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Abstract

These are the lecture notes for the minicourse “Integration of Leibniz al-
gebras” at the University of Luxembourg during the conference “Higher Lie
theory” (09/12/2013 to 11/12/2013).

1 Lie racks

The first question which comes to mind when considering the integration prob-
lem for Leibniz algebras, is into which structure we want to integrate them.
Let us argue here that this integrating structure should be related to Lie racks,
following work of Kinyon [18]. Some mathematicians are convinced that one
should refine the structure of a Lie rack (i.e. add more structure) in order to
arrive at the correct notion integrating Leibniz algebras, but I will stay here
with “pure” Lie racks.

Recall the notion of a rack: It comes from axiomatizing the notion of con-
jugation in a group.

Definition 1.1. Let X be a set together with a binary operation denoted (x, y) 7→
x B y such that for all x ∈ X, the map y 7→ x B y is bijective and for all
x, y, z ∈ X,

xB (y B z) = (xB y)B (xB z).

Then we call X, or more precisely (X,B), a (left) rack.

By construction, the most important example of a rack is the conjugation
in a group G. The rack operation is in this case given by (g, h) 7→ ghg−1.

Definition 1.2. Let R be a rack and X be a set. We say that R acts on X on
the left in case for all r ∈ R, there are bijections (r·) : X → X such that for all
x ∈ X and all r, r′ ∈ R:

r · (r′ · x) = (r B r′) · (r · x).

Clearly, the adjoint action Adr : R → R defined by Adr(r
′) := r B r′ in a

left rack R is a left action of R on itself.
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Definition 1.3. A pointed rack (X,B, 1) is a set X with a binary operation B
and an element 1 ∈ X such that the following axioms are satisfied:

1. xB (y B z) = (xB y)B (xB z) for all x, y, z ∈ X,

2. For each a, b ∈ X, there exists a unique x ∈ X such that aB x = b,

3. 1B x = x and xB 1 = 1 for all x ∈ X.

Once again, the conjugation rack of a group is an example of a pointed rack.

Definition 1.4. 1. A Lie rack X is a manifold and a pointed smooth rack,
i.e. the structure maps are smooth.

2. A local Lie rack is a manifold X with an open subset Ω ⊂ X ×X where a
Lie rack product B is defined such that

(a) If (x, y), (x, z), (y, z), (x, yB z), (xB y, xB z) ∈ Ω, then xB (yB z) =
(xB y)B (xB z).

(b) If (x, y), (x, z) ∈ Ω and xB y = xB z, then y = z.

(c) For all x ∈ X, (1, x), (x, 1) ∈ Ω and as usual 1Bx = x and xB1 = 1.

Examples of Lie racks include obviously the conjugation racks associated to
Lie groups. It will be important in the following to have a replacement for the
semi-direct product in the context of racks. For this, let us first review the
hemi-semi-direct product Leibniz algebra (this terminology follows [19], but is
different from [18], where this structure is called demi-semi-direct product):

Lemma 1.5. Let g be a Lie algebra and V be a g-module. The direct sum V ⊕g
together with the bracket

[(v,X), (v′, X ′)] = (X(v′), [X,X ′])

becomes a Leibniz algebra, called the hemi-semi-direct product V ×hs g of V and
g.

Example (of a Lie rack): Let G be a Lie group and V be a (smooth) G-
module. On X := V ×G, we define a binary operation B by

(v, g)B (v′, g′) = (g(v′), gg′g−1)

for all v, v′ ∈ V and all g, g′ ∈ G. X is a Lie rack with unit 1 := (0, 1) which
is called a linear Lie rack. This is the “group-analog” of the hemi-semi-direct
product of a Lie algebra with its representation, and we denote it by V ×hs G.

Let us define more generally this hemi-semi-direct product of racks:

Definition 1.6. Let R be a rack and A be a rack module in the sense of Defi-
nition 1.2. The hemi-semi-direct product A×hs R of R with A is the following
rack structure on the direct product set A×R:

(a, r)B (a′, r′) := (r(a′), r B r′).

Now let us come to digroups which form a “stronger” structure in which one
might want to integrate Leibniz algebras:
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Definition 1.7. A digroup (H,`,a) is a set H together with two binary oper-
ations ` and a satisfying the following axioms. For all x, y, z ∈ H,

1. (H,`) and (H,a) are semigroups,

2. x ` (y a z) = (x ` y) a z,

3. x a (y ` z) = x a (y a z),

4. (x a y) ` z = (x ` y) ` z,

5. there exists 1 ∈ H such that 1 ` x = x a 1 = x for all x ∈ H,

6. for all x ∈ H, there exists x−1 ∈ H such that x ` x−1 = x−1 a x = 1.

An element e ∈ H in a digroup H is called a bar unit in case e ` x = x a
e = x for all x ∈ H. Bar units exist in a digroup, but are not necessarily
unique. A digroup is a group if and only if ` = a, and 1 is then the unique bar
unit.

There is a digroup which resembles very much the linear Lie rack:

Remark 1.8. Let G be a Lie group and M be a G-module (with underlying
vector space). Define on H := M ×G the structure of a digroup by

(u, g) ` (v, h) := (g(v), gh)

and
(u, g) a (v, h) := (u, gh)

for all u, v ∈M and all g, h ∈ G. Then M×G is a Lie digroup with distinguished
bar unit (0, 1). The inverse of an element (u, g) is (0, g−1). This Lie digroup is
called the linear Lie digroup associated to G and M .

Digroups give rise to racks in the following way (this is the meaning of the
word “stronger” above):

Proposition 1.9. Let (H,`,a) be a digroup and put

xB y := x ` y a x−1 (1)

for all x, y ∈ H. Then (H,B) is a rack, pointed in 1. Moreover, in case (H,`,a)
is a Lie digroup (i.e. all structures are smooth), (H,B) is a Lie rack.

In the case of the example in Remark 1.8, the obtained Lie rack is the above
described linear Lie rack M ×hs G. In this sense every linear Lie rack “comes
from” a (linear) Lie digroup.

Kinyon shows in [18] the following theorem which is at the heart of all our
attempts to integrate Leibniz algebras.

Theorem 1.10. Let (X,B, 1) be a Lie rack, and let h := T1X. Then there
exists a bilinear map [, ] : h× h→ h such that

1. (h, [, ]) is a (left) Leibniz algebra,

2. for each x ∈ X, the tangent map Φ(x) := T1φ(x) of the left translation
map φ(x) : X → X, y 7→ xB y, is an automorphism of (h, [, ]),
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3. if ad : h→ gl(h) is defined by Y 7→ adX(Y ) := [X,Y ], then ad = T1Φ.

Proof . The main idea of the proof is to differentiate the smooth adjoint
action of the Lie rack twice:

We have for all x ∈ X, φ(x)(1) = x B 1 = 1, thus Φ(x) := T1φ(x) is an
endomorphism of h := T1X. As each φ(x) is invertible, we have Φ(x) ∈ Gl(h).
Now the map Φ : X → Gl(h) satisfies Φ(1) = id, thus we may differentiate again
in order to obtain ad : T1X → gl(h). Now we set

[X,Y ] := adX(Y )

for all X,Y ∈ h = T1X. In terms of the left translations φ(x), the rack identity
can be expressed by the equation

φ(x)(φ(y)(z)) = φ(φ(x)(y))(φ(x)(z)).

We differentiate this equation at 1 ∈ X first with respect z, then with respect
to y to obtain

Φ(x) ([Y, Z]) = [Φ(x)(Y ),Φ(x)(Z)]

for all x ∈ X and all Y,Z ∈ h. This expresses the fact that for each x ∈ X,
Φ(x) ∈ Aut(T1X, [, ]). Finally, we differentiate this last equation at 1 with
respect to x to obtain

[X, [Y,Z]] = [[X,Y ], Z] + [Y, [X,Z]]

for all X,Y, Z ∈ h. This shows that h is a left Leibniz algebra. �

Example: In the special case of a linear Lie rack, we obtain the hemi-semi-
direct product Leibniz algebra h = V ×hs g, where g is the Lie algebra of the
Lie group G, endowed with the bracket:

[(v,X), (v′, X ′)] = (X(v′), [X,X ′]).

The G-module V is here seen as a g-module in the usual way.

Kinyon’s main result in [18] is the integration of split Leibniz algebras. For
a Leibniz algebra h, denote by s the ideal generated by the squares [X,X] for
all X ∈ h.

Definition 1.11. A Leibniz algebra h is called split, or more precisely split
over an ideal i with s ⊂ i ⊂ ker(ad), in case there exists a subalgebra k ⊂ h with
h = k⊕ i (as vector spaces).

Actually, a Leibniz algebra is split (over i) if and only if it is a hemi-semi-
direct product Leibniz algebra (of i and some Lie algebra).

Theorem 1.12 (Kinyon). Let h be a split Leibniz algebra. Then there exists a
linear Lie digroup with tangent Leibniz algebra isomorphic to h.

The main idea is here to integrate the hemi-semi-direct product Leibniz
algebra into a linear Lie digroup (integrating separately the Lie algebra and the
module). The tangent Leibniz algebra to the corresponding Lie rack is again
the hemi-semi-direct product we started with.

Remark 1.13. In fact, Simon Covez showed in his (unpublished) master thesis
that conversely, in case a Leibniz algebra integrates into a Lie digroup, it must
be split over some ideal containing the ideal of squares (more precisely, it is split
over the ideal ker(T1i) where i is the inversion map of the digroup).
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2 Lie’s third theorem

Here we review four different proofs of Lie’s third theorem for Lie algebras before
discussing how to generalize (some of) them to Leibniz algebras. Of course, we
do not pretend that these are the only known proofs of Lie’s third theorem.

Theorem 2.1 (Lie’s third theorem). Let g be a real finite dimensional Lie alge-
bra. Then there exists a connected Lie group G whose Lie algebra is isomorphic
to g.

1. Proof using Levi’s theorem

Levi’s theorem is the assertion that any finite dimensional real Lie algebra
g is the semi-direct product of its radical, i.e. the maximal solvable ideal of g,
and a semi-simple subalgebra.

Now prove first Lie’s theorem for a solvable g. This is done by induction on
the dimension and trivial for dimension 1. Since [g, g] 6= g, there is a subspace
a ⊂ g such that [g, g] ⊂ a and dim(g/a) = 1. Observe that a is in fact an ideal of
g. Let b be a subspace of g of dimension 1 supplementary to a. By construction,
this describes g as the semi-direct product of a and b: g ∼= ao b.

The theorem is then true for a and b by induction hypothesis, and follows for
g, because the semi-direct product of Lie groups is a Lie group whose tangent
Lie algebra is the semi-direct product of Lie algebras.

On the other hand, in case g is semi-simple, Lie’s third theorem is seen as
follows. The adjoint action ad : g→ gl(g) is a faithful representation of g. The
Lie subalgebra of gl(g) corresponding to g can then be integrated into a Lie
subgroup of Gl(g) whose Lie algebra is isomorphic to g, by Lie’s first theorem.

Finally, thanks to Levi’s theorem, a general Lie algebra is the semi-direct
product of its radical and a semi-simple subalgebra, therefore Lie’s third theo-
rem follows from what we did before. �

2. Proof using Ado’s theorem

Ado’s theorem is the assertion that any finite dimensional real Lie algebra
g possesses a finite dimensional, faithful representation V . This implies that g
is isomorphic to a subalgebra of gl(V ). Then once again, this subalgebra in-
tegrates into a connected Lie subgroup of Gl(V ), whose tangent Lie algebra is
isomorphic to g by Lie’s first theorem. �

3. Homological proof

Any Lie algebra g is a central extension of its center Z(g):

0→ Z(g)→ g
ad→ adg → 0,

where adg ⊂ gl(g) is the image of g under the adjoint map sending each element
to the corresponding inner derivation, i.e.

ad : g→ gl(g), X 7→ adX := [X,−].
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Now we have already seen that adg integrates into a Lie subgroup G of Gl(g),
and the trivial g-module Z(g) can be seen as a trivial G-module. It remains
to integrate the Lie algebra 2-cocycle associated to this central extension into
a group 2-cocycle. This is done using that G can be chosen 1-connected and
also 2-connected, by interpreting the cocycle as a differential 2-form on G. This
2-form then leads to a group 2-cocycle (see [24]), which then gives rise to a
central extension of groups whose tangent Lie algebra is isomorphic to g. �

4. Infinite dimensional proof

The proof in [14] uses an infinite dimensional construction to provide a Lie
group integrating g. On the path space P (g) (which is the Banach space of
continuous maps from the interval [0, 1] to g with uniform convergence), Duis-
termaat and Kolk consider the following product for all δ, δ′ ∈ P (g):

(δ · δ′)(t) = δ(t) +Aδ(t)δ
′(t), (2)

where Aδ ∈ C1([0, 1], gl(g)) is the solution of the differential equation

dA

dt
(t) = ad δ(t) ◦A(t)

with initial condition A(0) = idg. It is interesting to observe that this product
has the same form as the logarithmic derivative, sending differentiable curves in
a Lie group to Lie algebra valued 1-forms. Equation (2) expresses the 1-cocycle
identity of the logarithmic derivative in this context, see e.g. [22].

Duistermaat-Kolk show that the Banach space P (g) becomes an infinite
dimensional Banach Lie group with this product, and that its Lie algebra is
again P (g) with the bracket:

[X,Y ](t) =
d

dt

[∫ t

0

X(s)ds,

∫ t

0

Y (s)ds

]
.

Furthermore, they show that the subgroup P0(g) corresponding to the kernel of
the (Lie algebra) averaging map

av : P (g)→ g, X 7→
∫ 1

0

X(t)dt

is a closed connected normal Banach Lie subgroup, such that the quotient
P (g)/P0(g) is a connected (finite dimensional) Lie group integrating g. �

Now let us discuss (a little) these four proofs.

1. Barnes [3] shows that finite dimensional Leibniz algebras possess a Levi
decomposition. It would be interesting to transpose the above proof to
the setting of Leibniz algebras, where the right structure should be the
hemi-semi-direct product.

2. Barnes [4] also shows that finite dimensional Leibniz algebras possess a
faithful representation. We would need a version of Lie’s first theorem for
Leibniz algebras to transpose this proof to Leibniz algebras from there.
We will take here a different point of view and embed Leibniz algebras into
hemi-semi-direct products in the next section, following Kinyon-Weinstein
[19].
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3. Simon Covez will talk about how to transpose the homological proof of
Lie’s third theorem to Leibniz algebras. The Leibniz cocycle integrates
only locally, thus leading to a local Lie rack. This is explained in [10].

4. It would be most interesting to transpose the infinite dimensional proof
to the setting of Leibniz algebras, because it is this approach which gener-
alizes to the integration of Lie algebroids by Crainic-Fernandes [11]. This
approach could then lead directly to the integration of Leibniz algebroids
into.....Lie rackoids.

3 Integration of Leibniz algebras

3.1 Leibniz algebras as subalgebras of a hemi-semi-direct
product

Kinyon and Weinstein showed in [19] that every Leibniz algebra may be embed-
ded into a hemi-semi-direct product Leibniz algebra.

Let a Leibniz algebra h be given. Our most important example of a hemi-
semi-direct product is to choose gl(h) as the Lie algebra and h as the module in
the construction of the hemi-semi-direct product. Kinyon and Weinstein noticed
that every Leibniz algebra may be embedded in this type of hemi-semi-direct
product h ×hs gl(h). The embedding map is simply X 7→ (X, adX). In other
words, the given Leibniz algebra h is seen as a subalgebra of the hemi-semi-direct
product h×hs gl(h) by regarding it as the graph of the adjoint representation

ad : h→ gl(h), X 7→ adX ,

where for each Y ∈ h, adX(Y ) := [X,Y ].
One can change this example somehow by considering the Lie algebra of

derivations der(h) instead of the Lie algebra gl(h). Notice that the derivations
der(h) of a Leibniz algebra h form indeed a Lie algebra. The following proposi-
tion is due to Kinyon-Weinstein loc. cit.:

Proposition 3.1. Every Leibniz algebra h is embedded as a subalgebra of the
hemi-semi-direct product h×hs der(h).

3.2 Bass’ approach to integration

This approach builds on a remark by H. Bass in the Lie algebra case, referred to
in [15], and is already contained in [18] (end of Section 3), but Kinyon believed
this integration to be too arbitrary, as it does not necessarily yield Lie groups
in the case of Lie algebras.

Let h be a finite-dimensional real Leibniz algebra.

Theorem 3.2. On the vector space h, there exists a Lie rack structure which
is given by

(X,Y ) 7→ exp(adX)(Y ) =: X B Y

for all X,Y ∈ h. This global Lie rack structure has the following properties:

1. In case h is a Lie algebra, the corresponding Lie rack structure is locally
the conjugation rack structure w.r.t. to a Lie group structure.
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2. The Lie rack structure is globally described by a Baker-Campbell-Hausdorff-
formula (BCH-formula for short).

Proof . Note that X 7→ exp(adX) is an automorphism of h. The fact that
the binary operation

(X,Y ) 7→ X B Y = exp(adX)(Y )

is a rack product follows from the formula

α exp(adX)α−1 = exp(adα(X))

for any automorphism α ∈ Aut(h). Indeed, the RHS of self-distributivity

X B (Y B Z) = (X B Y )B (X B Z)

reads thanks to this formula

ead
eadX (Y ) (eadX(Z)) = eadX ◦ eadY ◦ e−adX (eadX(Z)) = eadX (eadY (Z)).

The BCH-formula which is referrred to in the statement is, for a Lie algebra
h, the formula for the conjugation conj∗ associated to the BCH-product:

conj∗(X,Y ) = exp(adX)(Y )

= Y + [X,Y ] +
1

2
[X, [X,Y ]] +

1

6
[X, [X, [X,Y ]]] + . . .

Observe that while the BCH group product is in general only locally defined,
its associated conjugation is always globally defined.

For a general Leibniz algebra, we interprete this same formula as a BCH-
formula for the rack product. �

One drawback of this Lie rack structure is that the underlying space is
necessarily contractible. This will be different with the following approach.
Another drawback is that in the case of a Lie algebra, the space is only locally
a Lie group, but not necessarily globally. We will not be able to overcome this
drawback.

3.3 hs-approach to integration

The hs-approach (approach using hemi-semi-direct products) can be seen as
modeled on the proof of Lie’s third Theorem using Ado’s Theorem. Here we
embed Leibniz algebras as subalgebras of hemi-semi-direct products (taking the
place of general linear Lie algebras), integrate these to linear Lie racks and
identify then the subrack associated to the given Leibniz algebra.

Consider a Leibniz algebra h. Then the hemi-semi-direct products h×hsgl(h)
and h×hs der(h) integrate into the linear Lie racks h×hsGl(h) and h×hs Aut(h)
respectively.

Now it remains to identify the subrack Rh ⊂ h×hs Aut(h) associated to the
Leibniz subalgebra {(X, adX) : X ∈ h} of the hemi-semi-direct product Leibniz
algebra h×hs der(h).
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Proposition 3.3. The subrack Rh ⊂ h×hs Aut(h) is explicitely described as

Rh = {(X, exp(adX)) : X ∈ h}.

It is a closed subset of the direct product of the vector space h and the exponential
image exp(ad(h)) of the adjoint image of h in the Lie group Gl(h). It acquires
a manifold structure on some open subset.

Proof . From the algebraic point of view, all we have to show is that the
set

Rh := {(X, exp(adX)) : X ∈ h}

is a subrack of the hemi-semi-direct product rack h×hs Aut(h). This is clear in
the first variable, and follows again from the formula

α exp(adX)α−1 = exp(adα(X))

for any automorphism α ∈ Aut(h) in the second variable.
The fact that the exponential image contains an open set where it has a

manifold structure follows from the fact that the vanishing of the derivative of
the exponential function defines a closed subset C (even an analytic subset).
Call the complementary U := adh \ C. The restriction of exp to U is a local
diffeomorphism and therefore an open map, thus exp(U) =: O is an open subset
of G ⊂ Aut(h), the Lie group generated by exp(adh). O therefore inherits a
manifold structure.

Now {(X, adX) : X ∈ h} is a linear subspace of h × adh, and therefore
{(X, adX) : adX ∈ U} is a submanifold of h× adh, which is sent to a submani-
fold Rh ∩O by the local diffeomorphism exp. This submanifold is the “global”
object integrating our Leibniz algebra. �

Remark 3.4. The manifold structure on the open set O is a manifold structure
on some 1-neighborhood in Aut(h), and seems therefore no gain with respect
to Covez’ integration procedure. But the 1-neighborhood in Covez’ procedure
is a neighborhood where exp is a diffeomorphism, while here our O is “almost
dense”: In case exp(g) is a manifold, then O is a dense open subset, because O
contains exp(g) \ V where V is the set of critical values of exp. V is a measure
zero subset of empty interior by (some variant of) Sard’s theorem.

In general, the image of the exponential map is neither open nor closed. For
Sl(2,C), it contains −1 as a non-interior point (see [14, p. 26]), so there is no
way to have a dense open subset.

4 Formal group approaches to integration

The formal group approach to the integration of Lie algebras is explained in
detail in Serre’s book [23]. The main scheme is to pass from a Lie algebra g to
its universal enveloping algebra Ug which is a cocommutative Hopf algebra, to
pass then to some kind of dual Ug∗ in order to get a commutative Hopf algebra,
and then to extract from it a formal group law. Another variant extracts from
Ug∗ an algebraic group by taking characters. The first person to think about
formal group laws for algebras over an operad (and thus in particular for Leibniz
algebras) was to our knowledge Benoit Fresse [16].
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4.1 Bertram-Didry’s approach

Here we sketch Manon Didry’s approach to the integration of Leibniz algebras.
She did her thesis (cf [13]) under supervision of Wolfgang Bertram.

The main idea of their approach is to examine the structure which one
inherits from a Lie algebra structure on a vector space g on the iterated dual
numbers Tng. Here T 1g = g⊗KK[ε]/(ε2), and then one iterates the construction.
Denoting the different ε by εi, i = 1, . . . , n, one obtains

Tng = g⊕
⊕
α∈In

εαg =: g⊕Gn(g),

where In is the set of non-zero multi-indices of length n with values in {0, 1}.
For a Lie algebra g, Didry obtains in this way groups Gn(g) where the group
product is polynomial and expressed in terms of iterated brackets. She describes
these groups in terms of generators and relations.

Let us introduce some notation in order to state (one of) her theorem(s) in
more precise terms. Let α ∈ In. For an integer m ∈ {2, . . . , |α|}, the set Pm(α)
denotes the set of increasing partitions in m subsets of the multi-index α with
respect to the lexicographic ordering:

Pm(α) = {(λ1, . . . , λm) ∈ Imn |α =

m∑
i=1

λi, λ1 < . . . < λm}.

Theorem 4.1. The (above defined) set Gn(g) carries a group structure given
by ∑

α∈In

εαxα ·
∑
α∈In

εαyα =
∑
α∈In

εα(x · y)α,

where

(x · y)α = xα + yα +

|α|∑
m=2

∑
λ∈Pm(α)

[. . . [[xλm , yλ1 ], yλ2 ], . . . , yλm−1 ].

The unit element of this group is 0 and the inverse of an element x =
∑
α∈In ε

αxα
is x−1 =

∑
α∈In ε

α(x−1)α, where

(x−1)α = −xα +

|α|∑
m=2

∑
λ∈Pm(α)

(−1)m[[xλm , xλm−1 ], . . . , xλ1 ].

For a Leibniz algebra h, Didry still obtains polynomial groups (!) Gn(h). It
does not seem clear how to extract from the Gn(h) the original Leibniz algebra
h, while for a Lie algebra g, the usual tangent Lie algebra of the polynomial
group Gn(g) is isomorphic to g.

4.2 Mostovoy’s approach

Finally, we also sketch Mostovoy’s approach [21]. Mostovoy works in Loday-
Pirashvili’s category of linear maps. In [20] Loday and Pirashvili introduce the
infinitesimal tensor product for the category of linear maps LM. Objects in LM
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are linear maps f : V → W , which are thought to be vertical with V upstairs
and W downstairs. Morphisms (φ1, φ0) : (f : V → W ) → (f ′ : V ′ → W ′) in
LM are commutative squares

V
φ1 //

f

��

V ′

f ′

��
W

φ0 // W ′

The category LM becomes a (strictly) symmetric tensor category with the
infinitesimal tensor product (f : V →W )⊗ (f ′ : V ′ →W ′) which is given by

(V ⊗W ′)⊕ (W ⊗ V ′)

f⊗idW ′+idW⊗f ′

��
W ⊗W ′.

The unit object is obviously 0 : {0} → k.
Loday and Pirashvili exhibit algebraic objects in the tensor category LM.

For this, they use that the inclusion functor W 7→ (0 : {0} → W ) and the
projection functor (f : V →W ) 7→W are tensor functors which compose to the
identity. This shows that for each algebraic structure in LM, the downstairs
object has the corresponding structure in the category of vector spaces. Using
this principle, they show that in LM:

• an associative algebra object f : M → A is the data of an associative
algebra A, an A-bimodule M and a bimodule map f : M → A,

• a Lie algebra object f : M → g is the data of a Lie algebra g, a (right)
Lie module M and an equivariant map f : M → g,

• a bialgebra object f : M → H is the data of a bialgebra H, an H-bimodule
and H-bicomodule M such that left and right comodule maps are H-
bimodule maps, and f : M → H is a bimodule map and a coderivation
(!).

Loday and Pirashvili go on showing how to construct functors P (primitives)
and U (universal enveloping algebra) associating to a Hopf algebra in LM a
Lie algebra in LM, and vice-versa. For a given Lie algebra f : M → g, the
enveloping algebra is φ : Ug ⊗M → Ug. Here the right Ug-action on Ug ⊗M
is induced by

(u⊗m) · x = ux⊗m+ u⊗m · x

for all x ∈ g, all u ∈ Ug and all m ∈M , the left Ug-action is given by multipli-
cation on the first factor, and the map φ is induced by

1⊗m 7→ f(m).

Leibniz algebras give rise to Lie algebra objects in LM by associating to g
the linear map π : g→ gLie, i.e. the quotient map w.r.t. the ideal generated by
the squares [x, x] for x ∈ g which leads to the quotient Lie algebra gLie.
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Mostovoy’s idea is to integrate Leibniz algebras by looking at them as Lie
algebra objects in LM. As the formal integration procedure in Serre’s book [23]
works for any strict tensor category, he deduces that the integration problem is
from this point of view mostly trivial.

Mostovoy defines a formal group in LM to be an object δ : V →W together
with a linear map

G : S
(

(V ⊕ V )
δ+δ→ (W ⊕W )

)
→ (V

δ→W )

such that the extension to a coalgebra morphism in LM

S(V
δ→W )⊗ S(V

δ→W )→ S(V
δ→W )

is an associative algebra in LM. Observe that there are no group objects in
LM. Mostovoy arrives at the following proposition:

Proposition 4.2. The functor that assigns to a Lie algebra (M → g) in LM
the primitive part of the product in U(M → g) is an equivalence of categories
of Lie algebras in LM and of formal groups in LM.

Mostovoy then has a global interpretation of these formal group objects in
terms of bundles over the Lie group G (which arises from integrating the Lie
algebra g, i.e. the downstairs object of M → g). This bundle ξ → G should
have typical fiber M , an anchor map p : ξ → TG and a pair of actions. It would
be interesting to establish links to Bertram-Didry’s approach to integration and
to the notion of rackoid of Laurent-Gengoux and Wagemann.

5 Deformation quantization of Leibniz algebras

The main idea here is that a (local) integration of a Lie or Leibniz bracket leads
to a symplectic micromorphism which is readily quantizable by Fourier-Integral
operators.

5.1 Symplectic micromorphisms

Let us recall the definition of a symplectic micromorphism (see [6], [7], [8], and
[9] for more details) as well as some aspects of their quantization.

Definition 5.1. A symplectic micromorphism ([L], φ) from a symplectic micro-
fold [M,A] (i.e. a germ of a symplectic manifold around a Lagrangian subman-
ifold A ⊂ M , called the core of the microfold) to a symplectic microfold [N,B]
is the data of a Lagrangian submanifold germ [L] in M × N around the graph
gr(φ) of a smooth map φ : A→ B such that the intersection L∩(A×B) = gr(φ)
is clean for a representative L ∈ [L].

The symplectic micromorphisms are the morphisms of a category, the mi-
crosymplectic category. We denote them by ([L], φ) : [M,A] → [N,B], and,
when the symplectic microfold is [T ∗A,A], we simply write T ∗A.

An important example of symplectic micromorphisms comes from cotangent
lifts of smooth maps between manifolds. Namely, if φ : B → A is a smooth map,
then the conormal bundle N∗grφ of the graph of φ is a lagrangian submanifold
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of T ∗(A × B). Using the identification (Schwartz transform) between this last
cotangent bundle and T ∗A × T ∗B, the conormal bundle to the graph yields a
symplectic micromorphism, which we denote by T ∗φ : T ∗A → T ∗B, by taking
the germ of the resulting lagrangian submanifold{((

pA, φ(xB)
)
,
(
(T ∗xB

φ)pA, xB
))

: (pA, xB) ∈ φ∗(T ∗A)
}

around the graph of φ, and where (pA, xA) and (pB , xB) are the canonical
coordinates on T ∗A and T ∗B respectively.

When the target and source symplectic microfold cores are euclidean (i.e.
when A = Rk and B = Rl for some k ≥ 1 and l ≥ 1), a symplectic micro-
morphism from T ∗A to T ∗B can be associated with a family of formal Fourier
Integral operators from C∞(A)[[~]] to C∞(B)[[~]] using the symplectic micro-
morphism generating function (see [9] for a general theory of symplectic micro-
morphism quantization).

Namely, as shown in [7], when the target and source symplectic microfold
cores are euclidean, any symplectic micromorphism ([L], φ) from T ∗A to T ∗B
can be described by a generating function germ [SL] : φ∗(T ∗A)→ R around the
zero section of the pullback bundle φ∗(T ∗A) as follows: There is a representative
L ∈ [L] such that

L =

{((
pA,

∂SL
∂pA

(pA, xB)
)
,
(∂SL
∂xB

(pA, xB), xB
))

: (pA, xB) ∈W
}
,

where W is an appropriate neighborhood of the zero section in φ∗(T ∗A). This
generating function SL is unique if one requires that it satisfies the property
SL(0, x) = 0. The geometric condition on the cleanness of the intersection in
the definition above can be expressed in terms of the generating function as
follows:

∂SL
∂pA

(pA, xB) = φ(xB) and
∂SL
∂xB

(0, xB) = 0. (3)

In this light, one can see SL as a deformation of the cotangent lift generating
function, which is the first term of SL in a Taylor expansion:

SL(pA, xB) = 〈pA, φ(xB)〉+O(p2
A).

Remark 5.2. Conversely, any generating function germ [S] : φ∗(T ∗A) → R
satisfying conditions (3) defines uniquely a symplectic micromorphism ([LS ], φ) :
T ∗A→ T ∗B.

Now, using the generating function SL of the symplectic micromorphism
([L], φ) and a function germ a : φ∗(T ∗A)→ R around the zero section, one can
construct a formal operator

C∞(A)[[~]] −→ C∞(B)[[~]]

ψ 7→ Qa([L], φ)ψ

by taking the stationary phase expansion of the following oscillatory integral:∫
T∗A

χ(pA, xA)ψ(xA)a(pA, xB)e
i
~ (SL(pA,xB)−pAxA) dxAdpA

(2π~)n
,
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where χ is a cutoff function with compact support around the critical points of
the phase SL(pA, xB)−pAxA (w.r.t. the integration variables) and with value 1
on this critical locus, which is nothing but the points in {(0, φ(xB)) : xB ∈ B}.
Since the critical locus is contained in the zero section, the asymptotic expansion
does not depend on the cutoff functions and, hence, is well-defined. To simplify
the notation, we will abuse it slightly, and write from now on:

(Qa([L], φ))ψ(xB) =

∫
Rk

ψ̂(pA)a(pA, xB)e
i
~SL(pA,xB) dpA

(2π~)k/2
,

to mean the asymptotic expansion above, and where ψ̂ is the asymptotic Fourier
transform of ψ; namely,

ψ̂(pA) =

∫
Rk

ψ(xA)e−
i
~pAxA

dxA
(2π~)k/2

.

5.2 Gutt star-product as the quantization of a symplectic
micromorphism

Let us now apply the reasoning of the previous section to the quantization
of the linear Poisson structure on the dual of a Lie algebra g. Consider first
the integrating Lie group G. Taking the cotangent lift of the group operation
m : G×G→ G yields a symplectic micromorphism

([T ∗m],4g∗) : [T ∗G, g∗]⊗ [T ∗G, g∗]→ [T ∗G, g∗],

where we take the core in the source and target symplectic microfolds to be not
the cotangent bundle zero section G, but rather the fiber above the identity, i.e.
the dual of the Lie algebra. Identifying [T ∗G, g∗] with [T ∗g∗, g∗] (which we will
denote simply by T ∗g∗) using the Lagrangian embedding germ

[T ∗g∗, g∗]→ [T ∗G, g∗], (X, ξ) 7→ (exp(X), (T ∗1Lexp(X))
−1ξ),

the Lagrangian germ [T ∗m] becomes the cotangent lift of the local group opera-
tion BCH : g× g→ g, and ([T ∗m], 4g∗) becomes a symplectic micromorphism
from T ∗g∗⊗ T ∗g∗ to T ∗g∗, whose underlying Lagrangian submanifold germ co-
incides with the multiplication of the local symplectic groupoid integrating the
linear Poisson structure on g∗.

This local/formal symplectic groupoid is described in [5], where it is shown
that T ∗m can be described in term of the following generating function germ

S(X,Y, ξ) =
〈
ξ,BCH(X,Y )

〉
as follows:

T ∗m =

{(
(X,

∂S

∂X
), (Y,

∂S

∂Y
), (

∂S

∂ξ
, ξ)

)
: (X,Y, ξ) ∈W

}
where W is an appropriate neighborhood of the zero section in T ∗g∗ ⊕ T ∗g∗.

Once the generating function of a symplectic micromorphism is computed,
it is easy to obtain a family of (formal) FIOs quantizing it as explained in the
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previous section. In the case at hand, we obtain the following family of formal
operators

Qa(T ∗m) : C∞(g∗)[[ε]]⊗ C∞(g∗)[[ε]]→ C∞(g∗)[[ε]]

of the form (in the notation from the previous section and with ε := ~
2i ):

Qa(T ∗m)(f ⊗ g)(ξ) =

∫
g×g

f̂(X)ĝ(Y )a(X,Y, ξ)e
i
~S(X,Y,ξ) dXdY

(2π~)n
, (4)

where a is the germ of a smooth function on T ∗g∗ ⊕ T ∗g∗ around the zero
section, called the amplitude of the FIO Qa(T ∗m), and n is the dimension of g.

When a = 1 and S is the generating function of ([T ∗m],4g∗), we have that

f ∗a g = Qa(T ∗m)(f ⊗ g)

coincides with the Gutt star-product [1, 2, 17]. For other star-products in
integral form on duals of Lie algebras as in (4), we refer the reader to the work
of Ben Amar [1, 2].

Remark 5.3. For a general amplitude a, f ∗a g is not necessarily associative.

5.3 Deformation quantization of Leibniz algebras

Let (h, [, ]) be a Leibniz algebra and (Rh,B) its integrating Lie rack from Section
3. The idea is to proceed by analogy and to quantize the Lagrangian relation

T ∗B : T ∗Rh × T ∗Rh → T ∗Rh

as we did for the group operation in the case of a Lie algebra.
As we saw in the Lie case, it is better to consider the local model, i.e. the

integrating rack

B : h× h→ h, (X,Y ) 7→ eadX (Y ) =: AdX(Y )

defined on h. Denote by T ∗h∗ the product h× h∗. The symplectic form is then
simply the canonical pairing. The first step is to take the cotangent lift of the
rack operation and compute its generating function:

Proposition 5.4. The cotangent lift of B yields a symplectic micromorphism

T ∗B : T ∗h∗ ⊗ T ∗h∗ → T ∗h∗

with generating function

SB(X,Y, ξ) := 〈ξ,AdX(Y )〉.

Proof. Consider the generating function

SB(X,Y, ξ) := 〈ξ,AdX(Y )〉

= 〈ξ, Y + [X,Y ] +
1

2
[X, [X,Y ]] + . . .〉

We will denote the variables by (X,Y ) =: P and ξ, and write accordingly
SB(X,Y, ξ) = SB(P, ξ).
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As shown in [7] Sections 3.1 and 3.2 (see also [5] Section 1.2), a generating
function of the type

SB(P, ξ) = 〈ξ, Y + [X,Y ] +
1

2
[X, [X,Y ]] + . . .〉

= 〈Φ(ξ), P 〉+O(P 2)

where Φ : h∗ → h∗ × h∗, Φ(ξ) = (0, ξ), yields a symplectic micromorphism

([LS ],Φ) : T ∗h∗ ⊗ T ∗h∗ → T ∗h∗

where

LS =

{(
(X,

∂SB

∂X
), (Y,

∂SB

∂Y
), (

∂SB

∂ξ
, ξ)

)
| ξ ∈ h∗, X, Y ∈ h

}
= {((X, 〈[X,Y ], ξ〉), (Y,Ad∗X(ξ)), (AdX(Y ), ξ)) | ξ ∈ h∗, X, Y ∈ h }

which one recognizes to be the cotangent lift of the map (X,Y ) 7→ AdX(Y ).

We are now ready to quantize T ∗B : T ∗h ⊗ T ∗h → T ∗h. As before, the
family of semi-classical FIO quantizing the symplectic micromorphism is given
by

Qa(T ∗B)(f ⊗ g)(ξ) =

∫
h×h

f̂(X)ĝ(Y )a(X,Y, ξ)e
i
~SB(X,Y,ξ) dXdY

(2π~)n
,

where a is the germ of an amplitude and f̂ and ĝ are the asymptotic Fourier
transforms. Our main theorem in [12] reads now:

Theorem 5.5. For a = 1, the operation

B~ : C∞(h∗)[[ε]]⊗ C∞(h∗)[[ε]]→ C∞(h∗)[[ε]]

defined by
f B~ g := Qa=1(T ∗B)(f ⊗ g)

is a quantum rack, i.e.
(1) B~ restricted to Uh = {EX := e

i
~ 〈X,−〉 =: e

i
~X |X ∈ h} is a rack struc-

ture and
e

i
~X B~ e

i
~Y = e

i
~ conj∗(X,Y ),

(2) B~ restricted to B~ : Uh × C∞(h∗)→ C∞(h∗) is a rack action and

(e
i
~X B~ f)(ξ) = (Ad∗−Xf)(ξ).

Moreover, B~ coincides with the Gutt quantum rack f Ba g := f ∗a g ∗a f on
the restrictions in the Lie case (although it is different on the whole C∞(h∗)[[ε]]).

Remark 5.6. Actually, Property (2) in the theorem above holds also for square
integrable functions, and we even obtain a unitary rack action:

B~ : Uh × L2(h∗)→ L2(h∗).
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Proof of the theorem:
The first property follows from the fact that exponentials Fourier transform

to delta functions:(
e

i
~ X̄ B~ e

i
~ Ȳ
)

(ξ) =

∫
ê

i
~ X̄ ê

i
~ Ȳ e

i
~ 〈ξ,AdX(Y )〉 dXdY

(2π~)dim(h)

= (2π~)dim(h)

∫
δX̄(X)δȲ (Y )e

i
~ 〈ξ,AdX(Y )〉 dXdY

(2π~)dim(h)

= e
i
~ 〈AdX̄(Ȳ ),ξ〉 = e

i
~ 〈conj∗(X̄,Ȳ ),ξ〉.

Now B~ satisfies the rack identity on Uh, because conj∗ does. Furthermore,

EY 7→ EX B~ EY = Econj∗(X,Y )

is bijective for all X ∈ h, because Y 7→ conj∗(X,Y ) is. It is also clear from the
formula above that this rack structure coincides with the Gutt rack structure
in the case of a Lie algebra.

The second property also follows from the fact that exponentials Fourier-
transform to delta functions:(

e
i
~ X̄ B~ f

)
(ξ) =

∫
ê

i
~ X̄ f̂(Y )e

i
~ 〈ξ,AdX(Y )〉 dXdY

(2π~)dim(h)

= (2π~)(dim(h))/2

∫
δX̄(X)f̂(Y )e

i
~ 〈ξ,AdX(Y )〉 dXdY

(2π~)dim(h)

=
1

(2π~)(dim(h))/2

∫
f̂(Y )e

i
~ 〈Ad∗−Xξ,Y 〉dY

= f(Ad∗−Xξ).

One sees that this defines a rack action from the fact that the coadjoint action
Ad∗−X is a rack action. �
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