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While classical symmetries are usually described by groupoids
and their infinitesimal and higher categorical analogues,
quantum theory allows for noncommutative analogues: (weak,
quasi-)Hopf algebras, Hopf algebroids and some higher
versions.
Noncommutative geometry replaces a space by the collection
(set, algebra, category, cohomology ring...) of objects
(functions, modules, sheaves, over the would be space.
Sometimes a categorification as well: rings replaced by
categories of representations (reconstruction theorems), strict
maps by weak maps/HS/Morita.
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Groupoid – a small category where all morphisms are
invertible. Can be generalized internally (smooth groupoids as
internal in the category of smooth manifolds etc.). Important in
geometry, e.g. orbifolds correspond to Morita equivalence
classes of proper etale groupoids.
Transformation (action) groupoids. M a topological space, G a
topological group, and G ×M → M a continuous action given.
Objects of the action groupoid are elements of M and

Mor(m,m′) = {(m,g) ∈ M ×G, |gm = m′}.

1993 Lu and Weinstein: what is the analogue of action
groupoids in deformation quantization. 1994 J-H. Lu: scalar
extension Hopf algebroids. G replaced by a Hopf algebra, M by
a braided commutative monoid in the category of Yetter-Drinfeld
modules over M. However, their examples finite dimensional.
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Multiplication and comultiplication

Functions multiply and add pointwise, therefore functions on a
space form a commutative algebra. An affine variety will be
below replaced by the algebra of regular functions (affine Serre
theorem). All morphisms dualize.

In general, if a space M in some category is replaced by a
function algebra Fun(M); a function algebra on a group object
M = G has additional comultiplication ∆, dual multiplication:
∆(f)(x⊗ y) := f(x · y) for f ∈ Fun(G× G) ∼= Fun(G)⊗̂Fun(G).
When X affine algebraic group, the usual ⊗.

Zoran Škoda Some examples of Hopf algebroids and generalizations



Reminder: bialgebras

Bialgebra B – associative algebra (B,m, η) and a coalgebra:
has comultiplication ∆ : H→ H⊗ H which is coassociative

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆

and counital: ∃ε : H→ C,

(ε⊗ id) ◦∆ ∼= id ∼= (id⊗ ε) ◦∆.

Compatibility: ∆, ε homomorphisms of algebras.
In the case of a group X = G, ε(f) = f(1G), f ∈ Fun(G).
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Sweedler notation

Sweedler notation: ∆(a) =
∑

a(1) ⊗ a(2).

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆∑∑
a(1)(1) ⊗ a(1)(2) ⊗ a(2) =

∑∑
a(1) ⊗ a(2)(1) ⊗ a(2)(2)

so we write simply ∑
a(1) ⊗ a(2) ⊗ a(3)

“only the order matters”
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Hopf algebra of functions

A Hopf algebra is a bialgebra (B,m, η,∆, ε) with an antipode
map S : B→ Bop,

m ◦ (S⊗ id) ◦∆ = η ◦ ε = m ◦ (id⊗ S) ◦∆.

For a group G, (Sf)(g) = f(g−1), g ∈ G, f ∈ Fun(G)
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(Co)modules

Algebras have actions, modules: ν : A⊗M→ M.
Coalgebras have coactions, comodules: ρ : M→ M⊗ C.
Extend Sweedler to ρ(m) =

∑
m(0) ⊗m(1).

Modules over bialgebras have a tensor product: action given
by ν(a,m⊗ n) =

∑
νM(a(1),m)⊗ νN(a(2), n); dually comodules

over bialgebras have a tensor product. Over Hopf algebras we
also have duals (via antipode).
In physics, comultiplication needed so that the Hilbert space of
multiparticle states inherits symmetry via tensor product of
representations and quantum numbers appropriately “add”.
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Comodule algebras as quantum spaces

M space, G group, then an action G×M→ M dualizes to a
coaction ρ : Fun(M)→ Fun(G×M) ∼= Fun(G)⊗̂Fun(M).
Coaction is moreover here an algebra map

ρ(ab) = ρ(a)ρ(b)

“Fun(X) is a left comodule algebra over Fun(G)”
More generally, we think of noncommutative left and right
comodule algebras over Hopf algebras as quantum
G-spaces.
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Thus, one expects to make quantum transformation groupoids
out of a Hopf algebra H and an arbitrary H-comodule algebra U.
However, one needs some sort of a braiding present
(discussion).
Say G is a groupoid. Inertia groupoid IG has objects loops of G,
i.e. morphisms of the type f : a→ a. Morphisms from f : a→ a
to g : b→ b are the commuting squares of the form

a

u
��

f // a

u
��

b g
// b
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If G is a groupoid in geometry (say orbifold) then sheaves over
G have a tensor product (push external tensor product of
sheaves which lives over G × G along multiplication).

Sheaves over IG are the equivariant sheaves for the adjoint
action (g, h) 7→ ghg−1 (group case).
Theorem (Conjecture ZŠ 2002, proved Hinich 2004, ZŠ 2004):
(roughly) the Drinfeld center of the category of sheaves over
the orbifold is equivalent to the category of equivariant sheaves
over the inertia orbifold. Used by Ben Zvi, Nadler etc.
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Why center Z(C) of a monoidal category C = (C,⊗)?
It is braided monoidal (⊗ almost commutes
RV,W : V⊗W→W⊗ V iso with coherences/QYBE).
Objects (X, φ), φ : X⊗ (−)→ (−)⊗ X natural iso,
φZ : X⊗ Z→ Z⊗ X such that φY⊗Z equals the composition

X⊗ Y⊗ Z
φY⊗idZ// Y⊗ X⊗ Z

idY⊗φZ// Y⊗ Z⊗ X

HomZ(C)((X, φ), (Y, ψ)) = {X f−→ Y | ∀Z, (idZ⊗f)◦φZ = ψZ◦(f⊗idZ)}

(X, φ)⊗Z(C) (Y, ψ) := (X⊗ Y, (φZ ⊗ idY) ◦ (idX ⊗ ψZ))
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For the category of Hopf modules HMH (compatible module +
comodule = equivariant sheaf, cf. Lunts, ZŠ) the center is the
category of Yetter-Drinfeld modules HYDH. Left H-action I,
right H-coaction X 7→ X[0] ⊗ X[1] and

(h(1) I X[0])⊗ h(2)X[1] = (h(2) I X)[0] ⊗ (h(2) I X)[1]h(1),

for all h ∈ H and X ∈ M.

Yetter (knot theory, TFTs), Drinfeld (quantum groups). Later
Radford-Towber (over bialgebras), Majid, Semikhatov etc.
Self-dual anti-Yetter Drinfeld modules are the coefficients for
Hopf-cyclic (co)homology (foliations Connes-Moscovici,
Hajac-Rangipour etc., monadic ZŠ, Böhm-Stefan, Kaygun,
Kaledin, Kowalzig).

It appears (J-H. Lu) that for quantum action groupoids we need
braided commutative Yetter-Drinfeld module algebras!
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H Hopf algebra, U an algebra. We say that the action
I: H⊗ U→ U is Hopf (or that U is a left H-module algebra) if

h I (uv) =
∑

(h(1) I u)(h(2) I v) (generalized Leibniz rule)
h I 1U = ε(h)1U (unitality).

Semidirect (smash) product algebra U]H is the tensor
product k-module U⊗ H with the multiplication

(u]h)(v]k) =
∑

u(h(1) I v)]h(2)k

for all h, k ∈ H, u, v ∈ U.
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If the antipode S : H→ Hop is invertible, the YD condition is
equivalent to

(f I X)[0] ⊗ (f I X)[1] = (f(2) I X[0])⊗ f(3)X[1]S
−1(f(1))

In the corresponding smash product U]H, this is similar to a
conjugation action.
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Conceptually, an associative A-bialgebroid is a ring H such that
H−Mod has a structure of additive monoidal category with
faithful exact strict monoidal functor to A⊗ Aop-modules.

In other words, H can be obtained from (nonabelian but
additive) Tannaka reconstruction theorem from A (this is a
characterization theorem if we take a definition in terms of
structural maps below).
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Hopf algebroid outline

Explicitly, comprises two algebras, the base algebra A and the
total algebra H = (H, µ) which is an A-bimodule equipped with
coassociative coproduct ∆ : H→ H⊗A H with a counit ε which
are understood as maps in the category of bimodules – we say
that H is an A-coring (cocategory).
A is a generalization of the field of units for H: equipped with a
source map α : A→ H and a target map β : Aop → H which
are algebra maps with commuting images [α(a), β(a′)] = 0 that
is a, a′ ∈ A; we sometimes say that H is an A⊗ Aop-ring.
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Definition of bialgebroid

An A⊗ Aop-ring (H, µ, α, β) and an A-coring (H,∆, ε) on the
same A-bimodule H form a left A-bialgebroid (H, µ, α, β,∆, ε)
if they satisfy the following compatibilies:

(C1) the underlying A-bimodule structure of the A-coring
structure is determined by the source and target map (part
of the A⊗ Aop-ring structure): r.a.r′ = α(r)β(r′)a.
(C2) formula

∑
λ hλ ⊗ fλ 7→ ε(

∑
λ hλα(fλ)) defines an action

I: H⊗ A→ A which extends the left regular action
A⊗ A→ A along the inclusion A⊗ A α⊗A−→ H⊗ A.
(C3) the linear map h⊗ (g⊗ k) 7→ ∆(h)(g⊗ k),
H⊗ (H⊗ H)→ H⊗ H, induces a well defined action
H⊗ (H⊗A H)→ H⊗A H.
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H⊗A H is not an algebra by componentwise product in general,
hence ∆ can not be an algebra map. Indeed the kernel IA of
the projection H⊗ H→ H⊗A H of A-bimodules is only the right
ideal generated by β(a)⊗ 1− 1⊗ α(a), for a ∈ A.

(C3) is equivalent to: ∃ A-subbimodule H×A H ⊂ H⊗A H, the
Takeuchi product containing Im∆, with factorwise
multiplication, and the corestriction ∆| : H→ H×A H is a
homomorphism of algebras.
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Relevant for physics: Many known examples of Hopf algebroids
come from

Weak Hopf algebras (Mack-Schomerus 1989: true hidden
symmetries in CFTs)
Inclusions of von Neumann depth 2 subfactors (AQFT),
e.g. BMW algebra
Deformed Heisenberg algebras
κ-deformed phase spaces of Planck scale physics. But
Snyder space not yet an example.

Some Hopf algebroids give rise to Tamarkin-Tsygan
noncommutative differential calculi (Kowalzig) and related
issues in cyclic and Hochschild (co)homology.
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Basic example over commutative base:

A = C∞(M) where M is a smooth manifold.
H = D is the algebra of differential operators with smooth
coefficients.
∆(D)(f, g) = D(f · g), f 7→ f⊗ 1.
α = β is the canonical embedding of functions into
differential operators; the counit is taking the constant term.
I is the usual action of differential operators on functions.

Deformation quantization: Ping Xu extends C∞(M) to
C∞(M)[[h]] where h is a formal variable. Then D[[h]] is a left
A-bialgebroid by extending the scalars; there he implicitly
considers the completed tensor product.
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Theorem. (Xu 2000) If M is Poisson manifold and the formal
bidifferential operator F ∈ D[[h]] defines a deformation
quantization of M with the (natural, differential) star product
µF(f⊗ g). Then F is a Drinfeld twist for the left
C∞(M)[[h]]-bialgebroid of formal power series in regular
differential operators D[[h]]. Consequently, each deformatiom
quantization defines also a deformation of that bialgebroid.
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F ∈ H⊗A H is a Drinfeld twist for a left A-bialgebroid
(H, µ, α, β,∆, ε) if the 2-cocycle condition

(∆⊗A id)(F)(F ⊗A 1) = (id⊗A ∆)(F)(1⊗A F) (1)

and the counitality (ε⊗A id)(F) = 1H = (id⊗A ε)(F) hold.
In terms of F−1 we can alternatively write the condition

(F−1 ⊗A? 1)(∆⊗A? id)(F−1) = (1⊗A? F−1)(id⊗A? ∆)(F−1).

Use the Sweedler-like notation for twist F = f1 ⊗ f1.
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Theorem by Ping Xu. If H is a left A-bialgebroid then the
formula

a ? b = µF(I ⊗ I)(f⊗ g) = (f1 I a)(f1 I b) (2)

defines an associative algebra A? = (A, ?) structure on A with
the same unit; the formulas αF (a) = α(f1 I a)f1 and
βF (a) = β(f1 I a)f1 define respectively an algebra
homomorphism and antihomomorphism A? → H turning H into
a A?-ring; H has twisted coproduct

∆F : H→ H⊗A? H, ∆F (h) = F−1∆(h)F

is coassociative and counital with the same counit.
HF = (H, µ, αF , βF ,∆F , ε) is a left A?-bialgebroid.
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(a ? b) ? c = µ(µ⊗ id)[(∆0⊗ id)F ](F ⊗ id)(I ⊗ I ⊗ I)(a⊗ b⊗ c)

a ? (b ? c) = µ(id⊗µ)[(id⊗∆0)F ](id⊗F)(I ⊗ I ⊗ I)(a⊗ b⊗ c)

Cocycle condition implies associativity but for the converse we
need that the kernel of (I ⊗ I ⊗ I)(a⊗ b⊗ c) for all a, b, c is
not bigger than I(2)A .

Zoran Škoda Some examples of Hopf algebroids and generalizations



J-H. Lu (1994) discovered a noncommutative analogue of
transformation groupoids.

INPUT (essentially): (maybe finite dimensional) Hopf
algebra H and braided commutative monoid U in HYDH (in
dual sense, using two actions)
OUTPUT: a Hopf algebroid with total algebra U]H and
noncommutative base U

Improved by Brzeziński-Militaru (true YD, not dual, not finite
dimensional), Böhm (symmetric version), Stojić (antipode
condition, gap in BM proof for S bijective). Completed ⊗̂
version, Stojić using ind-pro-objects (in progress).
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From now on, g a fin dim Lie k-algebra, char k = 0.
We would like to immitate the Heisenberg double for U(g) with
completed tensor products or find smaller variants without
completion. Finite (Hopf/reduced) dual seem not to work, need
some analytic functions Oαβ ! However, those are regular
functions on the automorphism group! We use this fact below,
but first let us connect to Xu’s story.
e1, . . . , en a basis, with structure constants Cγαβ given by

[eα, eβ] = Cγαβeγ , α, β, γ = 1, . . . , n,
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Let ∂1, . . . , ∂n be the dual basis of g∗, which are also
(commuting) generators of S(g∗). Let Ŝ(g∗) be the formal
completion of S(g). We introduce an auxiliary matrix
C ∈ Mn(Ŝ(g∗)) with entries

Cαβ := Cαβγ∂
γ ∈ Ŝ(g∗), (3)

where we adopted the Einstein convention of understood
summation over repeated indices. In this notation introduce the
matrices O := exp(C) ∈ Mn(Ŝ(g∗)) and

φ :=
−C

e−C − 1
=
∞∑

N=0

(−1)NBN

N!
CN, φ̃ :=

C
eC − 1

=
∞∑

N=0

BN

N!
CN,

(4)
where BN are the Bernoulli numbers.

Zoran Škoda Some examples of Hopf algebroids and generalizations



By a simple comparison of the expressions (4) we obtain

φ̃βα = φαρO
ρ
β. (5)

By Ân denote the completion by the degree of a differential
operator of the n-th Weyl algebra An with generators
x1, . . . , xn, ∂

1, . . . , ∂n. The underlying vector space of Ân is thus
a completion of S(g)⊗ S(g∗).
Now define the elements x̂φ, ŷφ ∈ Ân

x̂φρ :=
∑
τ

xτφτρ, ŷφρ :=
∑
τ

xτ φ̃τρ. (6)
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Then x̂ρ 7→ x̂φρ extends to a unique algebra map α : U(g)→ Ân

and x̂ρ 7→ ŷφρ to a unique algebra map β : U(g)op → Ân. This
realization map is related to the symmetrization (PBW)
isomorphism S(g) ∼= U(g); for other coalgebra isomorphisms we
have different choice of φ (or different ordering). Our φ
corresponds to symmetric ordering (Gutt star product).
From (5) it follows immediately that

ŷφα = x̂φβO
β
α, (7)

and one can also prove

[x̂φα, ŷ
φ
β] = 0. (8)
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Instead of φ above we could take any homomorphism
φ : g→ Der S(g) (bold!) and take φαβ = φ(−x̂β)(∂α). They are in
bijection with coalgebra isomorphisms between U(g) and S(g).
Equivalently,

(δρφ
γ
µ)φρν − (δρφ

γ
ν)φρµ = Cσµνφ

γ
σ

or the matrix of the inverses 1/φαβ satisfies the standard
Maurer-Cartan equation. The connection with Hausdorff series
and this fact suggest genralizations.
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With appropriate completions implicit, Hg := Ân is a Hopf
U(g)-algebroid with coproduct ∆ which on Ŝ(g∗) ∼= U(g)∗

(identified via PBW map) agrees with the transpose of the
multiplication in U(g) and ∆(u) = u⊗ 1 for u ∈ U(g). The source
and target map are α and β above!
Alternatively, the map U(g)→ Ân sends an element in U(g) to
an operator on Ŝ(g); this action is a right Hopf action and the
total algebra H is the smash product of U(g) and Ŝ(g∗). This is
however isomorphic as an algebra to Ân. We shall thus identify
x̂µ ∈ U(g) and x̂φµ ∈ Ân etc.
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This Hopf algebroid can be reobtained from the
Heisenberg-Weyl algebra (basic example over commutative
base above) by twisting with a twist, which is in bigger
generality (S. Meljanac) equal to

F =: exp

(
−

n∑
α=1

xα(∆−∆0)∂α

)
:

In symmetric ordering fr U(g) this formula can be
diagrammatically expanded to a new formula for the Hausdorff
series.
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In symmetric ordering, the deformed coproduct ∆ on
Ŝ(g∗) ∼= U(g)∗ is given by

∆∂µ = 1⊗ ∂µ + ∂α ⊗ [∂µ, x̂α] +
1
2
∂α∂β ⊗ [[∂µ, x̂α], x̂β] + . . .

or, in symbolic form,

∆∂µ = exp(∂α⊗ad (−x̂α))(1⊗∂µ) = exp(ad(−∂α⊗ x̂α))(1⊗∂µ).

The last equality follows by noting that [∂α,1] = 0.

Corollary. In symmetric ordering, the deformed coproduct ∆
on Ŝ(g∗) ∼= U(g)∗ is also given by

∆∂µ = exp(ad(ŷα ⊗ ∂α))(∂µ ⊗ 1)
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Using the Hadamard’s formula Ad(exp(A))(B) = exp(adA)(B)
we can reexpress the above formulas by

∆∂µ = exp(−∂ρ ⊗ x̂ρ)(1⊗ ∂µ) exp(∂σ ⊗ x̂σ) (9)

∆∂µ = exp(ŷρ ⊗ ∂ρ)(∂µ ⊗ 1) exp(−ŷσ ⊗ ∂σ) (10)

In particular, in the undeformed case when Cλµν = 0 and x̂α, xα
and ŷα coincide we obtain

∆0∂
µ = exp(−∂α ⊗ xα)(1⊗ ∂µ) exp(∂α ⊗ xα) (11)

∆0∂
µ = exp(xα ⊗ ∂α)(∂µ ⊗ 1) exp(−xα ⊗ ∂α) (12)
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Comparing the formulas for the deformed and for the
undeformed case we obtain new formulas relating ∆0 to ∆.
Indeed, comparing (9) and (11) we obtain

∆(∂µ) = F−1
L ∆0(∂µ)FL (13)

where FL is the product of the two exponentials:

FL = exp(−∂ρ ⊗ xρ) exp(∂σ ⊗ x̂σ) (14)

and similarly comparing (10) to (12) we obtain

∆(∂µ) = F−1
R ∆0(∂µ)FR (15)

where
FR = exp(xρ ⊗ ∂ρ) exp(−ŷσ ⊗ ∂σ) (16)

Zoran Škoda Some examples of Hopf algebroids and generalizations



The relations (14) and (16) suggest that FL and FR might be
Drinfeld twists which twists the undeformed Hopf algebroid
(Heisenberg algebra) to the Hopf algebroid from the Section 3.
But so far we have just shown that it gives the correct formulas
for ∆(∂µ).
To show that FL is in fact a twist we prove analogous formulas
for the rest of generators, say ∆(xµ) = F−1

L (xµ ⊗ 1)FL.
Applying “inner” exponentials (6) and (7) we easily get

exp(∂ρ ⊗ xρ)(xµ ⊗ 1) exp(−∂σ ⊗ xσ) = xµ ⊗ 1 + 1⊗ xµ
= xµ ⊗ 1 + 1⊗ ŷτOτσ(φ−1)σµ.

(17)
Now we need to apply outer exponentials to each of the two
summands on the right hand side.
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By induction on k = 0,1,2, . . . one checks that

adk(∂ρ ⊗ x̂ρ)(1⊗ x̂µ) = [(−C)k]τµ ⊗ x̂τ (18)

Hadamard’s formula and Eq. (18) imply

exp(−∂σ⊗ x̂σ)(xµ⊗1) exp(∂ρ⊗ x̂ρ) = xµ⊗1−(φ̃−1)τµ⊗ x̂τ . (19)

For the second summand on the right hand side of (17), using
[x̂σ, ŷτ ] = 0 and 1⊗ ŷτOτσ(φ−1)σµ =

(1⊗ ŷτ ) exp(∂ν ⊗ x̂ν) exp(−∂λ ⊗ x̂λ)(1⊗Oτσ(φ−1)σµ)
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we conclude that

exp(−∂σ⊗x̂σ)(1⊗ŷτOτµ) exp(∂ρ⊗x̂ρ) = (1⊗ŷτ )∆(Oτσ(φ−1)σµ) = ∆(xµ),
(20)

where we used 1⊗ ŷτ = ∆(ŷτ ). We obtained the additional
xµ ⊗ 1− (φ̃−1)τµ ⊗ x̂τ , but this can be shown to be in the ideal!
Indeed, the formula (6) gives xµ = x̂σ(φ−1)σµ and (7) gives
φ̃−1 = Oφ−1, while the right ideal IU(g) is generated by
x̂ρ ⊗ 1−Oτρ ⊗ x̂τ = (x̂β ⊗ 1−Oτβ ⊗ x̂τ )((φ−1)βα ⊗ 1). It is clear
here that for the twist to work it is essential that the base is
larger than the field.
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Regarding that the map H⊗k H→ H⊗k H, w 7→ FwF−1 is a
homomorphism of algebras our check for generators ∂µ and xα
implies
Proposition. For every h ∈ Hg,

∆(h) = FL∆0(h)F−1
L + IU(g) = FR∆0(h)F−1

R + IU(g),

where IU(g) is the right ideal generated by β(u)⊗ 1− 1⊗ α(u)
for u ∈ U(g).

FL(xµ ⊗ 1− 1⊗ xµ)F−1
L ∈ IU(g)
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I now explain (descriptively, without slides):
From this a theorem follows (using that the joint kernel above is
small) that FL and FR are twists for obtaining our Hopf
algebroid from the basic example of Heisenberg algebra! This
has vast generalizations. The exponentials above generalize to
the canonical elements in infinite dimensional Heisenberg
doubles.
Xu’s example can localize horizontally. Coring framework can
be used to generalize the concept of Hopf algebroid to a
system of compatible algebroids (some problems for nc base).
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k-linear map ψ : g→ g automorphism of Lie algebra g if
[ψ(x), ψ(y)] = ψ([x, y]) what for ψ(eα) = eβMβ

α takes the form

[eαMα
µ, eβMβ

ν ] = CγαβeγMα
µMβ

ν ,
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CσµνMγ
σ = CγαβMα

µMβ
ν (21)

hence Autg can be identified with the affine algebraic subgroup
of the automorphism of the underlying vector subspace. Thus
we can equivalently describe it with its function algebra which is
in the basis identified with a Hopf quotient of the Hopf algebra
of regular functions Fun(GL(n)).
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Reminder on Hopf algebra of functions on GL(n)

M(n,k) of n× n matrices with (commutative) entries in a field k
is isomorphic to kn2

as a k-vector space. This isomorphism
induces a structure of affine k-variety on M(n,k). The regular
functions on M(n,k) are polynomials in matrix entries.
Introduce n2 regular functions

Gi
j : M(n,k)→ k, Gi

j(a) = ai
j, a ∈ M(n,k), i, j = 1, . . . n.

Localizing at det G get

Fun(GL(n,k)) ∼= k[G1
1,G

1
2, . . . ,G

n
n, (det G)−1]/〈det G·(det G)−1−1〉

Instead of det−1, can use generators Ḡα
β with matrix identity

GḠ = ḠG = I.

Zoran Škoda Some examples of Hopf algebroids and generalizations



Hopf algebra of functions on Fun(Autg)

∆ and ε are given by

∆G = G ⊗G i.e. ∆Gα
β =

∑n
σ=1 Gα

σ ⊗Gσ
β

∆Ḡ = Ḡ ⊗ Ḡ i.e. ∆(G−1)αβ =
∑n

σ=1 Ḡα
σ ⊗ Ḡβ

σ

εG = εḠ = I i.e. ε(Gα
β ) = ε(Ḡα

β ) = δαβ

The determinant and its inverse are group like elements
(∆t = t ⊗ t and ε(t) = 1). To get Fun(Aut g) in these
coordinates divide by the ideal generated by relations

Cµ
στGσ

αGτ
β − Cρ

αβGµ
ρ

∀µ, α, β = 1, . . . ,dim g (which is a Hopf ideal!).
Generators in the quotient still denoted Gα

β , (G−1)αβ .
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First define an obvious degenerate pairing Fun(Autg)⊗ g→ k
by

〈f ,X 〉 :=
d
dt

f (exp(t ad X ))|t=0

This can be understood as (Ad X )(f ) as Ad X is a tangent
vector at Inn g ⊂ Aut g. This gives the formulas which make
sense over all fields:

Proposition.
〈Gi

j ,X 〉 = (ad X )i
j

〈Gi
j ,ek 〉 = (ad ek )i

j = −C i
jk

〈Ḡi
j ,ek 〉 = (−ad ek )i

j = −C i
kj
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A Hopf paring between Hopf algebras H and U is linear map
〈 , 〉 : H ⊗ U → k such that

〈fg,D〉 = 〈f ⊗ g,∆(D)〉,
〈1H ,D〉 = ε(D),
〈∆f ,D ⊗ E〉 = 〈f ,DE〉,
ε(f ) = 〈f ,1U〉,
〈Sf ,D〉 = 〈f ,SD〉.

for all f ,g ∈ H and D,E ∈ U.
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Lemma. There exists a unique degenerate Hopf pairing
H ⊗ U(g)→ k extending the pairing above (∆ on U(g)
standard).
It is given by formulas

〈f ,X1X2 . . .Xr 〉 =

d
dtn

d
dtn−1

· · · d
dt1

f (exp(t1 ad Xn) · · · exp(tn ad X1))|t1=0,...,tn=0
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This degenerate pairing induces a left Hopf action
I: H ⊗ U(g)→ U(g)

f I D = D(1)〈f ,D(2)〉

This action moreover extends to the unique action
I: (U]H)⊗ U → U such that U]1 ∼= U acts by multiplication in
U.

Zoran Škoda Some examples of Hopf algebroids and generalizations



Let fν = eσḠσ
ν ∈ H]U. From the expressions for I we can

compute some useful commutators in the smash product:

[Ḡλ
µ,eν ] = Cρ

µνḠα
ρ

[Ḡα
µ , fν ] = Cα

ρνḠρ
µ

[Gα
µ ,eν ] = −Cα

ρνGρ
µ

[Gα
µ , fν ] = −Cρ

µνGα
ρ
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Now consider the tensor product representation of Aut g on
T (g). It induces a unique representation on U(g). For
monomials, in terms of matrices (where φ(eα) = eβMβ

α ),

eσ1 · · · eσk 7→ eτ1 · · · eτk Mτ1
σ1
· · ·Mτk

σk

This induces the right Aut g-coaction on U(g) given by

ρ : eσ1 · · · eσk 7→ eτ1 · · · eτk ⊗Gτ1
σ1
· · ·Gτk

σk
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Theorem. (Stojić, ZŠ) Algebra U satisfy the compatibilities with
the left H-action ρ and the right H-coaction ρ making U into a
braided commutative Yetter-Drinfeld module algebra.
Proof is long but mainly straightforward. We show here few
easy parts. The identity ρ(XY ) = X[0]Y[0] ⊗ Y[1]X[1] can be
proved in coordinates using induction and the identity

Cµ
στGσ

αGτ
β − Cρ

αβGµ
ρ .

Therefore ρ : U → U ⊗ Hop is an algebra map.
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First we prove the YD condition for the algebra generators only.
The YD condition for generators Ḡρ

α and eσ is

(Ḡρ
α I eσ)⊗ Ḡβ

ρGσ
ν = (Ḡβ

ρ I eν)[0] ⊗ (Ḡβ
ρ I eν)[1]Ḡρ

α

Prove and substitute inside the relation Ḡρ
α I eσ = Cρ

ασ + δραeσ:

(Cρ
ασ + δραeσ)⊗ Ḡβ

ρGσ
ν = ρ(Cρ

ασ + δραeσ)(1⊗ Ḡρ
α)

This candidate identity then reduces to easy cancelations
(using Cµ

στ Ḡσ
αḠτ

β = Cρ
αβḠµ

ρ , which also holds). Similarly for
other combinations of generators.
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This check on generators is sufficient. Namely, if
ρ : U → U ⊗ Hop is an algebra map in order to check the YD
module property it is sufficient to check it on the algebra
generators of H and U.
Indeed, it is clear that YD condition is linear. Thus check it for
products (in H and in U) whenever factors satisfy it. For the
products XY in U compute

(f(1) I (XY )[0])⊗ f(2)(XY )[1] = (f(1) I (X[0]Y[0]))⊗ f(2)Y[1]X[1]
= (f(1) I X[0])(f(2) I Y[0])⊗ f(3)Y[1]X[1]
= (f(1) I X[0])(f(3) I Y[0])[0] ⊗ (f(3) I Y[0])[1]f(2)X[1]
= (f(2) I X )[0](f(3) I Y )[0] ⊗ (f(3) I Y[0])[1]f(2) I X )[1]f(1)
= ((f(2) I X )(f(3) I Y ))[0] ⊗ ((f(2) I X )(f(3) I Y ))[1]f(1)
= (f(2) I (XY ))[0] ⊗ (f(2) I (XY ))[1]f(1),
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Similarly, for the products fg in H we compute

(fg)(1)X[0] ⊗ (fg)(2)X[1] = (f(1) I (g(1) I X[0]))⊗ f(2)(g(2)X[1])
= (f(2) I (g(2) I X )[0])⊗ (f(2) I (g(2) I X )[1])g(1)
= (f(2) I (g(2) I X ))[0] ⊗ (f(2) I (g(2) I X ))[1]f(1)g(1)
= ((fg)(2) I X )[0] ⊗ ((fg)(2) I X )[1](fg)(1)
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Braided commutativity:

X[0](X[1] I Y ) = YX

Products on the left (recall ρ(XX ′) = X[0]X ′[0] ⊗ X ′[1]X[1]):

X[0]X ′[0](X
′
[1] I (X[1] I Y )) = X[0](X[1] I Y )X ′ = YXX ′

Products on the right

X[0](X[1] I (YY ′)) = X[0](X[1] I Y )(X[2] I Y ′)
= YX[0](X[1] I Y ′)
= YY ′X
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Theorem. (Stojić, ZŠ) Consider the smash product
H]U = Fun(Aut g)]U(g) induced from

I: Fun(Aut g)⊗ U(g)→ U(g).

Inclusion α : U → U]1 ↪→ U]H and algebra map
β = i ◦ ρ : Uop → U]H (for i : U ⊗ H → U]H identification),
make H]U into a U-bimodule via

u.a.v = α(u)β(v)a, u, v ∈ U,a ∈ U]H.

In particular, the images of α and β commute in H]U. It has a
coproduct ∆ : H]U → (H]U)⊗U (H]U) which is coassociative
map of U-bimodules with counit ε : H]U → U in a way which is
a part of a canonical left bialgebroid structure (H]U, α, β,∆, ε)
over U.
Above structure can furthermore be completed to a structure of
a symmetric Hopf algebroid in the sense of G. Böhm.
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∆, ε are U-bimodule maps
(∆⊗U id) ◦∆ = (id ⊗U ∆) ◦∆ (coassociativity)
(ε⊗U id) ◦∆ ∼= id ∼= (id ⊗U ε) ◦∆ (counitality) with
identification (H]U)⊗U U ∼= (H]U)

h ⊗ f̂ 7→ ε(hα(f̂ )) defines an action (H]U)⊗ U → U
extending the left regular action U ⊗ U → U
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Finally, as U is noncommutative, (H]U)⊗U (H]U) is a
U-bimodule but not an algebra componentwise. The subset of
all
∑

bi ⊗ b′i ∈ (H]U)⊗̂U(H]U) satisfying∑
i

bi ⊗ b′iα(a) =
∑

i

biβ(a)⊗ b′i , ∀a ∈ U,

is called Takeuchi product and is an algebra. It is natural (from
many points of view) to require that ∆ corestricts to the
Takeuchi’s product and this corestriction is an algebra map.
This finishes the structure and axioms of the Hopf algebroid.
In our case, the antipode of the Hopf algebroid is not an
involution!
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Generalization for Lie algebroids. Recall
LetM be a smooth manifold. A Lie algebroid over M a smooth
vector bundle A→M, equipped with additional structure:

a k-Lie bracket [, ] on the space of sections of A;
a map of vector bundles a : A→ TM, called the anchor
map, such that

[X , fY ] = f [X , Y ] + a(X )(f )Y

for all sections X , Y of A and smooth function f onM,
where we by a slight abuse of notation denote by a the
induced map of sections.

Let O be a commutative algebra over k, and L – a symmetric
O-bimodule. One says that O is a Lie-Rinehart algebra i f
there is a k-linear Lie bracket [, ] on L, and a morphism of
O-modules a : L→ Derk(O), such that

[X , fY ] = f [X , Y ] + a(X )(f )Y . (22)

Here Derk(O) denotes the (Lie algebra of) k-linear derivations
of O.
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The universal enveloping algebra U(L) of a Lie algebroid or
Lie-Rinehart algebra is the tensor algebra TOL over module O
modulo the ideal, generated by the ideal of the relations

XY − YX = [X ,Y ], (23)
XfY − fXY = a(X )(f )Y . (24)

We want to repeat the construction of the Hopf algebroid
Fun(Aut g)]U(g) with a Lie algebra g replaced by a Lie
algebroid or even a Lie-Rinehart algebra L.
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U(L) has a comultiplication over O inherited from TOL There is
a PBW map from the symmetric algebra over O to the universal
enveloping but is not respecting the coproduct! In presence of a
Lie algebroid connection it can be corrected but (Sharygin, ZŠ,
2009).

Zoran Škoda Some examples of Hopf algebroids and generalizations



Choose a basis eα of ΓL as a C∞(M)-module. The
automorphism of L as a Lie algebroid is an automorphism as a
vector bundle, given by a matrix M with entries in C∞(M) such
that it commutes with the anchor map a and preserves the
bracket. In terms of M,

a(eα) = Mβ
αa(eβ)

Mα
µMβ

ν Cρ
αβ −Mσ

µa(eσ)(Mρ
ν ) + Mσ

ν a(eσ)(Mρ
µ) = Cγ

αβMρ
γ

These are algebraic conditions on M and derivatives of M in the
setup of infinite-dimensional geometry over a ring C∞(M).
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We do not know how to do such differential algebra. However,
the matrix function G – if the duals of U(L)∗ and ŜO(L∗) are
properly identified via the transpose of the corrected
coexponential map – has a meaning (passing between left and
right invariant vector fields);
Therefore take the O-subalgebra generated by these matrix
elements. This enables constructions of structure maps
(including the pairing) like in Hopf algebroid (but some maps
exist only dually).
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THANKS!
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