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Painlevé equations

The Painlevé equations are non linear second order ODE of the

form

where F(z, w,y) is a rational function of z, w,y and the solutions
w(z; c1, cp) satisfy
@ Painlevé-Kowalevski property: w(z; c1, ¢2) have no critical
points that depend on c¢1, o.
@ Otherwise, they are the only second order ODE without
movable singularities (branching points).
© For generic ¢1, &, w(z; c1, ) are new functions, Painlevé
Transcendents.

/olodya Roubtsov, ITEP Moscow and LAREMA, Universit¢



Painlevé property:
@ Example for 1-st ordre ODE:
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Painlevé transcendents - paradigmatic integrable systems

@ Reductions of soliton equations (KdV, KP, NLS);
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Painlevé transcendents - paradigmatic integrable systems

@ Reductions of soliton equations (KdV, KP, NLS);
@ They admit a Hamiltonian formulation;

@ They can be expressed as the isomonodromic deformation of
some linear differential equation with rational coefficients;

o All Painlevé (except for P;) admit one-parameter family of
solutions (in terms of special functions) and for some special
values of parameteres they have particular rational solutions;
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Painlevé transcendents - paradigmatic integrable systems

@ Reductions of soliton equations (KdV, KP, NLS);
@ They admit a Hamiltonian formulation;

@ They can be expressed as the isomonodromic deformation of
some linear differential equation with rational coefficients;

o All Painlevé (except for P;) admit one-parameter family of
solutions (in terms of special functions) and for some special
values of parameteres they have particular rational solutions;

@ Recently: Pj; - has a genuine fully NC analogue
(V. Retakh-V.R.)
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB dA

— - —=JAB

d\  dz (4. B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB dA

& _iaB

dA dz (A, B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.

This means that the monodromy data of the linear system

Y
((11—)\ = A\ z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)
dB dA
——-—=1[AB
d\  dz 14, B]
A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
This means that the monodromy data of the linear system

dY

T AN z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
The monodromy data play the role of initial conditions.
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All Painlevé equations are isomonodromic deformation
equations (Jimbo-Miwa1980)

dB  dA
— _C_-[AB
4z A8

A=A\ z,w,w;), B=B(\ z,w,w;) € sl,.
This means that the monodromy data of the linear system

dY

T AN z,w,w,)Y

are locally constant along solutions of the Painlevé equation.
The monodromy data play the role of initial conditions.

The monodromy data are encoded in an affine cubic surface called
monodromy manifold.
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Monodromy manifolds for the Painlevé equations

PVl xixax3 + X2 + X3 + X3 + wix1 + waxa + w3xg = wa

PV X1X2X3 + X12 + X22 + w1Xx1 + woaxs + w3Xx3 = Wy
PIV X1XoX3 + x12 4+ wix1 + woxo + woxz + 1 = ws
Pl X1X0X3 + X3 4+ X3 + wix1 + waxo = wy — 1
Pl X1X0X3 + X1 + Xo + X3 = wa
Pl x1x0x3+x1+x+1=0

Saito and van der Put
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

% B (Aliz) . /:2£z3 N ;‘3_(21)> Y, AeC\{0,t,1} (1)

where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

dyY Al(Z) AQ(Z) A3(Z)

- = Y 1} (1
O ( o T v ree{on1) (1)
where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.

o Fundamental matrix: Yoo(A) = (1 + O(1))A\*=.
@ Monodromy matrices vj(Ye) = Yoo M
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PVI as isomonodromic deformation

Painlevé sixth equation

@ The Painlevé VI equation describes the isomonodromic
deformations of the rank 2 meromorphic connections on P!
with simple poles.

% B (Aliz) . /:2£z3 N ;‘3_(21)> Y, AeC\{0,t,1} (1)

where A;, A2, Az € 5l(C), A1 + Az + A3 = — A, diagonal.
o Fundamental matrix: Yoo(A) = (1 + O(1))A\*=.
@ Monodromy matrices vj(Ye) = Yoo M

@ Describes by generators of the fundamental group under the
anti-isomorphism

p: w1 (PN\{0,t,1,00}, A1) — SLo(C).
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PVI as isomonodromic deformation

e eigen(M;) = eigen(exp(2miA;)

@ We fix the base point A1 at infinity and the generators of the
fundamental group to be 71, 72,73 such that v; encircles only
the pole i once and are oriented in such a way that

MyMoMsMog =T, Mag = exp(2iAss). (2)

o Eigenvalues of A; are (6;,—0;), j=0,t,1, 0.

o= (Aso — 1/2)%; B = —93;
= 0% §:=(1/4 —6,)°.
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PVI as isomonodromic deformation

Let:
GJ' = TI"(MJ') = 2COS(7T(9J'), j=0,t,1, 00,

The Riemann-Hilbert correspondence
‘7-—(007915’017 )/g%M(Gl7G27G37 OO)/SL2((C)7

where G is the gauge group, is defined by associating to each
Fuchsian system its monodromy representation class. The
representation space M(Gi, Gz, G3, Go) is realised as an affine
cubic surface (Jimbo)

x1x0x3 + X 4+ x5 + x§ + wix1 + waxo + w3xz + wg = 0, (3)

where:
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PVI as isomonodromic deformation

x1 =Tr(MaMs), xp=Tr(MiMs), x3="Tr(MiM,).

and
—Wj = Gij + Gch>ovl7é k7j7

Woo = G2+ G5+ G + G2, 4 G1G2G3Go, — 4.

Iwasaki proved that the triple (xi, x2, x3) satisfying the cubic
relation (3) provides a set of coordinates on a large open subset

Sc M(Gla G2a G3a GOO)

In what follows, we restrict to such open set.
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Affine Cubic as it is -1:

@ In singularity theory - the universal unfolding of the D,
singularity.
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Affine Cubic as it is -1:

@ In singularity theory - the universal unfolding of the D,
singularity.

@ Oblomkov: the quantisation of the D, affine cubic surface
M, coincides with spherical subalgebra of the generalised rank
1 double affine Hecke algebra H (or Cherednick algebra of
type G (Y)

@ In algebraic geometry - projective completion:

Mg = {(u,v,w,t) € PP |x{t + x5t + X3t — xixox3+

Fwaxit? + waxot? + waxgt? + wat> = 0}

is a del Pezzo surface of degree three and differs from it by
three smooth lines at infinity forming a triangle [Oblomkov]
t=0, x1xox3 = 0.
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.

o PVI (D,) cubic with only ws # 0 admits the log-canonical
symplectic structure ¥ = % under isomorphism
C* x C* /v — M, by

B 1 B 1 B 1

(u,v) = (xa=—(u+ ;),xz =—(v+ ;),X3 = —(uv + E)

and 1 : C* — C* is the involution o(u) = 1, 4(v) = 1.

uo
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Affine Cubic as it is -2:

@ In the Painlevé context the family of surfaces were considered
by S. Cantat et F. Loray and by M. Inaba, K. Iwasaki and
M.Saito.

o PVI (D,) cubic with only ws # 0 admits the log-canonical
symplectic structure ¥ = % under isomorphism
C* x C* /v — M, by

(u,v) = (x1=—(u+ %),XQ =—(v+ %),x3 = —(uv + %)

and 1 : C* — C* is the involution o(u) = 1, o(v) = 1.
@ The family (??7) can be "uniformize” by some analogues of
theta-functions related to toric mirror data on log-Calabi-Yau
surfaces (M. Gross, P. Hacking and S.Keel (see Example
5.12 of ”Mirror symmetry for log-Calabi-Yau varieties I,

arXiv:1106.4977).
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The other Painlevé equations

@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.
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@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.

@ What is the underlying Riemann surface for the other Painlevé
equations?
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The other Painlevé equations
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The other Painlevé equations

@ The PVI monodromy manifold is the SLy(C)—character variety
of a four holed Riemann sphere.

@ What is the underlying Riemann surface for the other Painlevé
equations?

@ Is there a cluster algebra structure?

Use the confluence scheme of the Painlevé equations.

PRy — PR — Pl
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Basic ideas

@ The character variety of a Riemann sphere with 4 holes
Hom(m (P! \ {0,t,1,00}); SLa(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).
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Basic ideas

@ The character variety of a Riemann sphere with 4 holes
Hom(m (P! \ {0,t,1,00}); SLa(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).

@ The confluent Painlevé monodromy manifolds are " decorated
character varieties” (Chekhov-Mazzocco -R.2015).

@ The real slice of the SLo(C) character variety is the
Teichmiiller space.

@ The shear coordinates on the Teichmiiller space can be
complexified) = coordinate description for the character
variety.

@ To visualize the confluence and the "decoration” we shall
introduce two moves correspond to certain asymptotics in the
(complexified) shear coordinates.
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Basic ideas

@ The character variety of a Riemann sphere with 4 holes
Hom(m (P! \ {0,t,1,00}); SLa(C))/SL2(C) is the
monodromy cubic of the Painlevé VI (Goldman-Toledo).

@ The confluent Painlevé monodromy manifolds are " decorated
character varieties” (Chekhov-Mazzocco -R.2015).

@ The real slice of the SLo(C) character variety is the
Teichmiiller space.

@ The shear coordinates on the Teichmiiller space can be
complexified) = coordinate description for the character
variety.

@ To visualize the confluence and the "decoration” we shall
introduce two moves correspond to certain asymptotics in the
(complexified) shear coordinates.

@ Start from a sphere with 4 holes.
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Teichmuller space

For Riemann surfaces with holes:

Hom (71(X), PSLa(R)) / GLa(R).
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
@ Take confluences of holes to obtain cusps.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).
Idea:
@ Teichmiiller theory for a Riemann surfaces with holes is well

understood.
@ Take confluences of holes to obtain cusps.

@ Develop bordered cusped Teichmiiller theory asymptotically.
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Teichmuller space

For Riemann surfaces with holes:
Hom (m1(X),PSL2(R)) /GLy(RR).

Idea:

@ Teichmiiller theory for a Riemann surfaces with holes is well
understood.
@ Take confluences of holes to obtain cusps.

@ Develop bordered cusped Teichmiiller theory asymptotically.

This will provide cluster algebra of geometric type

lya Roubtsov, ITEP Moscow and LAREMA, Universit¢



Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).
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Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).
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Poincaré uniformsation

T = H/A,
where A is a Fuchsian group, i.e. a discrete sub-group of PSL>(R).

Examples

A\

Theorem

Elements in w1(Xzs) are in 1-1 correspondence with conjugacy
classes of closed geodesics.
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Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘
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Coordinates: geodesic lengths

The geodesic length functions form an algebra with multiplication:

G,y Gﬁ, = qu + G’Y’"Yfl‘
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Poisson structure

{Gy, G5} = 565 2GW—1

—
——
I
N[—=
|
N|—=

AN
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Ptolemy Relation

aa' + bb' = cc’
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Poisson structure

The Poisson algebra of the \-lengths of a complete cusped
lamination is a Poisson cluster algebra [chexhov-Mazzocco. ArXiv:1509.07044].

{gsivtj7 anq/} = gSiytngnq/ISivfjvpr,Cn
€i—r0s ptej_rOt pte€i_j0s q€j— 10t q
)

IShtanq/ -
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Decorated character variety

What is the character variety of a Riemann surface with cusps on
its boundary?
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Decorated character variety

What is the character variety of a Riemann surface with cusps on
its boundary?
For Riemann surfaces with holes:

Hom (m1(X), PSLy(C)) / GL(C).

lya Roubtsov, ITEP Moscow and LAREMA, Universit¢



Decorated character variety

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]
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Decorated character variety

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).

For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]

@ Replace 71(X) with the groupoid of all paths ~y;; from cusp i/
to cusp j modulo homotopy.
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Decorated character variety

What is the character variety of a Riemann surface with cusps on
its boundary?

For Riemann surfaces with holes:
Hom (m1(X),PSL,(C)) /GLy(C).
For Riemann surfaces with bordered cusps:
Decorated character variety [Chekhov-Mazzocco-V.R. arXiv:1511.03851]

@ Replace 71(X) with the groupoid of all paths ~y;; from cusp i/
to cusp j modulo homotopy.

@ Replace tr by two characters: tr and trgk.
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Shear coordinates in the Teichmuller space

Fatgraph:

Figure: The fa graph of the 4 ho\ed Riemann sphere. The dashed
geodesic correspt x5 esponding hyperbolic element
12 = Tr(X., LX,, LX. RX., L\ X.,L)
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Shear coordinates in the Teichmuller space

Fatgraph:

Decompose each hyperbolic element in Right, Left and Edge
mat”ces Fock, Thurston

1 1 0 1
re(Bo) e=(5 4




in sphere. The dashed
ng hyperbolic clement

The three geodesic lengths: x; = Tr(jx)
p

X1 = e2tS f e S et | (¢F 4o 2 ez +e 2
| Lo el

Xp = eSSl o787l L 7S (67 e 2 )et+(e2 +e 2 )e ™
P p p P2

X3 = et pe 2 et (¢7 4o 2 )eR4 (7 4e 2
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The confluence from the cubic associated to PVI to the one
associated to PV is realised by

p3 — p3 — 2logle],

in the limit ¢ — 0. We obtain the following shear coordinate
description for the PV cubic:

P2 P3 P2
x| = _eRtstT T 636524- 3,
P3 ., P1 P3_P1 _h P3
Xo = _e3tatT g _ o 51+ — Gze~ S1—% Gle$3+ 2,
PLy P2 PL_P2 P2 P2
X3 = _eStteto T _ gmamn—5 -5 e$1—$2+*—* Gie 272 — (
where

Pi _Pi . P3 P1, P2 P3
—e2+4e 2 i=1,2, Gy3=¢e2, Gm:e51+52+53+2+2+2

ya Roubtsov, ITEP Moscow and LAREMA, Universit¢



These coordinates satisfy the following cubic relation:

X1XoX3 + X12 + X22 — (GlGOO + G2G3)X1 — (G2GOO + G1G3)X2 —
—G3Goox3 + Ggo + G32 + G1GyG3G,, = 0. (5)
Note that the parameter ps3 is now redundant, we can eliminate it

by rescaling. To obtain the correct PV- cubic, we need to pick
p3 = —p1 — p2 — 251 — 2sp — 2s3 so that G, = 1.
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These coordinates satisfy the following cubic relation:

X1X2X3 + X12 + X22 — (GlGOO + G2G3)X1 — (G2Goo + G1G3)X2 —
—G3Goox3 + Ggo + G32 + G1GyG3G,, = 0. (5)

Note that the parameter ps3 is now redundant, we can eliminate it
by rescaling. To obtain the correct PV- cubic, we need to pick

p3 = —p1 — p2 — 251 — 2sp — 2s3 so that G, = 1.

{X]_,Xz} = x1x0 — G3Gyo, {XQ,X3} = XoX3 + 2x1 — (GlGoo +
G2G3), {x3,x1} = x3x1 + 2x2 — (G2G + G1G3).

Volodya Roubtsov, ITEP Moscow and LAREMA, Universit¢



Figure: The fat graph corresponding to PV.
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Geometrically speaking, sending the perimeter p3 to infinity means
that we are performing a chewing-gum move:

two holes, one of perimeter p3 and the other of perimeter

s1+ s+ s34+ % + % + B become infinite, but the area between
them remains finite.

This is leading to a Riemann sphere with three holes and two cusps
on one of them. In terms of the fat-graph, this is represented by
Figure 2.

The geodesic x3 corresponds to the closed loop obtained going
around p; and py (green and red loops), while x; and x> are
"asymptotic geodesics” starting at one cusp, going arond p; and
po respectively, and coming back to the other cusp.

/olodya Roubtsov, ITEP Moscow and LAREMA, Universit¢



I
I
|
]

Figure: The process of confluence of two holes on the Riemann sphere
with four holes. Chewing-gum move: hook two holes together and
stretch to infinity by keeping the area between them finite (see Fig.). As
a result we obtain a Riemann sphere with one less hole, but with two new
cusps on the boundary of this hole. The red geodesic line which was
initially closed becomes infinite, therefore two horocycles (the green
dashed circles) must be introduced in order to measure its length.
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Vb =
X(k1)RX(s3)RX(s2) RX(p2) RX(s2)LX (s3)LX(k1)- BUT its length

is b= trx(7s) = tr(bK), K = < o

Volodya Roubtsov, ITEP Moscow and LAREMA, Universit¢



_ €i—r0s,p€j—r0t,pt€i—10s,g+€j—10t,q
{gsivtj7 8prait = 8s;,t;8pr,ai 2

{ba d} = {g13714’g21718}
€3-101,2 + €4-1012 + €3-801,1 + €4—801,1

4

= 813,14821,1

1
= —bd-
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The character variety of a Riemann sphere with three holes and
two cusps on one boundary is 7-dimensional (rather than
2-dimensional like in PVI case). The fat-graph admits a complete
cusped lamination as displayed in the figure below. A full set of
coordinates on the character variety is given by the five elements in
the lamination and the two parameters G; and G, which determine
the perimeter of the two non-cusped holes.
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Notice that there are two shear coordinates associated to the two
cusps, they are denoted by k; and ko, their sum corresponds to
what we call p3 above.

These shear coordinates do not commute with the other ones, they
satisfy the following relations:

{53, kl} = {kl, kg} = {k2,53} =1.

As a consequence in the character variety, the elements G3 and G
are not Casimirs.

In terms of shear coordinates, the elements in the lamination are
expressed as follows:

k- k
— pkitsit2s+s3+ 5 +p — okitots+Z — a2 t?
a=-e" >R b=c¢e E e=e27"2,
k ki
c— ek1+51+52+53+p71+p72’ d = ertEtsitsts+ B 4+2 (6)
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They satisfy the following Poisson relations:

2 {abl—ab {ac}=0, {ad)= —%ad, (2, e} = %4@,)
(b,c} =0, {bd}= —%bd, {b,e} = %be, (8)
{c,d} = —%cd, {c,e} = %ce, (d,e} =0, (9)

so that the element G3G,, = de is a Casimir.
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The symplectic leaves are determined by the values of the three
Casimirs Gi, Gy and G3G,.

On each symplectic leaf, the PV monodromy manifold (5) is the
subspace defined by those functions of a, b, ¢ (and of the Casimir
values Gi, Gz, G3Gy ) which commute with G3 = e. To see this,
we can use relations (6) to determine the exponentiated shear
coordinates in terms of a, b, ¢, d, e and then deduce he expressions
of x1, X2, x3 in terms of the lamination. We obtain the following
expressions:

b b b b?
X1 :—ei—d—, Xo = —e— — Gid— —d dE,(IO)
c a a

ac

c b
X3:—G27—G15—5———7 (11)




Due to the Poisson relations (7) the functions that commute with
e are exactly the functions of 7, 2 b 5. Such functions may depend
on the Casimir values G, Gy and G3G4, and e itself, so that

d = Gy, becomes a parameter now. With this in mind, it is easy to
prove that xi, xp, x3 are algebraically independent functions of

2 g,g so that x1, xp, x3 form a basis in the space of functions
which commute with e.
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Due to the Poisson relations (7) the functions that commute with
e are exactly the functions of 7, 2 b 5. Such functions may depend
on the Casimir values G, Gy and G3G4, and e itself, so that

d = Gy, becomes a parameter now. With this in mind, it is easy to
prove that xi, xp, x3 are algebraically independent functions of

2 g,g so that x1, xp, x3 form a basis in the space of functions
which commute with e. It is worth reminding that the exponentials
of the shear coordinates satisfy the log-canonical Poisson bracket.
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Quantisation

For standard geodesic lengths G, — G, [Chekhov Fock '99]:

h
e\ & @ @

(6], GH] = q Gy + a2 Gls

NM—‘
l\)h—l
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Quantisation

For standard geodesic lengths G, — Gﬁ [Chekhov-Fock '09]:

+q
Gf? v Gv‘“? Gﬂ

= qi
1 1
(6}, 651 = 47265 + 2G5

NI
N

ho
For arcs g5, ; = &4 1,

Is-,t-,p ,q h h _ _h h Zp ,q1,S;,t;
q T lgsivfngnCII _gPr7€I/gSi7qu e
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Quantisation

For standard geodesic lengths G, — Gﬁ [Chekhov-Fock '09]:

_1 1
= q 2 _I_ q§
h Gﬁ G Gh
Gy v 71 vy

_1 1
(6], Gl = 2G a5+ a2 G5

ho
For arcs g5, ; = &4 1,

Is-,t-,p ,q h h _ _h h Zp ,q1,S;,t;
q T lgsivfngnCII _gPr7€I/gSi7qu e

This identifies the geometric basis of the quantum cluster
algebras introduced by Berenstein - Zelevinsky.
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Quantization-2

To produce the quantum Painlevé cubics, we introduce the
Hermitian operators S1, S», 53 subject to the commutation
inherited from the Poisson bracket of ;:

[Si, Siv1] = iTh{5, &1} = imh, i=1,2,3, i+3=1I.

Observe that thanks to this fact, the commutators [S;, S;] are
always numbers and therefore we have

exp (aS;) exp (bS;) = exp <aS,- + bS; + %b[s,-, SJ-]) ,

for any two constants a, b. Therefore we have the Weyl ordering:

eSits q%e& e — q_%652651’ q= e~ imh
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Quantization-2

Theorem

(L. Chekhov-M. Mazzocco-V.R)

Denote by X1, X>, X3 the quantum Hermitian operators
corresponding to xi, xo, x3 as above. The quantum commutation
relations are:

1
G XX 11— X X = (q . q) DX~ (gt —ghf® (12)

Ed) and w,(d) are the same as in the classical case. The

quantum operators satisfy the following quantum cubic relations:

where €

1 d 1 (d d
gz X3 X1 X — qeg )X32 —q 16(1 )X12 — qeg )X22—i—

q%egd)w3X3 + q*%wgd)Xl + q%wgd)Xz = wz(‘d) =0.
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Quantization-2

The Hermitian operators Xi, X2, X3 corresponding to xi, xo, x3 are
introduced as follows: consider the classical expressions for

X1, X2, x3 in terms of s1, sp, 53 and p1, po, p3. Write each product of
exponential terms as the exponential of the sum of the exponents
and replace those exponents by their quantum version. For
example (the case Ds): the classical x; is

x3 = —e2ts e (8+8) _ Gre® — Gze 2,
and its quantum version is defined as

X; = e _ (eP2/2 + e*P2/2)eS3 _ e _ oS3t

_e% (P22 4 e P2)eS _ 1252685 _ g1/265253.
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Quantization-2

@ Our theorem and close results of Marta Mazzocco show that
we can interpret the Cherednik algebra and their close
"relatives” as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here g := e
and ¢" # 1.

—imh
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Quantization-2

@ Our theorem and close results of Marta Mazzocco show that
we can interpret the Cherednik algebra and their close
"relatives” as a quantisation of the (group algebra of the)
monodromy group of the Painlevé equations. Here g := e
and ¢" # 1.

@ The Askey-Wilson AW(3) (or Zhedanov algebra) can be
obtained from (12) for a special constant choice after a proper
"rescaling” .

—imh
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
@ SUSY desired phenomena are inherited from String Theory
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory
@ SUSY desired phenomena are inherited from String Theory

o Superstring Theory: R1910D = 1+ 3 + 6 Dirichlet p— branes:
p + 1—subvarieties in R on which open strings can end;
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"Physical Motivations”

e Standard ModelSU(3) x SU(2) x U(1) Gauge Theory

@ SUSY desired phenomena are inherited from String Theory

o Superstring Theory: R1910D = 1+ 3 + 6 Dirichlet p— branes:
p + 1—subvarieties in R on which open strings can end;

@ D—brane world: live on D3—brane 1 6D—affine variety M.
1 + 3D—world-volume with SUSY YM and product gauge
group.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.

@ More precisely, one does specify the "matter representation”
(as a collection of adjoint and bifundamental fields for the
gauge groups G;) and one specifies a superpotential W— the
trace of a polynomial in the matter fields.
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D—brane algebras and superpotentials. Basic principles:

@ One can associate an algebra to the category of D—branes at
a singular point p. In every known example, the collection of
possible D—branes at p can be described as a collection of
QFT with the same Lagrangian for each of the theories.

@ More precisely, one does specify the "matter representation”
(as a collection of adjoint and bifundamental fields for the
gauge groups G;) and one specifies a superpotential W— the
trace of a polynomial in the matter fields.

@ To such data one can assign a quiver whose vertices label the
groups G; and whose directed edges specify the bifundamental
and adjoint fields in the matter representation.
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Quiver Theory

@ Action
/ d*x] / d*owieVw+( ;2 / d?0TrW W+ / d?0W () + h.c.)]

= superpotential;
b 2
V(son ¢ =i | G P+ (Ciar] wi P)
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Quiver Theory

@ Action
/ d*x] / d*owieVw+( ;2 / d?0TrW W+ / d?0W () + h.c.)]

= superpotential;
V(sou%) =3 B P (Y i | i 22
@ Encode in a Quiver:
k nodes <= V" .. V% — HJI'(:;L U(nj) gauge group;
Each arrow i — j <= bifundamental fields Xj; of
U(n,-) X U(nj);
Each loop i — i <= adjoint fields ¢; of U(n;);
Superpotential W <= linear combination of cycles: > . ¢;
gauge invariant operators;
Relations <= jacobian of W(yj, Xj).
Vacuum:~ V(pi; ¢i) = 0= % =0;>;qi | ¢i >=0.
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term

constraints” in physics: g—:g/, =0
1
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term
constraints” in physics: %V =0

@ These are the algebra relations dictated by 8)‘@/ So, given a

field theory description of the family of D- branes in the form
above, the D-brane algebra is

ow
A = path algebra of quwer/(ax )-
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Superpotential algebra

@ From the quiver, we directly get the path algebra, which is the
algebra of all paths on the quiver (i.e., all ordered monomials
in matter fields).

@ A universal feature of this family of theories is the relations in
the path algebra determined by what are called " F—term
constraints” in physics: %V =0

@ These are the algebra relations dictated by 8)‘@/ So, given a

field theory description of the family of D- branes in the form
above, the D-brane algebra is

ow
A = path algebra of quwer/(ax )-

@ This is called a superpotential algebra, which is a Calabi - Yau
algebra.
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

@ The superpotential is

W = tr(X(YZ — ZY)).
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Elementary example

@ First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

@ The superpotential is

W = tr(X(YZ — ZY)).
@ The F— term constraint in this case tells us

YZ=YZ, XZ=ZX and XY =YX.
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Elementary example

First example, we consider the case in which P is a smooth
point. In physics language, the conformal fields theory is the
N = 4 SUSY Yang-Mills theory, written in N =1 language.
The N = 4 gauge multiplet decomposes as an N = 1 gauge
multiplet plus three complex scalar fields X, Y, Z each
transforming in the adjoint representation of the group.

The superpotential is

W = tr(X(YZ — ZY)).
The F— term constraint in this case tells us
YZ=YZ, XZ=Z7ZX and XY = YX.

Thus, we find
'/4 = (C[X’ Y7 Z]’

the (commutative) polynomial algebra in three variables.
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).

e This algebra denotes by @Q3(&, a, b, c) where (a, b, c) € C3
such that Q3(€,a,b,c) =C < X,Y,Z > /Jyw with

Jw =< aYZ+bZY +cX?,aZX+bXZ+cY?, aXY+bYX+cZ? >
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Example 2. Sklyanin algebra-1

@ The most famous example of 3-Calabi-Yau algebra is the
following graded associative algebra associated with an elliptic
curve & (possibly degenerated).

e This algebra denotes by @Q3(&, a, b, c) where (a, b, c) € C3
such that Q3(€,a,b,c) =C < X,Y,Z > /Jyw with

Jw =< aYZ+bZY +cX?,aZX+bXZ+cY?, aXY+bYX+cZ? >

@ The ideal Jyy can be written as a non-commutative jacobian
ideal Jyy =< 0x,0y,07z > C< X, Y, Z > for
superpotential

W = aXYZ + bYXZ + c(X3 + Y3 + Z3)

Volodya Roubtsov, ITEP Moscow and LAREMA, Universitc



Example 2. Sklyanin algebra-2

@ Here we consider W as a cyclic word of three variables
X,Y,Z, ie. like an element of the quotient
Ay =C<X,Y,Z>/[C<X,Y,Z>C<X,Y,Z >] with
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Example 2. Sklyanin algebra-2

@ Here we consider W as a cyclic word of three variables
X,Y,Z, ie. like an element of the quotient
Ay =C<X,Y,Z>/[C<X,Y,Z>C<X,Y,Z >] with

@ cyclic derivatives dx, 0y, 0z where
0 A=~ C <X, Y, Z>j=X,Y,Z
defines for any cyclic word ¢ € A; by

0jp = > Xir1Xiyt2- Xy Xy Xip Xj 1 €C <X, Y, Z >
klik=j
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
¢ =3(x3+y*+2%) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg;:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
Y= %(x3 +y3+2%) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).

@ The coordinate ring B, = C[x, y, z] /¢Clx, y, z] of the affine
surface ¢ = 0 inherits a Poisson algebra structure.
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Example 2. Sklyanin algebra-3

Etingof-Ginzburg;:

@ One can identify the Sklyanin algebra Q3(&,1, —q, §) with
the flat deformation of the Poisson algebra
(Clx,y,z],{—,—},) as above with
o= %(x3 +y3+ 23) + 7xyz and
W =XYZ — qYXZ + §(X3 + Y3 + Z3).

@ The coordinate ring B, = C[x, y, z] /¢Clx, y, z] of the affine
surface ¢ = 0 inherits a Poisson algebra structure.

@ There is a degree 3 central element ® € Z(@3(€,1,—q, 5))
and the quotient of the Sklyanin 3-Calabi-Yau algebra by
two-sided ideal < ® > is a flat deformation of the Poisson
algebra B,.
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Superpotentials of marginal and relevant deformations-1

@ There is a "physical interpretation” of the Sklyanin
superpotential (Berenstein-Leigh) as a marginal
deformation of the superpotential from the Example 1:

W + Wmarg =

— gtr(X[Y, Z]) + tr(aXYZ + bYXZ + %(X?’ +Y3+7%) € A,
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Superpotentials of marginal and relevant deformations-1

@ There is a "physical interpretation” of the Sklyanin
superpotential (Berenstein-Leigh) as a marginal
deformation of the superpotential from the Example 1:

W+ Wmarg =
— gtr(X[Y, Z]) + tr(aXYZ + bYXZ + %(X3 +Y3+7%) € A,

@ The structure of the vacua of D-brane gauge theories relates
to the Non-Commutative Geometry also via another
superpotentials (relevant deformations) having the form

m m
Wiel = tr(%XQ + 72(Y2 + Z2) +e1X+eY + e3Z)
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Superpotentials of marginal and relevant deformations-2

@ The "vacua” of the theory with Wit = W + Winarg + W
superpotential corresponds to solutions of

OiWior =0,i = X, Y, Z.
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Superpotentials of marginal and relevant deformations-2

@ The "vacua” of the theory with Wit = W + Winarg + W
superpotential corresponds to solutions of

OiWior =0,i = X, Y, Z.

@ The defining equations (for a=1,b = —q):

X1X2 — qX2X1 = —C)<32 — m2X3 — €3
X2X3 — qX3X2 = —CX12 — m1X1 — €1
XsX1— gX1 Xz = —cX§—mXo— e

(13)

This relations contain our (12) (again, after a special constant

choice and a "rescaling”).

Volodya Roubtsov, ITEP Moscow and LAREMA, Universitc



Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.
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Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.

® M, : ¢(x1,x2,x3) = 0 is an affine surface in M and the
coordinate ring B, := C[M,] = A/(y) is a commutative
Poisson algebra with the structure induced by ¢
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Etingof-Ginzburg ideology-1:

o Let M = C3 considering as the simplest Calabi-Yau manifold
and ¢ € A = C[x1, x2, x3] defines the Poisson bracket of
jacobian type as above.

® M, : ¢(x1,x2,x3) = 0 is an affine surface in M and the
coordinate ring B, := C[M,] = A/(y) is a commutative
Poisson algebra with the structure induced by ¢

o Let
¢ = Txixex3 + 564 +33 +x3) + P(x1) + Q(x2) + R(x3) = 0
be the family of affine surfaces containing the Eg del Pezzo.
Here degP, degQ and degQ < 3.
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
(Dq’ QR ™= = X1 Xo X3 — gXo X1 X3 + I/(Xl + X2 + X3) + P(Xl)
Q(X2) + R(X3) € A,
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
L0 R = XiXaXs — @Xao X1 Xz + V(X + X3 + X3F) + P(X1) +
Q(X2) + R(X3) € A

° u(d)‘,l;’Q,R) is a filtered algebra defined by three
inhomogeneous " jacobian” relations:

dP(Q, R)

XiX; = aXiXi = vX + —

,(i,j, k) = (1?273) (14)
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Etingof-Ginzburg ideology-2:

o Let A=C < X1, X5, X3 > and A, be defined as above and
(Dq’ QR ™= = X1 X0 X3 — qX2X1X3 + I/(Xl + X2 + X3) + P(Xl)
Q(X2) + R(X3) € A

o L(®F’, ) is a filtered algebra defined by three
inhomogeneous " jacobian” relations:

dP(Q, R)

XiX; = aXiXi = vX + —

,(i,j, k) = (1?273) (14)

@ The superpotential CDP QR= eI + dp g r Where
O = X1 Xo X3 — X0 X1 X3 + v(X] + X3 + X3) € ALY and

®por € Aégz) is a 3-CY-superpotential (for generic
parameters)

Volodya Roubtsov, ITEP Moscow and LAREMA, Universitc



Etingof-Ginzburg ideology-3:

fl. def. v
Ay S 1(9F R)

| |

p = B(OFG r V) = W(PFG £)/ (V).
In our case ®FY, » = X1 Xo X3 — X2 X1 X3

WI = X Xo X3 — P Xo Xy Xs + DT 7 Lx2 1 d92(q - 1)x3+

(15)
D22 — —w{(g - 1)X —wi¥q(q - 1)X — wi”(g? — 1)X
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Conclusion

@ A Riemann surface of genus g, n holes and k cusps on the
boundary admits a complete cusped lamination of
6g — 6 + 2n + 2k arcs which triangulate it.
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Conclusion

@ A Riemann surface of genus g, n holes and k cusps on the
boundary admits a complete cusped lamination of
6g — 6 + 2n + 2k arcs which triangulate it.

@ Any other cusped lamination is obtained by the cluster algebra
mutations.

@ By quantisation: quantum cluster algebra of geometric type.

@ New notion of decorated character variety

Many thanks for your attention!!!
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