$$(1 + z_x^2)z_{yy} - 2z_x z_y z_{xy} + (1 + z_y^2)z_{xx} = 0.$$

Starting with a Lorentz metric, we can obtain analogously the Euler-Lagrange equations for the **Nambu-Goto Lagrangian**.

THANK YOU FOR YOUR ATTENTION!